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ABSTRACT The method of analytical study of the influence of impulse moments on nonlinear torsional
oscillations of a homogeneous constant cross-section of a body under classical boundary conditions of the
first, second, and third types have been developed. When the flexible material properties meet the body close
to the power law of flexibility, mathematical models of the process have been obtained. It is the boundary
value problem for an equation of hyperbolic type with a small parameter at the discrete right-hand side. The
latter expresses the effect of pulse momentum on the oscillatory process. Under the effect of periodic pulse
momentum on a flexible body, resonant and non-resonant processes are possible. Resonant processes occur
when the amplitude of natural oscillations approaches a fixed value. The peculiarities of resonant oscillations
are established. The amplitude of passing through the primary resonance is significant for larger values of
the nonlinearity parameter and, in the case of the action of pulse momentum, closer to the middle of the body.
If the initial perturbation amplitude is less than the amplitude at which the resonance occurs in the presence
of only internal forces of viscous friction. So, the external periodic impulse moments of resonance processes
have occurred. The extreme case confirms the reliability of the results obtained related to the dynamics of
the respective objects under the continuous action of autonomous perturbation.

INDEX TERMS Impulse perturbations, nonlinear flexible bodies, Ateb-function, oscillations, mathematical
model, resonance, amplitude, frequency.

I. INTRODUCTION
The creation and use in various branches of mechanical
engineering and construction industry of structural elements
from new materials, the physical and mechanical properties
of which differ from the classical correlations arising from
the linear law of flexibility, require consideration of new
mathematical models for evaluations of their flexibility
efficiency. We are talking primarily about dynamic tension
caused by deformations due to various external factors.
Suppose the dynamic deformations under continuous action
on such elements for the case of simple stress state (torsion,
tension, pure bending) obtained based on the mathematical
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models (torsional, longitudinal, bending) of oscillations
[1]–[7] for quasilinear [8] linear or partial strongly nonlin-
ear [9]–[11] laws of flexibility, for discrete action. In that
case, the question for many cases remains open.

The problem is related to constructing analytical solutions
to the corresponding boundary (mixed) problems for non-
autonomous linear (quasilinear) equations of hyperbolic
type. Numerical simulations of these mathematical models
[2], [4], [8] cannot provide generalized answers to many prac-
tical problems related to the discrete action of external load.
First, these are the resonance conditions and peculiarities of
its passage under the periodic impulse of external perturba-
tion. Such problems use for the case of the flexible elements
of structures under the condition of essentially (strongly)
nonlinear law of its flexible properties of the consideration
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subject of work, whence the urgency of their consideration
follows.

The subject of the work is the application of the asymptotic
method of nonlinear mechanics in combination with the
application of special periodic Ateb-functions for new classes
of dynamical systems. The dynamical systems considered in
the work concern the oscillatory processes of flexible bodies,
the material of which satisfies the strongly nonlinear law of
flexibility with different ways of fixing their ends.

Mathematical models [10], [12], [13] of the process are
boundary value problems for nonlinear differential equations
with partial derivatives and discontinuous (irregular) right-
hand sides. Using the properties of Eigen functions that
describe the forms of nonlinear oscillations and the properties
of delta functions, a method of partial regularization was
developed, and we managed to obtain equations in standard
form for non-resonant and resonant cases. These equations
describe the laws of change of the basic parameters of non-
linear flexible body oscillations. The significant difference
of the latter case in comparison with quasilinear resonant
processes of flexible bodies is shown. By the way, quasilinear
processes in flexible bodies are described as a partial case of
the work where ν = 0.

On the one hand, the urgency of solving such problems
is associated with creating new materials whose flexible
properties are described by nonlinear relations. On the
other is the inefficiency of using numerical simulation
for their analysis. The latter is manifested in studying
such important practical phenomena as resonances. Due
to the non-isochronous nature of the undisturbed pro-
cess, the conditions of their existence and peculiarities of
passing through numerical simulation are challenging to
describe.

The results obtained in this work can be used to solve
problems, not only analysis of dynamic processes in strongly
nonlinear systems with distributed parameters. Synthesis
problems are the choice of parameters that prevent resonant
processes, such as longitudinal oscillations, flexible bodies
under the periodic action of impulse forces in turbine rotors,
and elements of protective structures under shock loads. The
most basic idea of the work can be generalized in case of
disturbed boundary conditions.

In summary, the paper makes the following contributions:
1) Relative torsional oscillations of a nonlinear flexible

body that rotates around the axis with a constant
portable angular velocity consider the periodic action
of pulse momentum acting in a fixed cross-section.

2) The amplitude of passing through the primary res-
onance is more significant for larger values of the
nonlinearity parameter and, in the case of the action of
pulse momentum, closer to the middle of the body.

3) If the initial perturbation amplitude is less than
the amplitude at which the resonance occurs in the
presence of only internal forces of viscous friction,
the external periodic impulse moments of resonance
processes have occurred.

FIGURE 1. Statistics of the Scopus documents by selected year range
1979 – 2022 using the search quivery ‘‘nonlinear flexible bodies.’’

FIGURE 2. The number of articles published by subject areas.

II. REVIEW OF RELATED WORK
The authors of this paper carried out a comprehensive review
of present studies about the investigation of nonlinear flexible
bodies. The authors made the selection procedure of the
Scopus documents in the fields of the nonlinear flexible
bodies. The 331 documents of the Scopus database are
selected using a searching query:

[ALL (nonlinear AND flexible AND bodies ) AND
(LIMIT-TO ( AFFILCOUNTRY, ‘‘Ukraine’’ ) ) ]

The number of articles by subject areas published in
Scopus ofUkrainian scientists about nonlinear flexible bodies
is shown in Figure 2.

The section of the review of literature sources introduces
the authors’ research framework. The process of filtering
relevant papers in the PRISMA diagram in Figure 3 is
presented.

For a thorough review of scientific papers in the field
of nonlinear flexible bodies, we used the PRISMA method.
Authors collected the data using a searching query after
conducting the search process by searching for journal
articles through four databases, which were:
• Web of Science (1,195)
• Scopus (42,172)
• Google Scholar (18,600)
• EEE Xplore Digital Library (220)
The specific search in each database using titles with

keywords as in the following: ALL ( nonlinear AND flexible
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FIGURE 3. PRISMA flow diagram for the study selection procedure.

AND bodies ). After the overview analysis, we found 62,187
unique abstracts. Then we excluded papers written not in
English, published before 2018, not full-paper articles, and
we removed duplicate records, not related and not focused.

The 144 document results we selected by the year range to
analyze 2018-2022 years, 2022 (19 articles), 2021 (46), 2020
(25), 2019 (27), and 2018 (27).

Figure 4 gives the TOP-15 the most active countries in the
field of study of nonlinear flexible bodies. They are TOP-15
because only 15 countries published more than 3 studies.

This result of this analysis of the review of literature
sources of the nonlinear flexible bodies in the Scopus
database is investigated based on the first authors’ country
of institutions.

The result based on Figure 4 identified 45 active coun-
tries. These countries are the following countries China
(45 studies), the United States (33), Germany (16), the
United Kingdom (13), France (10), Canada (9), Italy (8),
Japan (7), Switzerland (7), Australia (6), Netherlands (5),
South Korea (5), Austria (4), Belgium (4), Finland (4),

FIGURE 4. The TOP-15 countries published in the field of study of the
nonlinear flexible bodies.

Brazil (3), India (3), Singapore (3), 2 articles from each
of the following countries: Denmark, Hong Kong, Norway,
Pakistan, Spain, Sweden, and 1 article from each of the

74950 VOLUME 10, 2022



M. Sokil et al.: Impulse Moments Influence on Single-Frequency Torsional Oscillations

following countries: Chile, Colombia, Czech Republic,
Georgia, Greece, Indonesia, Iraq, Ireland, Israel, Jordan,
Macao, Malaysia, Malta, Mexico, Portugal, Serbia, Slovakia,
United Arab Emirates, Viet Nam, respectively.

The most effective methods of investigation of oscillating
processes in nonlinear systems [14]–[17] with concentrated
masses and distributed parameters are those based on
introductory provisions of perturbation methods [18]–[23],
combined with the principle of simultaneity of oscillations.

A significant development was found when the set
of single-frequency solutions could be built for undis-
turbed analogs of the interconnected systems with the
help of trigonometric and periodic Ateb-functions
[24], [24], [26]–[29].

The latter describes the dynamics of a wide range of
systems with power nonlinearity [30]–[33] and has the
following several features that are not typical for a linear
system:

1) Firstly, the absence of the principle of superposition;
2) Secondly, the oscillatory processes of these systems

are characterized by such fundamentally different from
linear systems features as the dependence of the period
of the dynamic process on the amplitude;

3) Thirdly, general analytical approaches to studying
perturbed analogs of systems are absent.

All the above significantly complicates constructing an
analytical solution of the correspondingmathematical models
of the dynamic process under the action of impulse [21], [34]
(discrete) load and obtaining on its basis correlations that
would be the basis for engineering calculations and other
mathematical methods [35]–[38]. Thus, this work aims to
develop a mathematical apparatus for studying the torsional
oscillations [39]–[41] of a flexible body whose flexible
properties are described as close to the power law of
flexibility [36] (σ = kεν+1), where σ is a tension in the
body, εis a relative deformation, ν + 1 is a nonlinearity
index, ν > −1 and which is exposed to external impulse
action. In strongly nonlinear oscillating systems, the natural
frequency depends on the amplitude. External periodic
perturbation causes a resonant process in the case when its
period is close to the period of natural oscillations. This is
the essential difference between the forced oscillations of
quasilinear and strongly nonlinear systems. If this resonance
phenomenon occurs in the first approximation, provided that
the periods of natural oscillations and the forcing force
are the same, then for strongly nonlinear periods (natural
frequency) for which the resonant process takes place exists
only when the amplitude of natural oscillations approaches
the resonance amplitude as 25

ω(a∗) = τ , τ is a period of impulse
perturbation.

III. THE MATHEMATICAL MODEL OF THE DYNAMIC
OF A NONLINEAR FLEXIBLE BODY UNDER THE ACTION
OF IMPULSE MOMENTS
Impulse perturbations are the moment of representation
of short-term action on the system of external moments.

Resonance in strongly nonlinear systems differs significantly
from the resonance process in quasilinear systems and occurs
when the frequency of light oscillations approaches the
frequency of the forcing force: the natural frequency depends
on the amplitude, so resonance in strongly nonlinear systems
occurs when the amplitude approaches a fixed value. If the
system’s oscillations amplitude is less than the amplitude
and there are only dissipative forces, then the resonance
phenomenon will not be observed. If you bring the system
into the resonance region, the dissipative forces reduce the
amplitude of oscillations to a value close to the resonance
amplitude. The resonant process is the amplitude increases,
so the process continues.

It obtains without difficulty based on the dynamic equi-
librium of the conditionally selected element of the body. Its
mass is considered evenly distributed along the length l, and
the cross-section is constant.

The deformation of such a body is unambiguously deter-
mined by its torsionφ (t, x) (torsion angle of the cross-section
with the coordinate x at any time). The latter is determined
by torque in the specified cross-sections and the physical and
mechanical properties of the material φ (t, x) = g (Mk). For
the case considered in this work g (Mk) becomes g (Mk) =

GJP
(
∂φ
∂x

)ν+1
, G is a modulus of flexibility of the second

kind, JP a moment of inertia of cross-section about the axis
that passes through its geometric center. In this case, the
ratio stems from dynamic equilibrium for the flexible body
element placed between cross-sections x, and x+dx we have

ρJpφtt =
∂
∂x

(
GJP

∂φ
∂x

)ν+1
, ρ is a density of body

material. Should be we take into account the small value
of the resistance force εf (φt , φx , φxx) , the above ratio is
transformed into the form of

φtt − α
2 (φx)

ν φxx =
µ

ρ
f (φt , φx , φxx) (1)

In ration (1) α2 = (ν + 1) G
ρ

, µ is the small parameter.
This parameter shows that the function’s maximum value of
the right-hand side equation (1) is a small value compared
to the maximum value. In the case of the action on the
flexible body at different times,tsthe momentum value, which
generally depends on φt , φx , φxx equation (1), is transformed
into the form of

φtt − α
2 (φx)

ν φxx

=
µ

ρ


f (φt , φx , φxx)+∑
s=1

}s (φ, φt , φx , φxx)δ (t − ts) δ (x − xs)


(2)

In equation (2) ε}s (φ (ts, xs) , φt (ts, xs) , φx (ts, xs) ,
φxx (ts, xs)), the magnitude of the momentum acting at
time ts in the cross-section of the body with coordinate
xs (0 < xs < l ) δ (. . .) is a delta function of the
corresponding argument [15].
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As to the boundary conditions, they are classic: 1st, 2nd,
and 3rd kind

φ (x, t)|x=0 = 0, φ (x, t)|x=l = 0 (3)

φ (x, t)|x=0 = 0, φx (x, t)|x=l = 0 (4)

φx (x, t)|x=0 = 0, φx (x, t)|x=l = 0 (5)

and correspond, respectively, to the absence of angles of
torsion of the end of the flexible body – (3); free, unloaded
ends – (4); the absence of angle of torsion at the beginning of
the body and free another end of the flexible body – (5).

It should be noted that boundary value problems formu-
lated above also describe relative torsional oscillations of a
flexible body that rotated around its axis of symmetry with
a constant angular velocity � and φ (x, t), in such a case,
is the relative angle of torsion. From the properties δ (. . .) of
the function, it is shown that the accuracy of the right-hand
side of the differential equation (2), more precisely additive
components which describe impulse action on the flexible
body, will not change if presented as∑
s=1

}s (φ, φt , φx , φxx)δ (t − ts) δ (x − xs)

=

∑
s=1

}s (φ, φt , φx , φxx)cosθsδ
(
θ − θ̄s

2s

)
δ (x − xs) ,

θs = 2st, θ̄s = 2sts, 2s =
2π

ts+1 − ts

This allows us to consider differential equations formally

ϕtt − α
2 (ϕx)

ν ϕxx

=
µ

ρ


f (ϕt , ϕx , ϕxx)+∑
s=1

}s (ϕ, ϕt , ϕx , ϕxx) cos θsδ
(
θs − θ̄s

2s

)
δ (x−xs)


(6)

non-autonomous, and the non-autonomous part is propor-
tional to the small parameter.

Many works [21], [34] show that in a non-resonant case, a
small periodic perturbation of the non-autonomous type for
the first approximation does not affect the basic parameters
of the dynamic process.

Therefore, only the case of periodic action of impulse
perturbation, i.e.,ts+1− ts = τ = const, s = 1, 2 , . . .will be
considered below. In this case, the differential equations (6)
can be written as

ϕtt − α
2 (ϕx)

ν ϕxx

=
µ

ρ


f (ϕt , ϕx , ϕxx)+

+

∑
s=1

}s (ϕ, ϕt , ϕx , ϕxx) cos θδ
(
θ−2π (s−1)

τ

)
×δ (x − xs)


(7)

IV. METHODOLOGY OF ANALYTICAL STUDY OF THE
INFLUENCE OF IMPULSE MOMENTS ON TORSIONAL
OSCILLATIONS OF THE FLEXIBLE BODIES
A. NONRESONANT CASE
Using the general ideas of asymptotic methods of nonlinear
mechanics [42], [43] adapted for boundary value problems
for equation (1) in [43], the first approximation of the
asymptotic solution of equation (7) in the form close to
k-form of dynamic equilibrium is presented as

f (x, t) = ak (t)Fk (x) ca (n+ 1, 1, yk)

+mU1k (ak , x, yk , θ) , yk (t) = wk (ak) t + Jk
(8)

where ak (t), ψk (t) respectively, are the amplitude and
phase of a flexible body’s single-frequency dynamic process,
a system of functions that describes the forms of oscillations
of undisturbed motion and its frequency. They are expressed
for boundary conditions (3) - (5) through periodic Ateb-
functions as

{8k (x)} =



sa
(
1,

1
ν + 1

,
k
l
5xx

)
,

ca
(
1,

1
ν + 1

k
l
5xx

)
,

sa
(
1,

1
ν + 1

,
2k + 1
2l

5xx
)


(9)

ωk (ak) =



α

(
k5x

l

)1+
ν

2 a

ν

2
k ,

α

(
k5x

l

)1+
ν

2 a

ν

2
k ,

α

(
(2k + 1)5x

2l

)1+
ν

2 a

ν

2
k ,

(10)

5x =
√
π0

(
ν+1
ν+2

) (
0
(
1
2 +

ν+1
ν+2

))−1
is a half-period

of used Ateb-functions, which describes the forms of
oscillations.

As for the function U1k (ak , x, ψk , θ), which considers
the influence of small impulse forces and dissipative forces,
it must be periodic by arguments ψk and θ , and by
an argument ψk with a period, which is equal 25 =

2
√
π0

(
1
ν+2

) (
0
(
1
2 +

1
ν+2

))−1
, and by arguments θ_2π is

periodic. In addition, it should not contain k modes of natural
oscillations of undisturbed motion. The later is equivalent to
the following

25ψ∫
0

U1k (ak , x, ψk , θ)
{
ca (ν + 1, 1, ψk)
sa (1, ν + 1, ψk)

}
dψk = 0

(11)

The physical interpretation imposed on the function is
the following: the amplitude of kis a mode of the dynamic
process is accepted as the amplitude of single-frequency
torsional oscillations of the flexible body.
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In addition, this function must satisfy the boundary
conditions that are consistent with (3) - (5), i.e.

U1k (ak , x, ψk , θ)|x=0 = 0,

U1k (ak , x, ψk , θ)|x=l = 0 (12)

U1k (ak , x, ψk , θ)
∂x |x=0

= 0,

U1k (ak , x, ψk , θ)
∂x |x=0 |x=l

= 0 (13)

U1k (ak , x, ψk , θ)|x=0 = 0,

U1k (ak , x, ψk , θ)
∂x |x=0 |x=l

= 0 (14)

In figures 5a) and 5b) are presented, respectively, depen-
dencies (10) for the boundary conditions (3) or (4) change
of the natural frequency of the oscillations due to amplitude
and nonlinearity parameter, and in figures 5c) and 5d) are
the natural frequency dependence of oscillations on the
parameter α and the amplitude of oscillations at fixed values
of the nonlinearity parameter. As for the law of change of the
frequency of natural nonlinear oscillations under boundary
conditions (5), the qualitative picture of their change
does not change. The quantitative one takes on slightly
different values due to a different parameter value at the
coefficient α.
The presented graphical dependences show:
• for more significant values of nonlinearity parameter v
(for all other invariant characteristics of flexible body),
the natural frequency of torsional oscillations is lower;

• the rate of decrease of the amplitude depending on the
parameter v is more significant for its smaller values;

• for greater values of the amplitude of the oscillations in
case −1 < ν < 0 the natural frequency decreases, and
in the case ν > 0 is an increase;

• with an increased coefficient of stiffness α at ν > 0
natural frequency increases (for all other constant
parameters of the flexible body), it decreases.

If we substitute the equation (7), in place of the unknown
function φ (x, t) and its derivatives, the correlations arising
from the representation of the asymptotic solution in the
form (8), then after equalizing the coefficients in the right
and left parts of the obtained expression at small parameter
µ we obtain linear differential equation which connects the
desired functions ak (t) and ψk (t), more precisely their
time derivatives dak

dt ,
dϑk
dt function U1k (ak , x, ψk , θ) and

operation moments as

∂2U1k

∂ψ2
k

ω2
k (ak)+

∂2U1k

∂θ2
µ2
+ 2

∂2U1k

∂θ∂ψk
µωk (ak)

−α2 (akca (ν + 1, 1, ψk))ν

×


(
d8k (x)
dx

)ν
∂2U1k

∂x2
+

ν

(
d8k (x)
dx

)ν−1 d28k (x)
dx2

∂U1k

∂x



=
2

(ν + 2)

[
dak
dt

(
ωk (ak)+ ak

dωk
dak

)
sa (1, ν + 1, ψk)

+ akωk (ak)
dϑ
dt
caν+1 (ν + 1, 1, ψk)

]
8k (x)

+ ρ−1F1k (ak , x, ψk)

+ ρ−1
∑
s=1

G1s (ak , x, ψk) cos θδ(
θ

τ
−

2 (s− 1) π
τ

)

× δ (x − xs) (15)

where F1k (ak , x, ψk) and G1s (ak , x, ψk) correspond to the
values of functions f (φ, φt , φx , φxx)and gs (φ, φt , φx , φxx)
provided that they φ (x, t) and their derivatives are deter-
mined according to the principal value of a specified function
φ (x, t), i.e.φ (x, t) = ak8k (x) ca (ν + 1, 1, ψk).

Thus, the problem for the first asymptotic approximation
is to find such correlations for the unknown functions ak (t)
and ψk (t). The functions ak (t) and ψk (t) with (8) and (15)
satisfy the initial equation (7) with the considered accuracy.
Solve this problem to some extent allows the properties of
completeness and orthonormality of the system of functions
that describe the shape of oscillations, i.e.

l∫
0

8p (x)8q (x) dx =

{
0 where p 6= q
1 where p = q

(16)

and1 = ν+2
3ν+4 l for the boundary conditions (12) and (13) and

1 = ν+2
3ν+4

l
2 is a for boundary conditions (14). The specified

property of the system of functions {8(x)} allows the delta
function on the linear variable to be presented in the form

δ (x − xs) =
1
1

∑
j=1

8j (xs)8j (x) (17)

that is, to avoid sampling the basic equation by a linear
variable; and unknown functions U1k (ak , x, ψk , θ) in the
asymptotic representation of a single-frequency solution are
presented as

U1k (ak , x, ψk , θ) =
∑
m=1
m6=k

8m (x)U1km (ak , ψk , θ) (18)

the boundary conditions, in this case, will be fulfilled
automatically.

Its derivatives have the same property if the function
U1k (ak , x, ψk , θ) is 25 periodic by argument ψk and does
not contain the first harmonic schedule ψk .

Therefore, by substituting the correlations equations (17)
and (18) into the differential equation (15), at the same
time using the properties of the system of functions {8(x)},
simple differential equations which describe the change in
the amplitude of time and phase of the single-frequency
process of torsional oscillations of the flexible body can be
found from the obtained expression, as well as equations
in partial derivatives which connect unknown coefficients
U1km (ak , ψk , θ) of the decomposition of the function
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U1k (ak , x, ψk , θ) as

dak
dt
= −

µsa (1, ν + 1, ψk)
2ωk (ak) ρ1

×

l∫
0



F1k (ak , x, ψk)+

+

∑
s=1

G1s (ak , x, ψk)

cos θδ(
θ

τ
−

2 (s− 1) π
τ

)∑
j=1

8j (xs)8j (x)


8k (x)dx

dψk
dt
= ωk (ak)

−
µ (ν + 2) caν+1 (ν + 1, 1, ψk)

2akωk (ak) ρ1

×

l∫
0



F1k (a, x, ψ)+

+
1
1

∑
s=1

G1s (ak , x, ψk)

cos θδ(
θ

τ
−

2 (s− 1) π
τ

)∑
j=1

8j (xs)8j (x)


8k (x)

× dx (19)

∂2U1km (ak , ψk , θ)

∂ψ2
k

ω2
k (a1k)+

∂2U1km(ak ,ψk ,θ)

∂θ2
µ2

+ 2
∂2U1km (ak , ψk , θ)

∂θ∂ψk
µωk (ak)

− ᾱ2km (ak , ψk)U1km (ak , ψk , θ)

= ρ−1F1km (ak , ψk)

+ (ρ1)−1
∑
s=1

G1sm (ak , ψk) cos θ

× δ(
θ

τ
−

2 (s− 1) π
τ

)
∑
j=1

8j (xs)8j (x) (20)

where F1km (ak , ψk) = 1
1

l∫
0
F1k (ak , x, ψk)8m (x) dx

G1sm (ak , ψk)

=
1
1

l∫
0

{
G1s (ak , x, ψk)

∑
j=1
8j (xs)8j (x)

}
8m (x) dx ᾱ2km (ak , ψk) is a known function.
Below we consider only differential equations which

describe the laws of change of amplitude and frequency
of torsional oscillations of a flexible body, i.e., the system
of differential equation (19). Its right-hand sides are 25
periodic ψk = ωk (ak) t + ϑ and 25are periodic by the
argument θ = 2π

τ
t . Thus, it is necessary to consider

two cases for the considered system: p 25
ω(a) 6= qτ

(p, q – mutually prime numbers). The first case is called
resonant. It occurs when there is a connection between the
period of natural 25

ω(a)and pulsed external perturbation in the
form of rational correlation. In non-resonant cases, the phases
of natural oscillations and pulsed external perturbation are not
connected by rational correlation.

As follows from the first equation of the system (19),
the amplitude of oscillations is proportional to the small
parameter µ. This means that during natural or forced
oscillations, the amplitude changes by the value of the
order µ. This is the basis for using the averaging apparatus
for differential equations (19) for the phases of natural
oscillations and reduced pulse perturbation. Thus, in the non-
resonant case, the main parameters of torsional oscillations
of a nonlinear flexible body are described by the correlations

dak
dt
= −

µ

8π5ωk (ak) ρ1

×

l∫
0

25∫
0

2π∫
0



F1k (ak , x, ψk)+

+

∑
s=1

G1s (ak , x, ψk)

cos θδ(
θ

τ
−

2 (s− 1) π
τ

)∑
j=1

8j (xs)8j (x)


8k (x) sa (1, ν + 1, ψk)

× dxdψkdθ,
dψk
dt
= ωk (ak)−

µ (ν + 2)
16π5akωk (ak) ρ1

×

l∫
0

25∫
0

2π∫
0



F1k (ak , x, ψk)+

+

∑
s=1

G1s (ak , x, ψk)

cos θδ(
θ

τ
−

2 (s− 1) π
τ

)∑
j=1

8j (xs)8j (x)


8k (x) caν+1 (ν + 1, 1, ψk)

× dxdψkdθ (21)

If the properties of δis used functions, the sys-
tem of differential equations (21) can be somewhat
simplified as

dak
dt
= −

µ

4π5ωk (ak) ρ1

×

l∫
0

25∫
0



F1k (ak , x, ψk)+

+

∑
s=1

G1s (ak , x, ψk)
cos(2 (s− 1) π)∑

j=1

8j (xs)8j (x)


×8k (x) sa (1, ν + 1, ψk) dxdψk

dψk
dt
= ωk (ak)

−
µ (ν + 2)

8π5akωk (ak) ρ1

×

l∫
0

25∫
0



F1k (ak , x, ψk)+

+

∑
s=1

G1s (ak , x, ψk)
cos(2 (s− 1) π)∑

j=1

8j (xs)8j (x)


×8k (x) caν+1 (ν + 1, 1, ψk) dxdψk (22)
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FIGURE 5. Dependence of natural frequency of torsional oscillations of
the nonlinear flexible body on the amplitude of oscillations and other
characteristics of the body.

B. THE METHODS OF RESEARCH OF NONLINEAR
RESONANT TORSIONAL OSCILLATIONS
The resonant case is much more challenging to study and,
at the same time, more important from the practical side.

FIGURE 6. The dependence of the amplitude at which there is a
resonance a∗ on the parameters of the system. α is a vert axis a∗.

It differs significantly from the resonant case of quasilinear
oscillations of flexible bodies. The frequency of natural
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FIGURE 7. Dependence of the resonant amplitude on the nonlinearity
parameter and period of pulsed perturbation (n -v, T – τ

vert axisa∗).

torsional oscillations of a nonlinear flexible body depends
on the amplitude of oscillations. Thus, the resonance in the
considered flexible body takes place under the condition that
the amplitude of the single-frequency process approaches the
value

a∗ =
(
2p5
αqτ

) 2
ν
(

l
λ5x

)1+ 2
ν

(23)

Below Fig. 6 and Fig. 7 show the amplitude dependence
at which is a resonance for some parameters of the flexible
body.

The above graphical dependences show that in the case
when the value of the nonlinearity parameter ν > 0 for
smaller values of the parameter of stiffness, α the resonance
amplitude takes larger values, and the rate of increase
of the resonance amplitude is more significant for more
extensive parameters ν, while for larger values of the pulse
perturbation period resonance amplitude is more minor. For
this case −1 < ν < 0, a more considerable parameter
value α responds to a more significant resonance amplitude
value, and the resonance amplitude’s growth rate increases

significantly when the parameter νapproaches -1. In this case,
the immense value of the pulse perturbation period responds
to larger resonance amplitude. As to the passing of resonance
of the proposed flexible body, it, as for all nonlinear systems,
depends significantly on the phase difference of natural
oscillations and periodic perturbation is γ = q π

5
ψ − pθ →

ψ = 5
qπ (pθ + γ ) is entered the specified parameter into the

system of differential equations (21) and used the procedure
of averaging by the phase of external pulse perturbation.
We obtain for the case of main resonance p = q = 1.

dak
dt
= −

µ

4π5ωk (ak) ρ1

×


l∫

0

25∫
0

[
F1k (ak , x, ψk)
8k (x) sa (1, ν + 1, ψk) dxdψk

]

−

1
1

l∫
0

2π∫
0

∑
s=1

G1s

(
ak , x,

5

π
(θ + γ )

)
× cos θδ(

θ

µ
−

2 (s− 1) π
µ∑

j=1

8j (xs)8j (x) sa
(
1, ν + 1,

5

π
(θ + γ )

)
× dxdθ


dγ
dt
=
5

π
ωk (ak)−

2π
τ

−
µ (ν + 2)

4π5akωk (ak) ρ1

×


l∫

0

25∫
0

[
F1k (ak , x, ψk)
8k (x) caν+1 (ν + 1, 1ψk) dxdψk

]

+
1
1

l∫
0

2π∫
0

∑
s=1

G1s

(
ak , x,

5

π
(θ + γ )

)
× cos θδ(

θ

µ
−

2 (s− 1) π
µ∑

j=1

8j (xs)8j (x) caν+1

×

(
1, ν + 1,

5

π
(θ + γ )

)
dxdθ


(24)

Since the resonance phenomenon occurs when the ampli-
tude of oscillations approaches the value a∗k during the
numerical simulation of the obtained system of differential
equations (24), the following approaches are considered:
– for the resonance case, the value 5

π
ωk (ak) − 2π

τ
in the

second formula of dependences (24) can be replaced by
the following: dωk (ak )

dak |ak=a∗k

(
ak − a∗k

)
as it should be

small;
– as for some reasons, it is known, for example, that

the frequency (period) of pulse perturbation is a slowly
varying function of time ( 2π

τ
=

5
π
ωk
(
a∗k
)
+εη (t), η (t)

is a known function). The value 5
π
ωk (ak) − 2π

τ
in the
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second equation of correspondence (24) can be replasesd
by εη (t).

Notes:
1) The paper considers that the studied body has a limited

size, so the amplitude and frequency change only with
time. The long systems [43] can be the subject of
separate studies.

2) As for the initial conditions, they must ensure the
existence of oscillating motion in an undisturbed
system.

3) The initial value of the amplitude for a system of
differential equations (24) in both of the above cases
should be close to a∗k .

4) The boundary value problems considered in this paper
also describe the relative torsional oscillations of a
flexible body under the action of a system of impulse
moments, provided that the portable angular velocity of
rotation of the body is a constant value.

C. RESONANCE RELATIVE TORSIONAL OSCILLATIONS OF
THE NONLINEAR FLEXIBLE BODY ROTATE AT A CONSTANT
ANGULAR VELOCITY UNDER THE ACTION OF A PERIODIC
SYSTEM OF IMPULSE MOMENTS
A crucial case of the dynamics of the flexible body specified
in the above section of the notes is when the pulsing
momentum acts on the flexible body at a fixed point and is
repeated during the complete rotation of the body N times at
regular intervals.

If the following conditions are satisfied:
• the force of resistance is proportional to the speed of the
relative torsion angle;

• flexible properties are described by dependence
σ = kεν+1 + µβε3

then the differential equation of relative flexible torsional
vibrations of such a body is represented as follows

φtt − α
2 (φx)

ν φxx

= −
µ

ρ


β1φt + β2 (φx)

2 φxx

−Mδ (x − x0)
∑
s=1

δ

(
t − s

2π
N�

)
(25)

where β̄1, β̄2 are the known constants, � is an angular
velocity of rotation of the body, 2π

N� is the period of action
of pulse momentum, the value of which is equal µM , x0
is the point of application of the moment. In such case,
non-resonant correlations (22) for the case of boundary
conditions (2) can be represented as

dak
dt
= −µβ̄1ak

+
µM

4π5ωk (ak) ρ12

×

∑
s=1

l∫
0

25∫
0

2π∫
0

cos θ
(
δ
(
Nθ�
2π − s

2π
N�

))∑
j=1
8j (x0)8j (x) sa

× (1, ν + 1, ψk) dxd ψkdθ



dψk
dt
= ωk (ak)+ β̄2a

2− ν2
k

+
µ (ν + 2)M

8π5akωk (ak) ρ12

×

∑
s=1

l∫
0

25∫
0

2π∫
0

cos θ
(
δ
(
Nθ�
2π − s

2π
N�

))
∑
j=1
8j (x0)8j (x) ca ν+1

× (ν + 1, 1, ψk) dxd ψkdθ


(26)

where β̄1, β̄2 are the known constants.
From the properties of periodic Ateb-functions [24]–[29],

the independence of the phases of natural and forced (pulse)
oscillations, it follows that the integrals in the right parts of the

dependences (26) are zero because
25∫
0
sa (1, ν + 1, ψk) dψk

=

25∫
0
caν+1 (1, ν + 1, ψk) dψk = 0, and therefore non-

resonant torsional oscillations, in this case, are described by
differential equations

dak
dt
= −µβ̄1ak ,

dψk
dt
= ωk (ak)+ β̄2a,2−

ν
2 (27)

Thus, relation (27) confirms that periodic impulse per-
turbation, which does not coincide with the period of
natural torsional oscillations, determines the dynamic process
only by dissipative and nonlinear flexible forces. As for
the resonant oscillations of the above case of torsional
oscillations of a flexible body, the differential equations
that describe the principal resonance in the first mode
of oscillations under boundary conditions (3) take the
form

da
dt
= −µβ̄1ak −

µM
4π5ω (a) ρ12 sa

(
1, ν + 1,

5

π
γ

)
×

∑
j=1

sa
(
1,

1
ν + 1

,
j
l
5xx0

)
,

dγ
dt
=

dω (a)
da |a=a∗

(
a− a∗

)
+ β̄2a,2−

ν
2

+
µ (ν + 2)M

8π5aω (a) ρ12 ca
ν+1

(
ν + 1, 1,

5

π
γ

)
×

∑
j=1

sa
(
1,

1
ν + 1

,
j
l
5xx0

)
(28)

Below, in Fig. 8, following the differential equations (28)
presented for the resonance case, the laws of change of the
amplitude of oscillations during the transition through the
main resonance l = 1, ν = 0.22green;ν = 0.44 red;
ν = −0.22 blue are for all below

where

a)
x0 = 1, l = 2, α = 1 · 103,
−curve1,−curve2,−curve3;

b)
x0 = 0.8, l = 2, α = 1 · 103, ν = 0.1,
−curve1,−curve2,−curve3;

VOLUME 10, 2022 74957



M. Sokil et al.: Impulse Moments Influence on Single-Frequency Torsional Oscillations

FIGURE 8. The laws of the change of the amplitude of torsional oscillations at transition through the primary resonance
at various points of application of pulse perturbation.

c)
x0 = 0.5, l = 1, α = 1 · 103, ν = 0.22,
−curve1,−curve2,−curve3;

d)
x0 = 0.4, l = 1, α = 1 · 103, ν = 0.22,
−curve1,−curve2,−curve3;

f)
x0 = 0.3, l = 1, α = 1 · 103, ν = 0.22,
−curve1,−curve2, ν = −0.22, −curve3;

g)
x0 = 0.2, l = 1, α = 1 · 103, ν = 0.22,
−curve1, ν = 0.44,−curve2, ν = −0.22, −curve3.

Theoretical results and graphical dependences based on
their resonant torsional oscillations of a nonlinear flexible
body under the action of a periodic system of pulse
momentum applied to one geometric cross-section of the
body under boundary conditions (3) are shown in particular
that the amplitude of resonance transition is larger:
• for larger values of nonlinearity parameter ν (at all other
invariant basic body parameters and ν > 0);

• in the action case, the momentum closer to the middle
of the body for the boundary conditions (2), (3), and for
the boundary conditions (4) is a, on the contrary, less.

V. CONCLUSION
The research method of the influence of impulse moments
on torsional oscillations of strongly nonlinear flexible
bodies is developed in work. Analysis of the obtained
theoretical and constructed graphical results shows that
their periodic actions on the body of impulse moments
in the body occur non-resonant and resonant oscillations.
Resonant oscillations occur when the amplitude of torsional
oscillations approaches a specific value is the amplitude of
resonance. The amplitude of resonance in a case when the
parameter of nonlinearity is ν > 0 for:
• smaller values of the parameter of stiffness α take the
more considerable value, and its growth rate is more
significant for larger values of the parameter

• for larger values of the period of pulsed perturbation, the
resonance amplitude is more minor.

In this case, −1 < ν < 0 a more considerable value
α corresponds to the immense amplitude resonance value,
and the amplitude’s growth rate increases significantly while
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approaching ν to −1. To avoid simultaneous resonance
oscillations, we suppose the nonlinear flexible body is
only under the periodic system of impulse moments forces
and dissipative forces. In that case, the initial perturbation
amplitude must be slightly smaller than the resonance
amplitude. Otherwise, a phenomenon similar to beating in
linear systems will occur. As for the amplitude of the passage
through the resonance under the action on the body of the
periodic system of pulse moments of the same magnitude
in the same cross-section of the body, the amplitude of the
transition through the resonance is greater:

• for larger values of the nonlinearity parameter v (for all
other invariant basic body parameters and ν > 0);

• in case of impulse moment closer to the middle of the
body and for boundary conditions (3).

The reliability of the work results is confirmed by the
fact that in the extreme case of them (ν = 0, }s(φ, φt ,
φx , φxx) = 0) we have known from the literature [21], [44].
Depending on the system’s initial conditions, the question of
the flow and the conditions of a single-frequency process can
be the subject of separate studies.
Practical application of the obtained results. The results

obtained in this work can be the basis for the choice of
operating parameters of machine elements of mechanisms
that are exposed to instantaneous moments to avoid resonant
phenomena, in particular, rotors of multistage compressors
of gas turbine engines [44]. Research dynamic processes in
machines with flexible high-speed rotors to justify the choice
of the most stable frequency of its rotation.

This article’s main result presents a method related to
creating new materials. Nonlinear relations describe the flex-
ible properties of these materials. The authors of the article
found that the use of numerical simulation for the analysis of
these materials is ineffective. This is the study of resonances,
which are essential phenomena in practice. It is not easy to
describe the conditions for the existence of resonances and
their peculiarities with the help of numerical simulation due
to the non-isochronous nature of the undisturbed process.

The results obtained in this paper are in demand for solving
the problems of analysis of dynamic processes in strongly
nonlinear systems with distributed parameters and for the
synthesis problems, i.e., the choice of their parameters that
make resonant processes impossible. For example, in the
case of longitudinal oscillations of flexible bodies under the
periodic action of pulse forces, these are turbine rotors and
elements of protective structures under the action of shock
loads. Also, the main idea of the work can be generalized
and used to solve problems in case of disturbed boundary
conditions.
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