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ABSTRACT One of the most crucial parameters in operating a vacuum interrupter (VI) is internal pressure.
The failure of switching or insulation occurs when the pressure rises above a specific level. Characteristics
of partial discharge (PD) in VI can be used to measure the internal pressures of VI. This paper defines
a classification problem for the degree of internal pressure in VI using PDs, which were measured using
a capacitive PD coupler. Then, we propose a deep neural network to monitor the internal pressure of VI
by analyzing PDs. Experimental results show that the proposed deep neural network monitors the internal
pressure range, from 1.0×10−2 torr to 10 torr in VI. The classification performance of the proposedmethod is
significantly better than those of machine learning algorithms such as support vector machines and k-nearest
neighbor algorithm and the proposed method achieves an 100% classification accuracy.

10 INDEX TERMS Vacuum interrupter, partial discharge, deep neural network.

I. INTRODUCTION11

Vacuum circuit breakers (VCBs) are most commonly used12

in medium voltage circuits. VCBs have been more used in13

switchgear during the last decade due to their better interrup-14

tion ability and operating voltage. Because VCBs have great15

switching performance under a high degree of vacuum, the16

degree of vacuum in a vacuum interrupter (VI) is a critical17

parameter [1]. However, after a long period of service, the18

internal pressure of VI may gradually increase due to out-19

gassing from materials inside VI and gas permeation through20

the metal flange or ceramic vessel [2].21

Switching capability and insulation performance are the22

most critical characteristics of VCB, which are remarkably23

affected by the gas pressure of VI. Therefore, the gas pressure24

The associate editor coordinating the review of this manuscript and

approving it for publication was Turgay Celik .

monitoring for VI has been one of the valuable fault diag- 25

nosis techniques in VCB operation [3]. The investigation of 26

gas pressure, and practical application ability been carried 27

out in VI [4], [5]. 28

Test methods such as magnetron emission current, high- 29

frequency current, interpole breakdown voltage, arc voltage 30

type, and X-Rays have been utilized to detect the gas pres- 31

sure of VI [6], [7]. These offline approaches require the 32

interruption of service to measure the vacuum degree of VI. 33

On-line monitoring technique has been studied using partial 34

discharges (PDs) to monitor the vacuum degree of VI [8]. 35

Nowadays, artificial intelligence and machine learning 36

have been activated in various areas such as image processing, 37

language processing, and many different purposes [9]. Deep 38

Neural Networks (DNNs) can leverage large measures of 39

data to be efficiently trained to perform challenging tasks 40

such as translating languages and identifying objects in an 41

VOLUME 10, 2022
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 95125

https://orcid.org/0000-0003-2183-5085
https://orcid.org/0000-0001-6925-6010


H. Nhung-Nguyen et al.: Deep Neural Network to Identify Vacuum Degrees in VI Based on Partial Discharge Diagnosis

TABLE 1. List of acronyms and abbreviation phrases.

image [10]- [11]. DNNs have been shown to achieve great42

accomplishment in complex tasks where traditional machine43

learning methods may fail [12]. A backpropagation neural44

network (BPNN) was proposed to estimate the gas pressure45

of VI. The BPNNmethod based on PD achieved a recognition46

rate of 93% to 98% [13].47

Backpropagation neural network is the core of neural net-48

work training. The neural network weights are fine-tuned49

based on the error rate obtained in the previous epoch.50

Appropriate weighting allows to reduce the error rate and51

make the model better. In our method of using the DNN52

model, to achieve the optimized hyperparameters, we con-53

ducted extensive experiments with various parameters such54

as epochs, batch size, the number of layers, and the learning55

rate to adjust our model. Moreover, to show the effectiveness56

of the deep learning model compared to traditional machine57

learning methods, we perform experiments on popular clas-58

sifier machine learning techniques such as SVM and KNN.59

In this paper, we define the classification problem for identi-60

fying the degree of vacuum in VI. Then, we propose a DNN-61

based classifier using PRPDs in VI. The patterns of PRPDs62

are analyzed in each pressure of VI, respectively. In the63

training process, we improve the performance by adjusting64

the number of hidden layers, the number of nodes in each65

hidden layer, and the type of activation to acquire the best66

performance of the network for classification. To investigate67

the performance of the proposed method, we use 80%, 10%,68

and 10% of the total data as training, validation, and test sets,69

respectively. Experimental results show that the proposed70

method outperforms traditional machine learning algorithms71

such as k-nearest neighbor (kNN) and support vectormachine72

(SVM). Also, the proposedmethod achieves a 100% accuracy73

to recognize the gas pressure in a VI based on PRPDs.74

The contributions of our work are summarized as follows:75

• To the best of our knowledge, a DNN is demonstrated76

for the first time tomonitor the internal pressure of VI by77

analyzing PDs, which were measured using a capacitive78

PD coupler.79

• The performance of our model achieved a classifi-80

cation performance of 100% and outperformed clas-81

sification accuracy over traditional machine learning82

classificationmethods such as kNN and SVMalgorithm.83

The remainder of this paper is organized as follows.84

In Section II, the description of measurements for partial85

discharge in VI is represented. The proposed DNN-based86

FIGURE 1. A block diagram of PDs measurement system for controlling
internal pressure of VI.

classification method is presented in Section III. The exper- 87

imental results are shown in Section IV. Finally, Section V 88

gives conclusion remarks. In addition, Table 1 shows the 89

acronyms used in this paper. 90

II. PRELIMINARIES 91

In this section, we present our experimental setup and exper- 92

imental results for PRPDs in VI. We investigate the internal 93

pressures of VI from 1.0× 10−2 torr to 10 torr. 94

Figure 1 shows a block diagram of the experimental sys- 95

tem for PDs measurement inside the VI. The experimental 96

system consists of a VI with close-state, a vacuum system, 97

a high voltage (HV) source, a voltage divider, and a capacitive 98

coupler with 160 pF [8], where the rated voltage of VI is 99

25.8 kV and the rated current of VI is 25 kA. AC transformer 100

(60Hz) used as a high voltage source and voltage divider 101

were connected in series with the VI to apply the voltage and 102

extract the phase of applied voltage. A measuring impedance 103

and a data acquisition unit (DAU) were connected with the VI 104

to measure PRPDs. To control and maintain the internal pres- 105

sure of theVI the rotary and turbo pump in the vacuum system 106

and the valves were used. Specifically, we first adjusted the 107

internal pressure of the VI less than 1.0× 10−6 torr using 108

the pumps to confirm the outgassing influences. Second, 109

we slowly opened the leak valve so that the vacuum degree is 110

above 100 torr. After that the internal gas of VI was evacuated 111

to the specific vacuum degree using the pumps and pressure 112

gauge. Finally, the vacuum pump system and pressure gauge 113

connected to theVIwere disassembled and PDmeasurements 114

were performed. The vacuum degree inside VI was main- 115

tained for about 30minutes or more, and the PDmeasurement 116

experiments were conducted within this period. We focus on 117

the vacuum degrees from 1.0× 10−2 torr to 10 torr. 118

The measured PRPD is defined in matrix form as 119

X =


x(1, 1) x(1, 2) . . . x(1,N )
x(2, 1) x(2, 2) . . . x(2,N )
...

...
. . .

...

x(K , 1) x(K , 2) . . . x(K ,N )

 , (1) 120
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FIGURE 2. Examples of on-site vacuum interrupter for a) 1.0 × 10−2 torr,
b) 1.0 × 10−1 torr, c) 5.0 × 10−1 torr, d) 1.0 torr, e) 10 torr.

where K is the number of phase angles (or samples in each121

power cycle), N represents the number of power cycles, and122

x(k, n) is the maximum value of PD pulses at the k-th data123

point for the n-th power cycle.124

Figures 2 and 3 show five types of PRPD signals of on-site125

vacuum interrupters under different vacuum degrees. Figure 2126

presents sequential data withK=128 andN=20 power cycles127

and Figure 3 shows the corresponding 2D representations.128

From Figures 2(a) and 3(a), it can be seen that with small129

amplitudes, the pulses of signals are sparse and scattered130

without regularity in all ranges of phase and power cycles.131

As can be seen from Figures 2(b)-2(e) and 3(b)-3(e), the132

discharge pulses are observed separately at both a posi-133

tive and negative half cycle near 90◦ and 360◦. Comparing134

Figures 3(a) and 3(e), it can be seen that the amplitude135

of the PRPD signals increases as the vacuum degrees136

increase.137

It is known that the internal pressure of VI should be138

maintained below 0.5 pa( ≈ 3.75× 10−3 torr) [14]. When139

the VI has the sufficient vacuum degree, discharges are not140

detected by the detecting resistor sensor [3]. If PD occurs141

in the VI, it can be considered as a bad condition. In this142

paper, we focus on how to find and classify the degree of bad143

conditions of VI using PD measurements.144

FIGURE 3. Examples of 2D representation of on-site vacuum interrupter
for a) 1.0 × 10−2 torr, b) 1.0 × 10−1 torr, c) 5.0 × 10−1 torr, d) 1.0 torr,
e) 10 torr.

III. PROPOSED SCHEME 145

In this section, we define the classification problem to mon- 146

itor vacuum degree. The proposed model employs a DNN 147

using capacitive PD coupler and classifies M = 5 classes 148

to estimate the internal pressures in VI, where the internal 149

pressure range is from 1.0 × 10−2 torr to 10 torr in VI. 150

A DNN is a collection of neurons combined into multiple 151

layers, where neurons receive the neuron activations from the 152

previous layer and implement a computation [15]. 153

Figure 4 represents the structure of the proposed DNN 154

network. The structure of DNN contains an input layer, hid- 155

den layers, and an output layer. We used PRPDs for classi- 156

fying the internal pressures of VI including five types i.e., 157

1.0 × 10−2 torr, 1.0 × 10−1 torr, 5.0 × 10−1 torr, 1.0 torr, 158

10 torr. The proposed model will be able to classify which 159

class the input data belongs to, which means that the output 160

of the model is five classes to be measured. 161

The network is trained by a reconstructed process of for- 162

warding propagation and backward propagation [16]. The 163

nodes of an input layer represent input variables, and the 164

output nodes of an output layer define output variables. 165

The hidden layers perform mapping functions between input 166

variables and output variables. The number of nodes in the 167

output layer was set as M = 5 to match 5 different classes. 168

The critical parameters that manage the performance of the 169

network are the number of hidden layers, the number of nodes 170

in each hidden layer, and the type of activation function. 171

In the proposed model, the ReLU (rectified linear units) is 172

used as the activation function in the hidden layer [17] since 173
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this makes learning much faster than other activation and it is174

shown as f (z) = max{0, z}.175

For classification tasks, the output denotes class probabil-176

ities. At the output layer, a softmax activation function is177

used as178

f = [f1, · · · , fM ] = σ (h). (2)179

where h = [h1, . . . . . . , hM ]. The softmax function is180

defined as181

fm = σ(h)m =
ehm∑M
j=1 e

hj
, (3)182

where m = 1, . . . .M .183

The mini-batch gradient descent approach was used to184

adjust model parameters throughout the training process in185

order to reduce the following total loss:186

J (2) =
1
|B|

∑
v ∈B

Loss(v), (4)187

where B is minibatch sampled from the dataset with size |B|188

and Loss(v) is the loss computed from samples v ∈ B and2 is189

a vector that contains every parameter in the model that needs190

to be determined. Here, we employed the categorical cross-191

entropy as the loss function in this paper, which is a regularly192

used loss function in multiple classification problems.193

Loss(v) = −
M∑
i=1

yi · log (fiv). (5)194

where the superscript (v) is the index for the v-th training195

sample in the minibatch B, when the index i is the index for196

the ground truth, yi = 1, and yi = 0 otherwise.197

The weights were updated based on the gradient informa-198

tion of loss function. Stochastic gradient descent optimization199

algorithms like AdaGrad, AdaDelta, and Adam are utilized200

to minimize the loss function [18]- [19]. In our experiments,201

the Adam optimizer is used to update the learnable network202

parameters.203

IV. EXPERIMENTAL RESULTS204

In this section, we present the performance evaluation of the205

proposed DNN-based classifier to monitor vacuum degrees.206

We have performed PRPD experiments according to 5 vac-207

uum degrees for a total of 3,490 power cycles. To increase208

the number of training samples and overcome the issue of209

overfitting, we employ data augmentation [20]. Figure 5210

presents the data augmentation and the experimental data was211

sliced with overlap to increase training samples. Here, PRPD212

experiments with 780 power cycles can provide 761 training213

samples for 1.0 torr, each with a length of N = 20 when214

the number of overlap is 19 and the shift size is 1. After215

data augmentation, the total number of experimental samples216

in our dataset is 3, 395 in Table 2. The number of samples217

for five classes, namely, 1.0 × 10−2 torr, 1.0 × 10−1 torr,218

5.0 × 10−1 torr, 1.0 torr, and 10 torr are numbered as 0, 1,219

2, 3, and 4, respectively. Therefore, for our model, the input220

FIGURE 4. Proposed Deep neural network.

FIGURE 5. Data augmentation for training dataset.

is X in (1) and the outputs are 5 classes for vacuum degrees, 221

where K=128 and N=20. 222

In our experiments, we separated the data into training, 223

validation, and test datasets at the following ratio: 80% for 224

training and 10% for validation, and 10% for testing. Then, 225

the training, validation, and test samples are 2,716, 339, and 226

340, respectively. We randomly select training and test data 227

multiple times, and we average the test performance based on 228

the test dataset. We used TensorFlow to develop and perform 229

the proposed DNN model and scikit-learn library for SVM 230

and kNN algorithms [21], where TensorFlow is a Google- 231

developed open-source software library for numerical calcu- 232

lation utilizing data flow graphs frameworks [22]. A NVIDIA 233

Titan X GPU with 3584 cores running at 1.2 GHz was used 234

to train and test the models. 235

In order to achieve the optimized hyperparameters, such as 236

epochs, batch size, and learning rate, we conducted extensive 237

experiments with different parameters to adjust our model. 238

In addition, we investigated the network performance by 239

changing both the number of layers and the number of 240
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TABLE 2. Experimental dataset.

FIGURE 6. Confusion matrix of (a) proposed DNN, (b) SVM model, and (c) KNN model.

TABLE 3. Hyperparameter optimization.

TABLE 4. Comparison of classification accuracy.

the node. The number of hidden layers changed from 1 to 8,241

and the number of nodes in each hidden layer was changed242

from 2 to 128. The best combination will be selected to243

get the highest result at the end of the tuning process. The244

parameters of the model was established as shown in Table 3.245

Furthermore, the performance of DNN was evaluated uti-246

lizing several activations in hidden layers, such as ReLU,247

Sigmoid, Tanh, LeakyRelu, and Swish, ELU,Maxout all with248

the same optimized hyperparameter. The outcomes reveal that249

the ReLU function outperforms other activation functions in250

terms of classification accuracy.251

Table 4 shows the comparison of classification accuracy252

between a KNN [23], an SVM [24], and a BPNN [13]. The253

proposed DNN can reach an overall of 100% in the classifica-254

tion problem. Here, we randomly select training and test data255

multiple times, and we average the test performance based on256

the test dataset. Due to its simplistic structure, a KNN model257

was ineffective in classifying the data with a performance258

of 87.6%. The proposed DNN has 12.4% and 4.2%, and 259

2% performance improvements compared to KNN, SVM, 260

and BPNN models, respectively. Compared to the BPNN, 261

the proposed DNN has conducted extensive experiments for 262

hyperparameter optimization. 263

The Figure 6 illustrates confusion matrix results from 264

the test set by the proposed DNN model, SVM, and KNN 265

model. Figure 6(a) shows that all of the test samples were 266

correctly predicted by using the proposed DNN model. 267

In contrast, some miss prediction test samples are shown in 268

Figures 6(b) and 6(c). From Figure 6(b), we can see that the 269

SVM model incorrectly predicted some samples of class 3, 270

and it can be seen from Figure 6(c) the KNN model incor- 271

rectly predicted some instances of class 2 and 3. Meanwhile, 272

the proposed model correctly predicts 100% of the samples 273

in the test set. These results confirm that the proposed model 274

perfectly classifies vacuum degrees in VI based on PRPDs. 275

In order to evaluate and better understand the effect of the 276

proposed model in classifying the vacuum degrees, we used 277

the t-distributed StochasticNeighbor Embedding (t-SNE) 278

method which is a tool for visualizing high-dimensional 279

data [25]. In principle, the t-SNE embeds high-dimensional 280

vectors to 2D spaces while retaining the pairwise similar- 281

ity [25]. The t-SNE algorithm is only interested in the distance 282

between the points; the algorithm locates the points on a 283

plane. This paper uses the t-SNE method to visualize the 284

data before and after training by the deep neural network 285

method. Here, t-SNE has helped reduce the data dimension 286

from multi-dimensional to only 2-dimensional space with 287

change and visualize similar samples transformed into neigh- 288

boring points. Using the t-SNE algorithm, input data will be 289

transformed into new expressions in the form of points and 290

illustrated in Figure 7(a). As shown in Figure 7(a), it is noticed 291

that the input data for the 5 classes overlap and are remarkably 292
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FIGURE 7. Visualize data using t-distributed stochastic neighbor embedding (t-SNE) algorithm (a) with the feature vector
of layer input (b) last hidden layer in DNN model.

close to each other. Therefore, it is so difficult to classify293

all cases based on the data input. In contrast, as shown in294

Figure 7(b), the vector feature of the layer output, five classes295

are separate. It shows that the classification improvement has296

been significantly improved in the last layer of the model,297

leading to accurate classification results of the proposedDNN298

model.299

V. CONCLUSION300

The internal pressures are critical parameters in operating301

a VI. In this paper, we proposed a DNN-based classifier302

for vacuum degrees in VI. We used PRPDs for classify-303

ing the internal pressures of VI included five types i.e.304

1.0× 10−2 torr, 1.0 × 10−1 torr, 5.0 × 10−1 torr, 1.0 torr,305

10 torr. To adjust parameters in the proposed model, we con-306

ducted extensive using capacitive PD coupler. The exper-307

imental results showed that the proposed DNN conducted308

a classification of 100% and had 4.2% and 12.4% higher309

classification performance than machine learning algorithms310

such as SVM, andKNNmodel. Therefore, the proposedDNN311

model could be an effective diagnostic technique in vacuum312

degrees of VI based on PRPDs. In future studies, we intend313

to obtain more measurements to verify the proposed method314

and conduct further analysis of the effect of external noise on315

PRPD measurements for VI.316
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