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ABSTRACT This paper proposed a GRU/LSTM-based deep regression model for thermal estimation of
modular multilevel converter submodule. The MMC is composed of many submodules with the power
semiconductors such as IGBTs and MOSFETs. The switches are the main components determining the
reliability of the MMCs, and the swing of junction temperature causes most switch failures in the power
semiconductors. So, thermal estimation is essential to improve the reliability of the MMC systems. Thermal
modeling is a regression problem of time-series data, considering various environmental conditions. The
conventional models cannot reflect the complex environmental conditions due to their fixed mathematic
formulas. Therefore, this paper proposes the deep regressionmodel that can estimate the junction temperature
by using the arm current of the MMC submodule. The proposed model improved the accuracy of thermal
estimation by more than 7.2 times compared to the existing method. Moreover, it does not require pre-
processing and takes about 4.5ms on average to process 100ms data.

INDEX TERMS Thermal estimation, modular multilevel converter (MMC), deep regression, gated recurrent
unit (GRU), long short term memory (LSTM), recurrent neural network (RNN).

NOMENCLATURE
ACRONYMS MEANING
AI Artificial Intelligence
ANN Artificial Neural Network
DRM Deep Regression Model
GRU Gated Recurrent Unit
IGBT Insulated Gate Bipolar Transistor
LSTM Long Short-Term Memory
MMC Modular Multilevel Converter
RNN Recurrent Neural Network

I. INTRODUCTION
Modular multilevel converters are used in the direct current
transmission systems, energy storage systems, and motor
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drives for high-voltage and high-power conversion systems
[1], [2]. The output voltage ofMMC is decided by the number
of submodules in each arm [3]. The MMC achieves high out-
put power quality using the submodules and reduces switch-
ing losses, switching stress, and filter size compared to 2-level
or 3-level inverters [4], [5]. However, failure increases when
the MMC systems are exposed to harsh environments such as
high voltage and medium voltage transmission systems [6].
The failure of MMC requires considerable time and cost
to restoration [7], [8]. Therefore, according to the lifetime
and robustness, the reliability of the MMC is still a crucial
issue [9], [10].

The power conversion system consists of various compo-
nents such as switches, capacitors, inductors, and gate drivers.
The power semiconductor switches are the main components
of power conversion systems [11]. The semiconductor device
failure accounts for 21 % of converter system failure, and
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the leading cause of the switches is thermal stress [12]–[14]
As a result, the thermal state of the semiconductor deter-
mines the reliability and robustness of the systems [15].
The thermal stresses of the semiconductor occur in bond
wire fatigue, metallization reconstruction, solder fatigue, gate
oxide failure, and burnout failure [16]. Consequently, thermal
estimation is essential for the reliability of power conversion
systems [17], [18].

Conventional methods for thermal estimation are based on
mathematical formulas: the cauer network and foster net-
work. The cauer network is based on the actual physical
properties of the switching device [19]. The cauer model has
the drawback of requiring precisematerial parameters. On the
other hand, the foster network requires the power losses of
the switches by calculating the thermal time constants and
resistance [20], [21]. However, the junction temperature of a
submodule is affected by its power losses and that of entire
systems. So, these methods have limitations to estimating
thermal conditions accurately.

Thermal modeling is a regression problem of time-series
data, which should consider various environmental condition.
Several AI techniques have been widely used to consider
various conditions [22]. [23] presented a surrogate thermal
model for power electronic modules using ANNs. In [21],
ANNs are used to predict the lifetime of photovoltaic sys-
tems. The established work has validated the potential of
AI-aidedmethods supporting the analysis of power electronic
systems. However, [23] has a limitation in that it created
a thermal estimation model using simulation data. Thus,
it is difficult to verify how robustly it operates on real data.
In [24], several parameters (e.g., the switching frequency of
the inverter, reference DC link, filter parameter, etc.) should
be considered simultaneously while building a model. So, the
complexity of a model and the amount of data processing
computation increases. Reference [25] reflects the continuous
characteristics of the time-series data to build AI-basedmodel
considering thermal cross-coupling (TCC) effects using a
half-bridge module with two IGBTs and two diodes. But
it has limitations to time and data processing because it
requires data preparation process: power loss injection, ther-
mal response measurement, and log-scale transformation.

To solve these problems, this paper proposed a thermal
estimationmethod ofMMC submodule using deep regression
on GRU and LSTM network, that:

1) is trained by gathering the measurement data to
operates on the field data robustly.

2) only consider the arm current of the MMC submod-
ule so that the complexity of the model is low.
3) uses raw data to predict so that it does not require any

data pre-processing.
Deep regression is a method of solving a regression prob-

lem using a neural network structure. This paper uses a
LSTM [26] and GRU [27] which is a type of RNN and is
widely used to predict time-series data [28], [29]. The pro-
posed model does not require any pre-processing and it takes
about 4.5ms on average to process 100ms data. As a result

FIGURE 1. A schematic circuit of a three-phase MMC topology.

of experiment, it can estimate 1-hour data within about
164 (with GRU) and 193 (with LSTM) seconds (about
3 minutes). More encouraging experimental results showed
that the accuracy of thermal estimation was improved by
more than 7.2 times compared to the existing method and the
prediction error of the proposed model was reduced to 1/5 of
that of the existing model.

II. MATHEMATICAL MODELING
This section is discussed about the configuration of MMC
submodule and mathematical model for thermal estimation.
In this paper, the three-phase MMC topology is considered
and there are two complementary IGBT switches and two
parallel diodes on each MMC submodule. The details of the
configuration are as follows:

A. MMC CONFIGURATION
Fig. 1 presents a schematic circuit of a three-phase MMC
topology. Each phase of the MMC has two arms (upper and
lower), and each arm is equipped with arm inductor to limit
the current due to short circuit accidents. The output current
iox is represented by Kirchhoff’s current law as shown in
equation (1), and the circulating current icc of MMC flows
in a leg through both the upper and lower arms, as shown in
equation (2).

iox = iHx − iLx = Iac sin (ωt − φ) , (1)

icc =
1
2
(iHx + iLx) =

1
3
Idc + Ih sin (2ωt − φ) , (2)

where the output current iox is presented by the magnitude
of Iac as sinusoidal function, and the circulating current icc
includes the DC component Idc and the harmonics. In the
MMC system, the harmonic of the circulating current is
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FIGURE 2. Operating modes of submodule (a) iarm > 0, (b) iarm < 0.

significantly small, the circulating current is expressed the
DC current.

From the equations (1) and (2), the upper and lower arm
current iHx , iLx are given by

iHx = icc +
1
2
io =

1
3
Idc +

1
2
Iac sin (ωt − φ) , (3)

iLx = icc −
1
2
io =

1
3
Idc −

1
2
Iac sin (ωt − φ) . (4)

According to Kirchhoff’s voltage law, the upper and lower
voltage are present as follows:

vHx =
Vdc
2
− L

diHx
dt
− vo, (5)

vLx =
Vdc
2
− L

diLx
dt
+ vo, (6)

where Vdc represents the dc link voltage, and vo represents
the output voltage.

The upper and lower voltage are associated with the output
and circulating current from the equations (3)-(6).

vHx − vLx = −2vo − L
(
diHx
dt
−
diLx
dt

)
= −2vo − L

dio
dt
,

(7)

vHx + vLx = Vdc − L
(
diHx
dt
+
diLx
dt

)
= Vdc − 2L

dicc
dt
. (8)

TABLE 1. Operating modes of submodules.

In the steady state, the variance of the output current is
ideally sinusoidal, and the variance of the circulating current
is negligible. The references of the upper and lower voltage
are represented in equation (9) and (10).

vHx =
1
2
Vdc (1− m sinωt) , (9)

vLx =
1
2
Vdc (1+ m sinωt) . (10)

The arm of each phase composes submodules, the mini-
mum unit of the power conversion system, and the submod-
ules generally apply the half-bridge topologies. There are two
complementary IGBT switches S1, S2, two parallel diodesD1,
D2, and a capacitor Csm in the half-bridge modules.
The operating modes of the SMs shown in Fig. 2 are

divided into three modes (charging, discharging, and bypass)
depending on the arm current iarm and the IGBT switching
states as shown in Table 1. When the arm current flows in a
positive direction, the SMs operate the charging and bypass
modes. When the arm current flows in a negative direction,
the SMs operate the discharging and bypass modes.

The duty function of the four power devices FS1, FS2,
FD1, and FD2 depend on the current flowing and the IGBT
switching states, as shown in equations (11)-(14). The duty
function of S1 and D1 are identical with the reference of
the upper voltage VHx . However, S2 and D2 operate in a
complementary to S1 and D1. RS2 and RD2 are equal to the
reference of the lower voltage VLx .

FS1 =
1
2
(1− m sinωt) iarm < 0, (11)

FD1 =
1
2
(1− m sinωt) iarm > 0, (12)

FS2 =
1
2
(1+ m sinωt) iarm > 0, (13)

FD2 =
1
2
(1+ m sinωt) iarm < 0. (14)

B. MATHEMATICAL THERMAL MODELING
Mathematical thermal modeling of MMC is divided into two
steps: 1) power loss calculation and 2) thermal estimation of
the power devices. The energy loss Esw [20] by the switching
of the power devices is shown in equation (15).

Esw =
(
Eon + Eoff

)
·
{
1+ KT ·

(
Tj − Tref

)}
, (15)

where Eon and Eoff are energy loss according to the switch-
ing state, KT means the thermal coefficient, and Tj, Tref is
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FIGURE 3. Architecture of deep regression model for thermal estimation of MMC submodule.

junction and reference temperature, respectively. The power
loss by the energy loss [20] is associated with the switch-
ing frequency and the reference voltage Vref , as shown
equation (16).

Psw = Esw · fsw ·
(
Vsm
Vref

)KV
, (16)

where Vsm represents the capacitor voltage of the SMs, KV
represents the voltage coefficient. The voltage by the conduc-
tion Vcond is shown equation (17)

Vcond =
{
Vref + KC1 ·

(
Tj − Tref

)}
+ iarm ·

{
rref + KC2 ·

(
Tj − Tref

)}
, (17)

where rref is on-state slope resistance, KC1, and KC2 are
the temperature coefficients obtained from the datasheet. The
power loss by the conduction voltage is associated with the
arm current iarm and the duty function FX .

Pcond = Vcond · iarm · FX (X = S1, S2, D1, D2) . (18)

The power loss of the power devices represents sum of the
switching loss and conduction loss.

Ploss = Psw + Pcond . (19)

The thermal model based on a fourth-order foster network
is obtained as follow [15]–[17]:

1Tn =
4∑

k=1

1Tn−1 · e
−
1t
τk + Pioss ·

4∑
k=1

rk ·
(
1− e−

1t
τk

)
,(20)

where τk and rk represent time constant and thermal resis-
tance, respectively.

III. DEEP REGRESSION ON GRU/LSTM NETWORK
This section is discussed about DRMonGRU and LSTM net-
work. The proposed model is briefly illustrated as shown in
Fig. 3. The thermal estimation is achieved by training MMC

FIGURE 4. Architecture of recurrent neural network model.

arm current (iarm) and temperature (S1, D1) data. Physically,
the switch temperatures S1 and diodeD1 change according to
the iarm as shown in left side of Fig. 3. Similarly, in the DRM
model, the temperature of the switch(S1) and diode(D1) at
t + k + 1 is predicted through the input of the arm current
(iarm) change from t to t + k . For example, assuming that
the window size is 10, it means predicting the temperature at
41 seconds with arm current data between 30 and 40 seconds
(t = 30, k = 10, l = 1). Here, using the same arm current
data (iarm), the temperature of the switch (S1 DRM) and the
diode (D1 DRM) are estimated respectively. The detail is as
follows:

A. MODEL CONSTRUCTION
Deep regression model on LSTM [26] and GRU [27] net-
work is based on the structure of RNNs. Fig. 4 shows the
basic structure of an RNN. The basic structure is on the left,
which is executed repeatedly to run the model. The right side
illustrates the execution flow of the model over time. The
components of the model operated at an arbitrary time t are
summarized as follows:

• Input data X(t): X(t) is the initial data applied to the
model. The type of the input data depends on the model
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structure. It may be a scalar value, one or high dimen-
sional time-series data. In this study, the current data
(iarm) was the input data. By applying the time sliding
window, X(t) was formed to a one-dimensional vector.

• Hidden layer result h(t): H(t) represents the intermedi-
ate result obtained by calculating the input data, which
applied at time t as the internal weight of the model.

• Output data Y(t): Y(t) means the result that the model
finally predicts. In this study, we designed the tempera-
ture values as scalar type of the output layer.

At this time, to calculate the results of the hidden and
the output layer, the internal weight should be updated by
learning. There are three types of weights in the RNN:

• Weight in the input layer, Wxh(t): The weight from the
input layer to the hidden layer at time t.

• Weight in the recurrent layer, Whh(t): The weight
from the hidden layer at time t to the next time t + 1.

– Weight in the output layer, Why(t): The weight
from the hidden layer to the output layer at time t.

Training of the RNN model aims to minimize the loss of
the output layer and update weights such as: Wxh(t), Whh(t),
and Why(t). The performance of the model is also changed
according to the weight connection of the hidden layer. Here,
each of the three layers (Wxh(t),Whh(t), andWhy(t)) is trained
with a different weight value.

B. DATA CHARACTERISTICS
The thermal estimation model is constructed by labeling data
(S1, D1, and iarm). Labeling is to specifically define the input
data which is the source of prediction and the output data
which is the target of prediction. Here, we must concentrate
on the characteristics of regression model. Building a regres-
sion model is a work to find numerical relationships between
the input and the output data. If the input data to predict the
same output have similar patterns, training the model will be
easy. If it is difficult to predict, training the model will be
difficult as well. Our model takes current data as input and
temperature data as output. Let’s examine the relationship
between temperature and current data.
(Fig. 5. is included on the next page because of its size) In

Fig. 5 (a) and Fig. 5 (b), the point A and B capture different
temperature (output) values depending on whether they are
rising or falling edges of the current (input) data. The differ-
ence is caused by errors in measuring temperature or slight
delays in signal transmission. In contrast, the point C and D
shows same temperature (output) values 42.5◦ of switch S1
with the different current (input) values. When training a
regression model, it is easy to predict the same output value
when the input data has a uniform pattern. If the input data
has different patterns with same label, it’s like giving different
answers to the same test question.

Fig. 5(c) clearly shows these characteristics. It shows the
comparison of the input data cropped by different window
sizes when predicting the same label as shown in three blue

dotted lines (1∼3) in Fig. 5(b). Here, the window size means
the number of the input data to be observed at once. For exam-
ple, the window size of 5 means fetching the five sequential
input data. In Fig. 5(c), the input data has a more uniform
pattern when the window size is 100 than 5. In other words,
using the input data cropped to a window size of 100 is
better because it provides the insight of data trend of back
and forth as to prediction basis. Therefore, we propose the
data labeling method by using time sliding window, as shown
in Fig. 6.

C. DATA LABELING
Fig. 6. shows two sinusoids with the same period. The gray-
shading block is one period with n slots. Assuming the data
set is constructed by sliding the window from the left. The
first data set is built by combining the input data from three
slots (1-3) and the output data from the slot 4 (green colored
slot). The following second data set consists of the input data
from 2-4 and the output data from 5 (yellow). The third is
configure d by connecting the input data from 3-5 and the
output data from 6 (orange). Here, it is important to select
an appropriate window size. If the window size is too small,
it operates very sensitively to small error values such as noise.
If thewindow size is too large, ameaningful data pattern is not
generated, which deteriorates the performance. Therefore,
it is required to set the window size of about 0.1∼10% of
a period length, compare it with the performance, and tune
the model.

IV. EXPERIMENTAL RESULT
This section presents the experimental results of the pro-
posed model. Experimental results are followed in the order
of environment configuration, experimental setting, model
evaluation, and discussion.

A. ENVIRONMENTAL CONFIGURATION
Fig. 7 shows a submodule of MMC experimental setup for
measuring the temperature. The experimental setup con-
sists of the following parts: a half bridge converter module
(F4-50R12K24), a control board, a load reactor, dc-link win-
dow size is three and the movement size (stride) is one
slot, capacitors, temperature sensors, and DC power source
(TC.P.20.600.400 of REGATRON). The converter module
F4-50R12K24 consists of the two half-bridge converters as
SM of MMC and load converter. The current of submodule is
controlled by AC 15A and DC 5A using the load converter.
The silicone gel of the module is removed to accurately mea-
sure the temperature using the fiber-optic temperature sensor
as shown in Fig. 8. The experiments are performed under the
conditions listed in Table 2. The input voltage is applied at
300 V, and the load reactor sets to 2 mH, respectively. The
switching frequency of load converter sets 10 kHz. However,
the switching frequency of half-bridge converter is 1 Hz for
sensing the temperature of the switches and diodes.
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FIGURE 5. Analysis of data characteristics in multi-modular converter submodule. (a) The output data (The switch temperature: S1, The diode
temperature: D1). (b) The input data(The arm current: iarm). (c) The input data pattern according to various window size with same label (The label:
The diode temperature 47.5). (c-1) The window size = 5. (c-2) The window size = 100.

B. EXPERIMENTAL SETTING
To evaluate the proposed model, the following experimental
conditions were designed. The detail of the experimental
setting is as follows:

• The configuration of themodel: Themodel was trained
with temperature data by input current of AC 15A and
DC 5A. In the experiment, the mathematical model in
Chapter 2 and the deep regression model in Chapter 3
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FIGURE 6. Learning dataset construction method of periodic data by
using time sliding window (e.g., sinusoidal signal).

FIGURE 7. Experimental setup for measuring the temperature of MMC
submodule.

were compared. There are three layers in both GRU and
LSTM models. We considered the batch size and the
number of neurons based on the performance metrics
(R2 score) to get the best results. The best performing
case was experimentally set by adjusting the number of
neurons in each layer to 32, 64, 128, and 256. We tested
the 64 cases (4 × 4 × 4 cases in three layer). As a
result, the number of neurons in the first layer is 64,
128 in the second layer, and 128 in the third layer. Like-
wise, we experimentally set the batch size, by changing
4 cases: 64, 128, 256, and 512. Consequently, the batch
size is fixed to 128.

• The ratio of the training/testing data: It was val-
idated with the 8:2 ratio of the training dataset and
the testing dataset. With the total 400,000 frames of
data, 320,000 frames were used for training and
80,000 frames were used for testing.

• The size of the window: Data of one period is composed
of 1,000 frames. We experiment to get an optimized
window size by changing the window size: from 0.1%
to 10% of one cycle.

FIGURE 8. Real-time experimental setup for MMC submodule.

TABLE 2. Experimental parameters.

• The index of evaluation: We used the R2 score [30],
MAE (Mean absolute errors) for performance evalua-
tion. The R2 score is widely used tomeasure the variance
proportion of the predicted result (y) compared to the
ground truth (ŷ). So, the R2 score is suitable for evaluat-
ing the performance when learning a regression model.
TheMAEmeans the absolute loss between the predicted
result (y) and ground truth (ŷ). The formula for each
index is as follows (i: the index of frame, N: the total
length of frame):

MAE =
1
N

∑N

i

∣∣yi − ŷi∣∣ (21)

C. MODEL EVALUATION
In this paper, we designed two types of models: The simu-
lation (mathematical) model in Section 2, The GRU/LSTM-
based deep regression model in Section 3. This section
described the evaluation result of these model.

1) SIMULATION MODEL
Fig. 9 shows the comparative result of simulation and mea-
surement in the MMC circuit with input current: AC 15A
and DC 5A. Here, the simulation is based on Chapter 2. The
blue line shows the measured data, and the orange line shows
the simulation data. As shown in Fig. 9(a), there is a large
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FIGURE 9. Comparison between simulation and measured data.
(a) Switch (S1). (b) Diode (D1) temperature.

difference between the simulation and the measured data.
In Fig. 9(b) shows that two graphs have some off-set along the
x-axis. It shows limitations that arises because the simulation
model does not reflect all conditions of the measurement
environment. The MAEs of the measured and simulated data
are 1.1615, and 4.9338, respectively. Now we are ready to
evaluate the deep regression model for thermal estimation of
MMC submodule.

2) DEEP REGRESSION MODEL (GRU/LSTM)
The DRM model is divided into the switch and diode model.
For both models, three approaches (simulation, GRU and
LSTMmodels) were compared. (Fig. 10∼Fig. 14 is included
on the next page because of its size)

• Switch Model: Fig. 10 and Fig. 11 show the difference
between the measured temperature and the estimation
result of the switch model. The simulation model had
fatal errors for predicting the actual temperature regard-
less of the window size. GRU and LSTM models also
had a problem of overfitting when the window was
small. But it is stabilized making it similar to the actual
data as the size of the window became larger.

• Diode Model: Fig. 12 and Fig. 13 show the prediction
result of the diode temperature using the simulation,
GRU and LSTM models. The simulation model, similar
to the switch model, had significant errors in predicting
the actual temperature regardless of the window size.
However, unlike the switch model, this error was a time
delay where the rise and fall times are faster than the
measured data. GRU and LSTM model also had a prob-
lem of overfitting when the window was small.

Fig. 14 shows the estimation performance by using the
R2 scores. The R2 scores of each model are compared by

TABLE 3. The analysis of the estimation error (the switch model).

TABLE 4. The assessment of the thermal estimation model.

changing the window size from 1 to 100. The simulation
model has a negative value less than 0. It means that the error
between the measured value and the predicted value is larger
than simply predicts with the average. In contrast, RNN than
the difference between the measured value and the mean of
the predicted value. In other words, it depicts an abnormal
case where the model has lower performance than the model
models show high performance. The performance of GRU/
LSTMmodel changes drastically up to when the window size
is 10 and it stabilizes after 10.

D. DISCUSSION
As previously analyzed, the proposed model can estimate
temperature with higher performance compared to the exist-
ing mathematical model. In this section, we discuss the effect
of the proposed model from three perspectives:
• Real-time: Real-time performance was evaluated by

comparing prediction results of sensor data measured
in real time. Here, we measured the actual tempera-
ture sensor data (the green line in Fig. 15) for com-
parison the model performance (the blue and orange
line in Fig. 15). Fig. 15 shows the prediction with
the current data in real-time. Fig. 15(a) shows the
current data as the input for the trained model, and
Fig. 15(b)-Fig. 15(c) shows the switch and diode tem-
perature predicted by the GRU, LSTM and simulation
model. In the initial part (determined by the window
size) to the left of the red line, it is difficult to esti-
mate the temperature due to the data labeling. But it
is negligible time (0.1 sec). After 0.1 sec, the proposed
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FIGURE 10. The estimation result of switch temperature (blue: measurement, green: simulation, red: GRU).

FIGURE 11. The estimation result of switch temperature (blue: measurement, green: simulation, red: LSTM).

FIGURE 12. The estimation result of diode temperature (blue: measurement, green: simulation, red: GRU).

FIGURE 13. The estimation result of diode temperature (blue: measurement, green: simulation, red: LSTM).

model had high accuracy. The proposed method does
not require any pre-processing task and support the
real-time processing.

• Reliability: Table 3 shows the prediction error of the
switch temperature when the window size was 100
(with the best performance). The proposed method has

a small error of 0.2200 for LSTM and 0.2609 for
GRU in MAE. However, the simulation model shows
a difference of more than 4 times of the proposed
method by MAE as 1.1342. The results were compared
with the previous study [25]. It reflects the contin-
uous characteristics of the time-series data to build
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FIGURE 14. The evaluation result of the model performance by window size.

FIGURE 15. The results of thermal estimation in real-time. (a) Current,
(b) switch temperature, and (c) diode temperature.

AI-based model considering thermal cross-coupling
(TCC) effects, using a half-bridge module with two
IGBTs and two diodes (This study used the half bridge
module F4-50R12K24 and measured the temperature
in the same way as in [25]). But it has limitations to
time and data processing because it requires data prepa-
ration process: power loss injection, thermal response
measurement, and log-scale transformation. Also, the
error of the proposed model is much smaller (the accu-
racy of thermal estimation was improved by more than
7.2 times compared to the existing method (loss of
the existing method (switch): 1.6. loss of the proposed
method (switch-LSTM): 0.22). Overall, the proposed
method has a stable and powerful performance at the
measurement equipment level.

• Effectiveness: The proposed model can estimate the
temperature of the switches and diodes without addi-
tional equipment or cost. Table 4 shows the time to esti-
mate the temperature of each component with 1-hour of
current data. The proposed RNN model receives real-
time data by injecting an arm current and can esti-
mate it within 193 (with LSTM) and 164 (with GRU)

seconds without additional pre-processing. In addition,
we entered 100ms data (the resolution of general sen-
sors) to each model and calculated the processing time.
It takes about 4.5ms on average to process 100ms
data and can estimate 1-hour data within 3 minutes.
Also, the average loss was found to be about 0.3,
which is very low compared to the simulation model
or the existing model. Compared to the previous study,
the proposed model is robust in terms of computa-
tional time. For example, since temperature is feedback
by thermal response, data pre-processing is required
in [25]. It means that additional computational time (α)
is required.

V. CONCLUSION
This paper proposes a thermal estimation method of modular
multilevel converter (MMC) submodule using deep regres-
sion on a gated recurrent unit (GRU) and a long short-term
memory (LSTM) network. The proposed model does not
require any pre-processing. It takes about 4.5ms on average
to process 100ms data and can estimate 1-hour data within
3minutes. In addition, the accuracy of thermal estimationwas
improved by more than 7.2 times compared to the existing
method. Consequently, the proposed model estimates the
temperature of the switches at stable state without additional
measurement components or costs. In the future, we plan to
extend the topology of MMC submodule to the entire MMC
circuit.
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