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ABSTRACT Governments and commissions all around the globe have worked on developing policies and
rules as well as actions and measures for continuous assessment and remedies for environmental noise
pollution. All of which requires continuous and accurate measurements of noise levels. The advent of smart
city and IoT-based monitoring makes it possible for different technologies to cooperate in collecting and
reporting environmental noise levels for longer duration and wider geographical region. Among others,
mobile crowdsourcing (MCS) appears to be a promising technique for environmental noise monitoring with
minimal upfront cost and almost no recurrent cost for regulators. This is due to the assumption of voluntary
participation from mobile device owners who may be reluctant to participate if the recurrent cost of mobile
resource consumption is high. In this work, an approach to improve mobile device resources efficiency for
mobile crowdsourcing application in environmental noise monitoring is proposed. That is, noise samples
from a device are collected only if it is significant to the accuracy of the measurements. Also this paper
defines and mathematically formalizes the problem under study and develops two algorithms to optimize
both resource and measurements efficiency. The results demonstrate the efficiency of the proposed solution.

INDEX TERMS Environmental noise monitoring, mobile crowdsourcing (MCS), measurement sampling.

I. INTRODUCTION
The expanding urbanization layout and industrial devel-
opment have contributed significantly to the increase in
pollution, in it all forms. Nowadays, noise pollution has
become a major environmental problem and a major threat
to human quality of life as well as all other living creatures.
World Health Organization (WHO) classifies acoustic noise
as the second source for environmental pollution.

Airport, cars and trucks (traffic), construction sites, and
factories are considered the major sources for noise pollution.
The impact of this pollution exceeds annoyance and inconve-
nience. Scientific research has accumulated epidemiological
evidence of the adverse health impact of noise pollution.
Frequent and prolonged exposure to high noise levels
may lead to sever health conditions such as cardiovas-
cular diseases, depression, hypertension and nervousness,
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sleep disorder, mental health, and potential hearing
loss [1]–[4].

In order to combat with noise pollution, many deci-
sion makers (e.g., governments and city municipals) have
developed national and local regulations to restrain noise
pollution levels [2], [5]–[7]. The first step was to define
limits/boundaries for acceptable noise levels for different
areas and times of the day. Then, there should be some
sort of reporting mechanism. In the old days, people can
raise a complaint about abnormal sound activities in their
surrounding perimeter. Nowadays, sophisticated software
solutions are commonly used to estimate noise levels in a city
based on multi-parameters numerical models. For example,
noise levels can be estimated using multiple factors such as
road width, road segment utilization, traffic level, presence of
noise sources . . . etc [8], [9]. Eventually, a noise map can be
generated and reported to the decision maker who may take
decisions based on discovered/detected incidents [10]. While
these solutions have some merits, they involve assumptions
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and lack accuracy as no empirical real measurements are
collected, especially that abnormal noise incidents can be
momentary or imperceptible to these models.

Noise pollution management may involve multiple deci-
sion making actions such as traffic rerouting and scheduling,
urban planning and site engineering, acoustic isolation
and noise reduction, and noise level enforcement. The
effectiveness of such a decision is highly dependable on the
presence of continuous and precise monitoring of noise levels
at the specified location or region.

Typical requirements for a noise monitoring system
include accuracy, reliability, cost-effectiveness, scalabil-
ity, power efficiency, reportability, representativity. In a
measurement-based noise monitoring system, noise level
is typically measured by a sound level meter (SLM)
device which is basically an acoustic sensor. The sensor
captures multiple sound pressure samples per second and
can also provide averaged results over a desired period of
time. Many of these devices are also supported by data
storage, processing capability, and a communication module
to report collected measurements. The packaged system
typically encompasses proprietary software and hardware.
The accuracy, reliability, robustness, and solutions offered
by the device and the packaged system define its cost range,
which can reach up to few tens of thousands dollars.

In order to assess the noise level of a city, authorities
need to deploy these noise monitoring devices across the city,
ending up paying huge amount of money not only for the
cost of the devices but also for installation and maintenance.
In an effort to improve noise mapping, many researchers
have focused on developing more practical solutions to
noise mapping such as Wireless sensor networks (WSN) and
mobile crowdsourcing (MCS).

In an acoustic WSN, a network of small low-cost low-
power acoustic sensors is deployed throughout the mon-
itored region. Low-cost sensors can continuously provide
acceptably accurate and reliable measurements of sound
levels [11]–[13]. Albeit cheaper than previous option, it is
still not a scalable approach as covering the whole city/metro
area burdens city authority with unjustifiable installation and
maintenance costs.

Mobile crowdsourcing, on the other hand, relies on
collecting sound measurements from mobile phones that are
naturally spread throughout city sites. Mobile crowdsourcing
offers more scalable approach to monitor a whole city or
metro area. However, mobile phones owners tend to be
reluctant to allow their devices to being continuously active
(measuring and reporting data) for such purpose as this will
deplete the device battery and allowable network data. One
approach to handle this problem is to offer amotive formobile
users to voluntarily participate in the monitoring activities by
reducing the frequency and amount time of the device is being
in active state.

It is worth mentioning that ultimately multiple solutions
can be purposefully utilized together within the same city. For
example, proprietary stations can be installed at few strategic

locations to provide accurate and reliable noisemeasurements
but cannot be adopted for city-wide monitoring, then WSN is
deployed to provide breadth in monitoring urban areas, and
then MCS can be used to scale and monitor uncovered zones
or spots at multiple levels of granularity.

In this work, we propose a motivatingmobile crowdsourc-
ing noise monitoring approach that is power efficient and
representative. Specifically, we are proposing to minimize
the number of spatial noise samples collected from mobile
devices when the contribution of more samples to the
measurement accuracy is insignificant.

The rest of the paper is organized as follows. Section II
provides an overview of recent works on environmental noise
monitoring. Section III introduces the adopted IoT-based
crowdsourcing noise monitoring architecture followed by the
formalization of the problem and the proposed algorithms
in Section IV. Experimental results and the performance of
the algorithms are detailed in Section V. Finally, Section VI
addresses our conclusions.

II. RELATED WORK
Recently, there have been many proposals addressing the
problem of monitoring environmental noise. Many of these
proposals are aligned with the prospective of smart city,
where ubiquitous IoT devices are extensively deployed to
collect, relay, and analyze data from various sources. The
literature is rich of noise monitoring system proposals that
consider multiple arrangements of fixed stations, WSN, and
MCS that can work isolatedly or collaboratively [14]–[20]

Bello et al. [21] presented an urban noise monitoring
system that adopts WSN for collecting sound measurements
from stationary low-cost sensor terminals, and applies data
analytics and machine learning (ML) techniques to identify
sound source and visualize noise maps. Similarly, Fernandez-
Prieto et al. [22] designed and implemented a city-wide,
long-termWSN-based noise monitoring system that connects
and reports data to a private cloud. While the system is
suitable for accurate noise mapping, the authors reported
that power and WiFi outages and the need for manual
reconfiguration are the main drawbacks of the system.

Nowadays, the pervasiveness of mobile devices equipped
with sensors makes MCS more scalable approach com-
pared to other alternatives. MCS enables collecting noise
samples on wider geographic areas while attaining sig-
nificant reduction of overhead implementation cost and
time. Mobile crowdsensing is mainly based on real sensed
noise level measurements rather than pure computational
models. In terms of smartphones measurements accuracy and
precision, many researchers have shown that smartphones
crowdsensing can be used efficiently for noise mapping in
urban environment. They show through experiments that
mobile crowdsensed measurements are within acceptable
range of difference compared to a calibrated sound level
meter [23]–[26]. Microphones of any device are calibrated
using sound calibrators which is done typically in laboratory.
Nonetheless, smartphone can be calibrated computationally
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out of the laboratory. For example, it can done by comparing
smartphone measurements to a reference calibrated sound
level meter [27] or computationally by applying a correction
vector to sound level measurements based on collected
database of similar device model [24], [28].

In addition to calibration, it is necessary to collect large
amount of noise samples with adequate spatial and temporal
density that secures acceptable measurement error [26],
[29], [30]. Nonetheless, some studies showed that even
with intermittent monitoring, smartphones crowdsourcing
can be effective if statistical methods are integrated [24],
[31]–[33]. When multiple mobile devices densely cover
a specific area, averaging devices measurements would
provide a good estimate of the area average. The smaller
the areas, the higher the precision of areas averaged noise
values. As any other data collection systems, data sparsity
is difficult to avoid in MCS. Thus an estimation mechanism
has to be adapted for interpolation of missing location data.
For example, Grubeša et al. [26], Zuo et al. [34] used the
ordinary Kriging method to have full coverage (estimation)
noise maps. Huang et al. [35] proposed a spatio-temporal
correlation matrix to predict the value of missing points
in crowdsensed noise mapping systems. Koukoutsidis [32]
applied spatial sampling techniques to estimate the average
of the environmental temperature. In a different manner,
Can et al. [36] considered aiding fixed noise monitoring
stations in estimating uncovered points by mobile measure-
ments. They reported that the mobile measurements with
spatial interpolation is efficient even using few and short
samples. Quintero et al. [20], [37] suggested through field
experiments a 34m radius for mobile samples aggregation to
minimize estimation error.

In MCS, multiple contextual metadata can be reported
along with collected sound samples. These data depicts the
status and context of the device at the time of sound level
measurements. The context of the device directly impacts
the accuracy of the measured noise level. Rana et al. [38]
reported a significant variation on the measured sound level
when considering different context e.g., handheld versus
in-pocket device. The authors developed a classifier based
on k-nearest neighbour to determine acceptable context.
Zappatore et al.. [17] developed a ML algorithm that exploits
context data to improve the efficiency of the crowdsourced
data. It is worth to mention that taking context in account
improves not only the accuracy of the data but also can
improve the device resource consumption efficiency if the
device is put on sleep when it is in unacceptable context.

Large scale monitoring would definitely result in large data
aggregation, making cloud/edge computing suitable technol-
ogy for handling MSC and WSN data. Zamora et al.. [15]
suggested a generic architecture for smartphone crowdsourc-
ing based on cloud solutions. They mapped many proposals
in literature to this architecture. Longo et al. [25] developed
a cloud-based platform for participatory noise measurements
featuring web applications for users and city authorities.
Sarma et al. [14] proposed a framework for scalable and

collaborative hierarchical sensing and data collection using
hierarchy of multiple size clouds (cloud, local, nano).

Many of the existing proposals presumes users are willing
to voluntarily participate in collecting and reporting noise
samples. However, having a smartphone continuously on
active mode is resource consuming i.e., battery, network data,
and computing power) in addition to potential privacy expo-
sure [35]. Incentive mechanisms are critical in motivating
smartphone users to join the crowdsourcing, otherwise may
not participate. Several researchworks investigating incentive
mechanisms are summarized in [16], [33].

Determining the time and location of the measurements
and selecting the set of reporting devices is an important issue
that contributes to both accuracy and resource conservation.
Zamora et al. [39] developed noise crowdsensing architec-
ture, featuring precise temporal noise sampling with the
aim of minimizing smartphone battery consumption. They
developed a decision tree to optimize sampling precision and
that algorithm takes into account the context and the status
of the device to decide whether to collect samples from this
phone or not. They reported a 60% reduction in smartphone
resource consumption. Muthohar et al. [40], addressing the
trade-off between accuracy and power efficiency, proposed
an adaptive sampling technique that considers the motion
of the device. Sarma et al. [14] considered compressive
sensing to address scalability-accuracy trade-off. Lastly,
Ben Said et al. [41] developed a deep learning framework that
predicts the availability of crowdsourced service in a specific
region based on historical spatio-temporal presence of mobile
devices.

In summary, one can identify the trade-off between the
number of active participant devices and accuracy, that is, the
more reporters, the better accuracy, in addition to the trade-off
between participant device activity and device resources
efficiency, that is, the shorter and less frequent active periods
for a device, the less power and network data consumption.
This work tries to exploit this marginal intersection between
the number of reporters and measurements accuracy to better
improve mobile devices power efficiency.

III. THE PROPOSED ARCHITECTURE
The proposed architecture considers an IoT noise monitoring
architecture comprising cloud infrastructure and heteroge-
neous sensing infrastructure comprising mobile phones and
other sensing devices (e.g., WSN) as shown in Figure 1.
Mobile phones equipped with sound sensors run a sound level
meter application (SLMA) and collect noise samples and
report to the cloud server. The server maintains data collected
from all mobile devices and the results are displayed as real
time noise map to the decision maker.

Next, the basic features of the proposed approach are
detailed.

A. ZONING
In the proposed architecture, a city (or a metro-area) should
be first divided into multiple zones. Smartphones within a
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FIGURE 1. Proposed architecture.

zone should report noise measurements to the cloud server
(one or multiple). For each zone, the server is responsible for
determining which and when a device within a specific zone
should collect and report measurements. The server should
obtain the number of mobile devices within a zone, then its
task is to periodically choose theminimum number of devices
to report sound measurements.

For a given zone, the time is divided to slots. The length
of a slot corresponds to sampling rate. On each time slot, the
server sends a participation message to the selected devices
within the zone. Lastly, all measurements and decisions for
a zone are maintained and carried independently from other
zones.

B. REPRESENTATIVENESS
When selected mobile devices within a zone report their
measurements, the average value of these measurements
represents the estimated value for the zone at a given time.
It is conceivable to expect that the more samples reported,
the more representative estimated average value for the
zone, i.e., the more samples reported, the more accurate
estimation. However, it is arguable that in many occasions
multiple samples are sufficiently equivalent and their effect
on the estimated value is marginal. Hence, we leverage this
hypothesis to minimize the number of actively reporting
devices.

The server may start with an arbitrary number of partici-
pants. Then, it will try to decrease the number of participants
to reduce power and data consumption or increase the number
to improve accuracy. There should be some sort of feedback
that directs the change of the number of participants. For
instance, one can choose the variance in the averaged results

TABLE 1. Parameters notation and corresponding values.

collected from all participants, within a zone, to not exceed
a given threshold. If it does, the number of participants
increases in the next time period/slot. If the variance is too low
compared to the threshold, the server may reduce the number
of participants. Figure 2 illustrates the proposed approach.

IV. OBJECTIVE AND OPTIMIZATION MODEL
The objective of the proposed approach is to minimizemobile
phone recurrent cost, battery consumption and network data
usage, while maintaining efficient monitoring. The sampling
algorithm can implement multiple policies to achieve this
objective e.g., a device should not be chosen in two
consecutive periods or for more than 1 minute. In addition,
the aggregated number of samples reported to the cloud is
also expected to be lowered substantially.

N.B. all variables and notations are explained in
Table 1. Initially, assume there is a set of zones Z =

{1, 2, . . . , z, . . . ,L} under monitoring and let Dz =

{1, 2, . . . , dz, . . . ,Mz} define a set of participants mobile
devices who are in zone z. the main objective is monitoring
the noise in zone z via least possible number of mobile
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FIGURE 2. An illustration of the proposed approach.

devices in that zone. Therefore, the mean value of the
measured noise from few number of mobile devices in
the zone z at time t (denoted dBµ,z(t)) is considered. On the
one hand, since we are calculating the mean value of the
measured noise (dBµ,z(t)), we observe the variation on
the Standard Deviation (sdz(t)) and utilize it as a control
measure on the crowdsourced measured noise. On the other
hand, we are looking to reduce the number of selected
mobile devices among participants in zone z. We use
a binary integer variable Xi,z to identify mobile devices
that are available (exist) and selected (participant) in the
zone ; where 0 refers to exist but not participating and
1 refers to the existence and participation of that mobile
device (i.e., Xi,z(t)). Consequently, the objective becomes the
minimization of the number of participant mobile devices.
In addition, a supportive policy is incorporated to achieve the

main objective that is constraining the number of consecutive
times an available devise is selected to participate within a
given zone.

To achieve an efficient crowdsourcing monitoring measure
that minimizes the number of participant mobile devices in
a zone, we formulate our model as an integer linear opti-
mization problem with the following objective function (1),
as shown at the bottom of the page, that is to minimize the
number of selected participant mobile devices (number of
participants). To observe a feasible solution of the proposed
model, six constraints were considered; i.e., equations 2–7, as
shown at the bottom of the page.

Constraint 2 computes the mean value of the measured
noise (sound level) that is the sum of noise levels of all
participant devices averaged on their number. Constraint 3
calculates the standard deviation based on the participant

min nz(t) =
∑
i∈Mz

Xi,z(t) ∀i ∈ Dz,∀z ∈ Z (1)

s.t. dBµ,z(t) =

∑Mz
i=1

(
Xi,z(t) · dBi,z(t)

)∑Mz
i=1 Xi,z(t)

∀i ∈ Dz,∀z ∈ Z (2)

sdz(t) =

√√√√∑Mz
i=1 |

(
Xi,z(t) · dBi,z(t)

)
− dBµ,z|

2∑Mz
i=1 Xi,z(t)

∀i ∈ Dz,∀z ∈ Z (3)

sdz(t) ≤ sdz,threshold ∀z ∈ Z (4)

nz(t) ≤ Mz ∀z ∈ Z (5)

Xi,z(t) ∈ {0, 1} ∀i ∈ Dz,∀z ∈ Z (6)

Xi,z(t) = 0, if Xi,z(t − 1) = 1 and nz(t − 1) ≤ Mz − nz(t) ∀i ∈ Dz,∀z ∈ Z (7)
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mobile devices determined by the integer value (Xi,z(t)).
Constraint 4 defines the threshold (sdz,threshold ) for the
standard deviation of the calculated mean value (sdz(t)).
Based on the definition of the model, this constraint is
responsible for tracking the accuracy in respect to sound
level measurement. Constraint 5 defines the upper bound for
the number of participant mobile devices to be fewer than
or (at most) equal to the total number of mobile devices
(Mz) currently available in the z-th zone. Constraint 6 is the
integer variable definition (Xi,z(t)); which is set to 1 if the
mobile device i is in zone z-th and participating (engaged)
in the sound measurement, otherwise it is set to 0. Lastly,
constraint 7 is a special condition to constraint 6 and is
responsible for excluding any mobile device participated in
the previous time slot (t-1) from the selection in next time
slot (t). Constraint 7 is vital for the optimization model
since it implements the aforementioned supportive policy.
This constraint 7 efficiently controls the participation among
mobile devices in the zone, which is activated when the
number of participant mobile devices in the previous time
slot (n(t − 1)) is less than or equal to the current number
of not selected mobile devices (Mz − n(t)). As a result, the
model tries to reduce the usage of mobile devices in the
crowdsourcing first by reducing number of participants and
then by alternating and switching the engagement among the
participants in the zone.

The following Algorithm 1 executes the proposed opti-
mization model (1 - 7) with the goal of reducing the number
of mobile devices engaged in the noise level measurements.
The algorithm basically starts with initialization steps
(lines 2-7), and then enters the monitoring and optimization
phase (Lines 8-26). The initialization steps are related to
resetting all variables to zero (Line 2) and sets the Boolean
Integer matrices; i.e., Xz(t) and Xz(t − 1); to empty matrices
or mathematically sets to ∅ (Line 3). Then, participant mobile
devices in zone z are obtained and added to vectorDz (Line 4).
Then, the Boolean Integer matrices, i.e., Xz(t) and Xz(t − 1),
is filled with respective reference index i using For-Loop
iteration (Lines 5-7). After that, the algorithm starts the
continuous monitoring loop as listed in Lines 8-26. In the
continuous monitoring loop, the algorithm re-obtains (similar
to Line 4) the participant mobile device (participants→ Dz)
and acquires the number of participant mobile devices (Mz)
as first steps in the continuous monitoring (Line 9 & 10).
These two steps are vital to keep tracking the existence of
participant mobile devices in zone z. Based on the selected
participant mobile devices (engaged mobile devices),1 the
algorithm calculates the averaged (mean) sound level dBµ,z(t)
and the standard deviation (sdz(t)) for zone z (Lines 11 & 12,
respectively); which are the optimization model constraints 2
& 3. Then, the migration of historical data steps; which
are moving the Boolean Integer matrix and the number

1In the initial loop (or cold start), there is no selection; therefore none
of participant was engaged in the calculation of the first loop. This will be
updated afterward.

Algorithm 1 MCS-Based Noise Monitoring Algorithm
1: procedure Main Algorithm(sdz,Threshold , nz,min,
Tselection)

2: nz(t − 1), nz(t), sdz(t), dBµ,z(t) set to 0 F

Initialization
3: X (t) & X (t − 1) = ∅ F Initialization
4: Dz← Obtain participant mobile device in the zoneF

Initialization
5: for di ∈ Dz do F Initialization
6: Xi,z(t) = 0 and Xi,z(t − 1) = 0
7: end for
8: while true do
9: Dz ← Obtain participant mobile device in the

zone
10: Mz← SizeOf(Dz) F Get number of participants
11: Calculate dBµ,z(t) F Constraint 2
12: Calculate sdz(t) F Constraint 3
13: Xi,z(t − 1)← Xi,z(t) FMove selection

(t)→ (t − 1)
14: nz(t − 1)← nz(t)
15: if sdz(t) > sdz,Threshold then F Constraint 4
16: if nz(t) < Mz then F Constraint 5
17: nz(t) = nz(t)+ 1
18: end if
19: else
20: if nz(t) > nz,min then F Minimum

participants is required
21: nz(t) = nz(t)− 1
22: end if
23: end if
24: Selection(Xz(t), nz(t),Xz(t − 1), nz(t − 1),Mz) F

Constraint 7
25: SLEEP(Tselection)
26: end while
27: end procedure

of selected (engaged) mobile devices from timestamp t to
timestamp t − 1 as in Lines 13 & 14, respectively. Next is
the implementation of constraints 4 & 5 in the nested IF-
THEN-ELSE statements; which results in either an increment
or a decrement by one, otherwise no change on the number of
selected (engaged) mobile devices in time slot t according to
flow of conditions (Lines 15-23). After that, the algorithm
invokes the Selection algorithm 2 to comply the special
performance constraint 7 (Line 24). Finally, the algorithm
holds for collecting sound level measurements (Line 25); i.e.,
sleep for period of time (as defined by the algorithm’s user
Tselection); before it repeat the monitoring steps (Line 26).

The Selection algorithm 2 is the procedure to identify
which participant mobile device to be selected (engaged) in
the sound level measurement for the upcoming time slot t ,
addressing in particular constraint 7. The Selection algorithm
retrieves the two Boolean Integer matrices Xz(t) & Xz(t −
1) with their defined number of selected participant mobile
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Algorithm 2 Participants Selection Algorithm
1: procedure Selection(Xz(t), nz(t),Xz(t−1), nz(t−1),Mz)
2: index = 0 F Initialization
3: Stemp(t) & Stemp(t − 1) = ∅ F Initialization
4: for i = 1, . . . ,Mz do
5: if Xi,z(t − 1) = 1 then
6: Stemp(t − 1)← i
7: else
8: Stemp(t)← i
9: end if
10: Xi,z(t) = 0
11: end for
12: if nz(t − 1) ≤ (Mz − nz(t)) then
13: for i = 1, . . . , nz(t) do
14: while true do
15: index = Random(Stemp(t))
16: if Xindex,z(t) 6= 1 then
17: Break WHILE-LOOP
18: end if
19: end while
20: Xindex,z(t) = 1
21: end for
22: else
23: for i ∈ Stemp(t) do
24: Xi,z(t) = 1
25: end for
26: for i = 1, . . . , (nz(t − 1)− nz(t)) do
27: while true do
28: index = Random(Stemp(t − 1))
29: if Xindex,z(t) 6= 1 then
30: Break WHILE-LOOP
31: end if
32: end while
33: Xindex,z(t) = 1
34: end for
35: end if
36: end procedure F Xz(t) is updated

devices, i.e., nz(t) & nz(t − 1), respectively, and the size of
all participant mobile devices in zone z (Mz) as shown in
Line 1. As initial steps, the algorithm defines a temporary
variable named index that will holds the index of suggested
(for selection) mobile device during the algorithm’s process
(Line 2). And it defines two empty (∅) integer vectors
namely Stemp(t) and Stemp(t − 1) that hold the indices
of participant mobile devices (Line 3). Through iteration
among all participant mobile devices indices (1, . . . ,Mz), the
algorithm sorts and groups these indices into the two integer
vectors (Stemp(t)&Stemp(t − 1)) according to the selection of
the participants on the previous time slot; i.e., Xi,z(t − 1)
(Lines 4-11). By the end of line 11, the algorithm would
have two vectors with indices, one holds previously selected
(Stemp(t − 1)) and the other holds not selected (Stemp(t))
mobile devices. Next, the algorithm discovers the selection

through nested IF-THEN-ELSE statement to meet the spe-
cial constraint 7 requirement, namely avoiding previously
selected mobile devices (Lines 12-35). The nested IF-THEN-
ELSE statement goes through two level of checks. The high
level checkpoints in the nested statement (Lines 12, 22 &
35) is related to the possibility of having only newly selected
mobile devices for the time slot t . If the high level check is
valid, then the algorithm randomly chooses nz(t) from the
integer vector of not selected mobile devices (Stemp(t)) and
mark them selected, precisely Xindex,z(t) = 1 (Lines 13-21).
If the high level check is invalid, then the algorithm
implement two sets of steps. The first set of steps is set to
1 all mobile devices which has not been selected previously
and that through retrieving all indices in integer vector
Stemp(t) (Lines 23-25). The second set of steps is selecting the
remaining number of mobile devices to be forcibly engaged
again in the sound level measurement. Consequently, the
remaining selection is performed by randomly selecting
nz(t − 1) − nz(t) indices from the integer vector Stemp(t −
1) and set them to 1 (Lines 26-34). By the end of the
Selection algorithm, the Boolean Integer matrix for the
selected (engaged) mobile devices Xz(t) is updated for
the time slot t (Line 36).

V. EXPERIMENT
The goal of the experiment is to validate the proposed
model and algorithms. We consider in this experiment
emulating a zone with multiple mobile devices and collecting
simultaneously noise samples from these mobile device.

A. TOOLS AND EQUIPMENT
All participant mobile devices were of the same model and
equipped with an off-the-shelf noise sampling application.
The sampling application expresses the captured sound
pressure in dB and reports both the equivalent A-weighted
sound pressure level (LAeq) for each second in dB and
the maximum recorded sample (Lmax). In the performed
experiment, we considered the equivalent A-weighted sound
pressure level (LAeq) as it is more relevant to this experiment
and the calculated mean value (dBµ,z(t)) in the proposed
model.

B. RESTRICTIONS
In this work, there are restrictions applied on the proposed
model and approach to efficiently operate. First restriction
is when having extreme number of mobile devices in
a single zone. This limitation is enforced to avoid the
expansion of the feasible solution of the mathematical
optimization model (objective function 1). Therefore, the
work procedure (Figure 2) will readjust the zone size in
case of unexpected sharply increase of number of mobile
devices. Second restriction is selecting the time slot window
t to be fairly short. Designating a long time slot windows
such as 30 seconds or longer could raise several performance
challenges. Longer time slot windows could effect the goal
of energy efficiency by activating selected mobile devices
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FIGURE 3. Averaged measured noise (in dB).

FIGURE 4. Standard deviation (in dB). sdz (t) is the calculated standard
deviation and Ref . is the upper limit reference or the threshold of the
acceptable standard deviation.

for longer time than others. Apparently, human behavior
(e.g. suddenly quitting the participation) would escalate the
challenge of mobile devices selections. Therefore, the time
slot window t was 3 seconds. A time slot window of 5 to
10 seconds were tested and found acceptable however in this
work results for a 3 seconds time slot window were reported.

C. RESULTS
Figures 3-7 show the results for 15 participant mobile
devices (smartphones) running the application for 5 minutes.

Figures 3 and 4 plot the averaged noise level (primary
goal of the proposal) and the standard deviation of the
average noise (tuning parameter in the proposed model),
respectively. Both Figures 3 and 4 have two lines which
represents the observations when the proposed approach is
used, in particular the adaptive mobile devices participation,
(denoted Proposed and marked with gray line) and when all
mobile devices are participating (denoted All devices and
marked with dark line). As shown in Fig. 3, the proposed
approach is able to monitor the sound level (noise level);
comparably when all mobile devices are used; on an area
populated by people with mobile devices. In the Fig. 3, the
averaged sensed sound level in general varies between 40 and
60 dB across for both approaches during the experiment.
In addition, there was a fairly increased sound level (up to
65 dB) between the time 13:16:15 and the time 13:16:40.

FIGURE 5. Number of participant mobile devices. Mz (t) is total number
of participants and K (t) is the selected (engaged) number of participants.

The scope of this paper is to sense the sound level rather
than to control it, therefore, the scope of this experiment
is limited to observe the sound level. On the other hand,
in Fig. 4, we are interested to observe the standard deviation
performance as it is vital for the proposed optimization
model. In this experiment, we set the standard deviation
threshold (sdz,threshold ); which is marked as dash-line Ref.; to
5 dB. Whenever the standard deviation (sdz(t)) is higher than
the standard deviation threshold (sdz,threshold (t)), the number
of selected (engaged) mobile devices is incremented, and the
vice versa.

Figure 5 plots the number of participant mobile devices
(Mz(t)) and ones which are actively collecting (engaged) and
reporting noise samples (K (t)) throughout the experiment
duration. In this figure, we observe that the number of
selected mobile devices was mainly set by the algorithms to
3 engaged mobile devices; which is the minimum acceptable
number of participants (nz,min = 3); and only incremented
during the mentioned period of fairly increase in sound level.
Moreover, there were few incidences where the number of
engaged mobile devices (K (t)) was incremented and that
because the standard deviation (sdz(t)) was very close to its
reference upper bound limit (sdz,threshold (t)), see Fig. 3.

Figure 6 plots three sample outcomes during the experi-
ment which each sample shows the observed selected mobile
devices (in dark marked mobile devices), the measured sound
level (in dB at the top-left), and the calculated standard
deviation (in dB at the top-right). In Figure 6, there are three
sub-Figures which was observed at three different instance
during the experiment, i.e., sub-Fig. 6a observed at time
13:14:40, sub-Fig. 6b observed at time 13:15:06, and sub-
Fig. 6c observed at time 13:16:41, respectively. At the two
observations sub-Fig. 6a and sub-Fig. 6b, the model was
depending on three mobile devices to monitor the sound
level as the standard deviation was low (below the threshold
5 dB as in Figure 4). However, in the third observation, i.e.,
sub-Fig. 6c, the model was engaging nine mobile devices as
the standard deviation was high (clearly above the threshold
5 dB as in Figure 4). This Figure 6 is demonstrating the
effectiveness of using Linear Integer Programming in the
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FIGURE 6. Three outcome samples during the experiment at time (a) 13:14:40, (b) 13:15:06, and (c) 13:16:41. The
proposed optimization model is effectively switching among participant mobile devices as well as adapting the
number of selected devices.

FIGURE 7. Utilization per participant.

proposedmodel as it is smoothly fulfill the targeted objectives
in this work. The targeted objectives are (1) minimizing the
number participant mobile devices used in monitoring the
sound level, (2) avoiding the persisting feeding from mobile
devices and circulating the sourcing among existing mobile
devices, and (3) tracking the accuracy of measurements via
observing the quality of calculated sound level indicator (in
this model, we used the standard deviation).

Last and vital observation is shown in Figure 7; which
reports the percentage of all participant mobile devices’
utilization during the entire experiment duration. The moti-
vation and the fundamental goal of this work is to reduce
participant mobile devices’ utilization while keeping the
sensing performance in crowdsourced monitoring. In this
Fig. 7, there are two bars reported per mobile device
that was engaged in the experiment. The right dark bar
represents the participation or usage duration (utilization)
of the mobile device when all devices were participating
in noise measurements. The left gray bar represents the
participation or usage during (utilization) of the mobile
device when the proposed approach was used. Despite the
participate utilization were 100% for all mobile devices in
the traditional approach, i.e. all devices are participating in
the noise measurement, in the proposed approach all
participant mobile devices were at most 30% of the sensing
duration of the experiment. This vital observation is a key

finding of the proposed model; i.e., all participant mobile
devices were engaged (selected) at most 30% during the
experiment; because it is freeing the mobile device up to 70%
of being used for crowdsensing.

D. DISCUSSION
This section discusses and compares relevant approaches to
the approach proposed in this work. In the literature, many
proposals presume that each participant mobile senses and
reports noise measurements periodically i.e., every specific
period of time, focusing on accuracy and coverage and
ignoring energy. Some works, however, have focused on
developing energy and resource preserving approaches [42].
One approach is the context-awareness of a device which
was mainly concerned with accuracy. However, Context-
awareness can be utilized as a basis for determining whether a
mobile phone should capture and report noise samples given
its context [39]. This approach is able to maintain better
measurements accuracy and avoid unneeded active periods
for the devices. Compressive sensing is another approach that
leverages correlation of sensed data and historical records
to reconstruct/estimate missing data. This approach enables
gathering measurements for large-scale area with only fewer
data samples contributed by participants [43]. In addition,
Sheng et al. [44] proposed a scheduling algorithm that min-
imizes the total energy consumption and ensures min-max
fairness among participants. Simulation results show 80%
reduction in total energy with minimum number of reports
by each participant. This approach is only concerned with
energy consumption and ignore accuracy of measurements
as presumed that a single reading at a given zone is
representative of the noise level at this zone. Similarly,
Liu et al. [45] optimizes the number of samples required
from each participant device based on its remaining energy
level. In an alternative approach, Dutta et al. [46] defined a
group mode in which participants who are in close proximity
can send their measurements to an elected group leader who
in turns reports the collected measurements to the cloud along
with its own location. Hence, reduce the energy consumption
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TABLE 2. A qualitative comparison between selected works.

of using GPS location and data transfer by the rest of
group members. The approach can achieve significant energy
savings as the group size increases.

A more relevant proposal to this work is in [47]. The
authors try to optimize the ratio between the actual number
of selected participants to the required number of participants
as well as the fairness among the participants within a zone.
Each mobile participates (or not) in the crowdsensing based
on a defined probability adaptive to the coverage and fairness
status in the zone. However, it is assumed that the number of
required observations is given. Unlike [47], in this work the
number of required samples is computed adaptively.

Lastly, Table 2 provides a qualitative comparison between
this proposal and some selected works.

VI. CONCLUSION
In this work, we have identified a potential margin between
power and data usage efficiency and measurement accuracy
in mobile crowdsourcing for environmental noise monitor-
ing. We introduced an adaptive approach to MCS noise
monitoring that exploits this margin with the objective of

improving mobile devices resource efficiency with accept-
able measurements accuracy. The results show that the
proposed model and the suggested algorithms were able to
minimize the required number of mobile devices to monitor
the sound level in an area. As a result, this minimization
of the number of devices is vitally reducing the usage of
participating mobile devices in crowdsourcing monitoring.
The participating mobile devices were used at most 30% of
the monitoring duration; which frees those mobile devices for
up to 70% of the time.

For future work, we suggest incorporating machine
learning (ML) techniques used to better estimate the required
number of participants in each time slot (frame), and
identifying and reasoning the source of the noise. On another
dimension, one can be interested in studying the problem of
adjusting the accuracy by adapting the size of the zones to the
number and distribution of mobile devices.
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