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ABSTRACT The final stage of the production process in the industry is quality control. Quality control
answers the question of is there a defect on the surface of the products. Frequently the quality control is
performed manually. The disadvantages of manual quality control are high error rate (low accuracy), low
product rate (low performance) and high expense rate (high cost). The solution is automatic quality control
using machine vision systems. These systems classify the products and segment the defects on their surfaces
by processing the images taken by cameras during the production process in real-time. Some products like
military cartridge cases have metallic, cylindrical, non-uniform texture and highly reflective surface. So, the
quality of images is very important. Another factor that affects the accuracy is the non-uniform texture of
the product surface. Distinguishing the product non-uniform texture from defect texture is a challenging
problem. In previous works, this problem has been tried to be solved with image processing and deep
learning techniques and the accuracy of 97% and 96% have been obtained, appropriately. According to
NATO standards, the accuracy of the classification of the military cartridge cases should be above 99%.
In this work, the methodology for classification of the military cartridge cases and segmentation of the
defects on their surfaces with non-uniform texture is proposed to increase the accuracy. In scope of the
proposed methodology the datasets with non-defective, defective, and labeled/masked image classes of the
cartridge cases were created, the deep learning models to classify the military cartridge cases and segment
the defects on their surfaces were proposed, implemented, and obtained results were evaluated using the
metrics such as Accuracy, Precision, Recall, F1-Score, Jaccard Index (JI) and Mean Intersection over Union
(mIoU). Obtained results showed that the proposed methodology increased the accuracy of classification to
100% with the DenseNet169 model and the F1-Score of segmentation to 92.1% with Improved U-Net and
ResUnet models.

INDEX TERMS Deep learning, defect detection, defect segmentation, defect texture, object inspection,
military cartridge case, object classification, non-uniform surface texture, quality control.

I. INTRODUCTION
Machine vision systems are very popular in industrial appli-
cations. Due to these systems the products’ standards are
guaranteed, accuracy and performance are increased, and the
expense is decreased.

One area of machine vision system usage is the quality
control of industrial products. The final stage of the pro-
duction process in industry applications is quality control.

The associate editor coordinating the review of this manuscript and

approving it for publication was Claudio Cusano .

Quality control answers the question of is there a defect on
the surface of the product. Frequently, the quality control is
performed manually. The disadvantages of manual quality
control are high error rate (low accuracy), low product rate
(low performance) and high expense rate (high cost). The
solution is automatic quality control using machine vision
systems.

Machine vision systems classify the products and segment
the defects on their surfaces by processing the images taken
by cameras during the production process in real-time. So,
the quality of images is very important. Another factor that
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affects the accuracy is the property of the product surface.
Some products like military cartridge cases have metallic,
cylindrical, non-uniform texture and highly reflective surface.
Metal surface has a high coefficient of reflection and non-
uniform texture. This kind of texture includes random pat-
terns similar to the real defects. Such features make difficult
to distinguish real defects on the surface of products from the
non-uniform product texture.

Many traditional algorithms have been developed to use in
machine vision systems to detect surface quality. Traditional
machine vision algorithms couldn’t reach desired results for
objects with highly reflective surfaces, random structures,
and textures, making it hard to identify defects to use in a
real environment. Some surface defects are very difficult to
distinguish from product surface texture by using traditional
image processing algorithms. Human sense can detect out
these types of defects. Deep learning comes to behave like
human sense and can detect such kinds of defects. However,
the accuracy obtained in the existing studies related to the
deep learning techniques is not sufficient for inspection of
critical tasks like military cartridge cases. The image pro-
cessing techniques have a better performance on structural
defects like it is easy to distinguish from the product texture.
On the other hand, the deep learning techniques imitate the
human sense and have better performance by detecting very
soft defects that are similar to the product texture. So, it can
be concluded that by deep learning techniques the higher
accuracy can be reached.

Distinguishing the product texture from defect texture is a
challenging problem. In previous works [1], [2], this problem
has been tried to be solved with image processing [1] and
deep learning [2] techniques and the accuracy of 97% and
96% were obtained, appropriately. Proposed deep learning
technique in [2] was used for classification of the defective
cartridge cases. According to NATO standards, the accuracy
of the classification of the military cartridge cases should be
above 99%. The segmentation of defects on the surface of
cartridge cases is also very important. However, there are no
studies in the current literature that segment the defects of
cartridge cases.

In this work, the methodology for classification of the
military cartridge cases and segmentation of the defects on
their surfaces is proposed to increase the accuracy. In scope
of the proposed methodology the datasets with non-defective,
defective, and labeled/masked image classes of the cartridge
cases were created, the deep learning models to classify the
military cartridge cases and segment the defects on their
surfaces were proposed, implemented, and obtained results
were evaluated using the metrics such as Accuracy, Precision,
Recall, F1-Score, Jaccard Index and Mean Intersection over
Union.

The rest part can be summarized as follows. In Chapter II
the related works are evaluated. Chapter III presents the
deep convolutional neural networks. Chapter IV describes
the proposed methodology. Chapter V implements the pro-
posed methodology on military cartridge cases. Finally,

Chapter VI concludes the obtained results and future
works.

II. RELATED WORKS
This section discusses existing works related to defect detec-
tion, classification, and segmentation on surfaces with non-
uniform textures using image processing and deep learning
techniques.

A. IMAGE PROCESSING TECHNIQUES
In this subsection, the existing works related to defect detec-
tion, classification, and segmentation on surfaces with non-
uniform textures using image processing techniques were
summarized.

Tural et al. [1] propose the image processing procedure that
consists of four main stages: preprocessing, segmentation,
defect detection, classification. At the preprocessing stage the
region of interest (ROI) is extracted, and the Gaussian blur is
applied to remove some noise in the image. At the segmen-
tation stage the cartridge case is extracted from background
by performing a) Adaptive thresholding, b) Morphological
closing, c) Obtaining the cartridge case mask, d) Obtaining
the minimum area rectangle, and e) Rotation. At the defect
detection stage, the defects are detected by performing a)
Bilateral filtering, b) Sobel filtering, c) Thresholding, and
d) Morphological closing. Finally, at the classification stage
contour-based features such as the hu-moments, contour
area, contour perimeter, contour approximation, and con-
vex hull of the defects are extracted, and the support vec-
tor machine (SVM) is used for classification. The obtained
results show that the proposed image processing procedure
guaranteed 96% accuracy. Thus, the proposed procedure is
effective for detecting defects on the metallic, cylindrical,
non-uniform textured and highly reflective surfaces.

Yun et al. [3] propose a defect detection algorithm for
steel wire rods produced by the hot rolling process. The
authors detect the surface defects by performing the dynamic
programming and a discrete wavelet transform. The pro-
posed algorithm has a detection accuracy of 84.7%. Thus,
the proposed algorithm is effective for detecting defects in
scale-covered surfaces of steel wire rods.

Chondronasios et al. [4] investigate the defect detection
possibilities in extruded aluminum profiles. The authors used
two features and classified defects in three categories: non-
defective, blister and scratch. An accuracy of 98.6% was
obtained by combining the current literature on the field
with a new approach to select and manipulate the variables.
The values were obtained from the statistical features of co-
occurrence matrices on the gradient magnitude of the image
as a result of the Sobel operator.

Liu & Yu [5] present an automated surface defect inspec-
tion system for the optical infrared cut-off (IR-CUT) filter.
The system includes the illumination and imaging module,
moving module, flipping module and machine vision algo-
rithm. Authors used the stationary wavelet transform (SWT)
which provides a more accurate estimate of the variances
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in the image and further facilitates the identification of the
defected regions. The experimental results show an accuracy
of 96.44% of the proposed system.

Xue-Wu et al. [6] describe the design and testing process
of a vision system to detect defects for strongly reflected
metal surfaces. A computer vision based system was devel-
oped based on the wavelet transform, spectral measure, and
support vector machine. The study used the wavelet smooth-
ing method to eliminate noise from the images. Then, the
images were segmented by the Otsu threshold. Finally, five
characteristics based on the spectral measure of the binary
images were collected and entered into a support vector
machine (SVM). The classification results demonstrate that
the proposed method can effectively identify seven classes of
metal surface defects.

Aarthi et al. [7] propose a newmethod to explicitly analyze
surface defects. The study developed a discrete wavelet trans-
form technique to diagnose the defect in machineries. In the
testing for welding flaws, the reliability and quality of the
tests are considerably affected by noise and spurious signals.
Thus, signal de-noising and an increase in the signal-noise
ratio (SNR) are the key to successful application. Using the
discrete wavelet transform, the flaw was isolated using the
threshold of the transformed image, and different statistical
features were studied.

Zheng et al. [8] develop an inspection system to detect
structural defects on bumpy metallic surfaces, particularly
holes and cracks on the surfaces of aluminum. Their system
is based on the morphology and genetic algorithms and was
validated with a database collected from industrially pro-
duced aluminum samples. The maximum overall accuracy
was 91%.

Huang&Ye [9] propose amachine vision system to inspect
the micro-spray nozzle. Canny edge detection, a randomized
algorithm to detect circles, the circle inspection algorithm
and the BPNN classifier were used as the image processing
algorithms.

Malarvel and Singh [10] propose an autonomous technique
for weld defects detection and classification using multi-class
support vector machines in X-radiography images. Poros-
ity, gas pore, tungsten inclusion, longitudinal crack, lack of
penetration, slag inclusion weld defects are classified using
multi-class support vector machines. Overall accuracy of
97% and 95% was achieved for circular and rectangular
groups of weld defects, respectively.

Image segmentation is an important stage in detecting
defects in images. The first study in the literature to use
image segmentation for error detection was Funck et al. [11]
in 2003. The authors present the results from the use of
various algorithms for wood surface feature detection. Accu-
racy analysis of different segmentation algorithms has been
made on colored wooden images and the results have been
presented.

Malarvel et al. [12] propose an improved version of Otsu’s
method for segmentation of weld defects on X-radiography
images.

Matic et al. [13] propose a novel real-time segmenta-
tion method for images from ceramic tile production lines.
The improved method for parallel execution on a GPU for
real-time requirements was implemented in the study.

Radi et al. [14] propose the segmentation techniques for
weld defects with horizontal shapes. Proposed method com-
pared to traditional approaches for detection of weld defects
and achieved high segmentation accuracy.

Wei et al. [15] propose a surface defect segmentation
method based on defect training samples using image pro-
cessing techniques.

The existing studies, other than [1], related to image pro-
cessing techniques are not efficient for inspection (classifi-
cation of the products and defect segmentation) of metal-
lic, cylindrical, non-uniform textured, and highly reflective
objects. Also, the algorithms and the methods used are not
optimized for real-time work.

B. DEEP LEARNING TECHNIQUES
In this subsection, the existing works related to defect detec-
tion, classification, and segmentation on surfaces with non-
uniform textures using deep learning techniques are summa-
rized.

Samet et al. [2] propose the deep learning approach for
automated surface inspection systems. The approach has a
successful outcome with the use of powerful paradigms in
deep learning, including transfer learning and data augmen-
tation. The accuracy of 97% was achieved using the VGG16
model. The results indicate that machine learning models
using convolutional neural networks (CNNs) are capable of
surface defect detection on military cartridge case samples.

Jiang et. al. [16] propose a method weakly-supervised
CNN model to recognize defects based on casting X-ray
images. Besides, a novel data-augmentation method guided
by these attentionmaps is proposed to enlarge the dataset. The
test accuracy of 95.5% and the recall of 96.0% were achieved
using the proposed method.

Würschinger et al. [17] use the deep learning model and
transfer learning method in a computer vision system and
implement it to a manufacturing system to increase the
quality.

Wang et al. [18] propose a new deep learning model to
detect defects of aluminum alloy casting on the X-ray images.
Another paper that performs defect detection using deep
learning on aluminum alloys is the study of Chen et al. in
2021 [19]. The authors propose to use computer vision and
deep learning techniques to achieve automatic detection of
various defects of aluminum alloys.

Westphal and Seitz [20] propose CNN-based machine
learning algorithms for error detection using complex transfer
learning. Complex transfer learning methods were presented
and an accuracy of 95.8% was achieved.

Wang et al. [21] propose a four-stage defect detection
model, which uses CNNs. An electronic components pro-
duction line with two cameras automated optical inspection
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system is modeled and the proposed model achieved high
precision and velocity.

He et al. [22] present a technique using computer vision
and deep learning for defect detection and defect classifica-
tion on hot rolled steel.

Zhang et al. [23] detect the foreign objects in coal with
computer vision using CNN. They proposed a model with an
accuracy of 97% that can be used in real-time.

There are also studies that detect defects on different mate-
rials using CNN. Defect-detection studies are on glass panels
[24], wood [25], and fabric [26-30].

Mordia and Verma [31] present a review of some tech-
niques based on vision system for detection surface defects.
48 studies on visual defect detection in steel products, includ-
ing image processing and machine learning methods, were
reviewed.

In another review, Tulbure et al. [32] offer a struc-
tured and analytical advantages and disadvantages of
the object detection models. In review, region based
CNNs, YOLO, SSD and cascaded architectures were
evaluated.

Shi and Chen [33] propose the defect detection algorithm
for layer-wise of powder bed. CNN were applied to imple-
ment the classification of the defects, and their performances
were evaluated and compared. Proposed algorithm extracts
the defects in a single image in 15.67 ms with a detection rate
of 99.44%.

Xu et al. [34] propose a novel tunnel defect inspection
method based on the Mask R-CNN. Xiao and Buffiere [35]
developed an image segmentation method based on a convo-
lutional neural network for fatigue crack images.

Du et al. [36] propose an intelligent defect detection system
based on deep learning of aluminum casting parts’ X-ray
images.

Xu et al. [37] propose an automatic welding defect detec-
tion system based on semantic segmentation method using
Deep CNN. The authors of [38] and [39] present the surface
defect detection and segmentation of Deep CNN using differ-
ent data sets.

Kheradmandi and Mehranfar [40] present a review on
image segmentation-based techniques for pavement crack
detection. In the review comparison and analysis of various
image segmentation algorithms are offered.

In recent years, it is seen that the studies on defect
detection, classification, and segmentation are mainly deep
learning based. The existing studies related to the deep learn-
ing techniques come to behave like human sense and can
detect such kinds of defects. As seen above, there are a
few numbers of studies to detect defects, classify the objects
and segment the defects using deep learning techniques. The
problem with the existing studies is that the accuracy of
the existing deep learning techniques is not sufficient for
the inspection of critical tasks like military cartridge cases.
On the other hand, there are no works, other than [2], in the
literature related to the deep learning techniques to classify
the military cartridge cases and segment the defects. Tech-

nological development in deep learning is used to solve this
problem.

In this study, methodology for classification of the military
cartridge cases and segmentation of defects on their surfaces
using deep learning techniques is proposed to increase the
accuracy.

III. DEEP CONVOLUTIONAL NEURAL NETWORKS
Deep convolutional neural networks (Deep CNNs) have
gained great success in recent years, and they have been
successfully applied to many computer vision tasks such as
image classification, object detection, and image segmenta-
tion with the development of CNNs [41].

Existing deep learning techniques can be divided into four
categories: 1) structural; 2) statistical; 3) filter-based; and
4) model-based approaches [42]. These techniques provide
good results on uniform textured, non-reflective surfaces but
most of them are dependent on application and environment
variables but not very effective for non-uniform textured
and highly reflective samples like the surface of military
cartridges [1].

CNNs are widely applied for image-related analysis.
CNNs normally consist of three major layers: 1) convo-
lutional layer; 2) pooling layer; and 3) fully connected
layer. The convolutional layer applies a number of filters
on the local regions of the input, thus obtaining the feature
maps of the input image. The pooling layer downsamples
inputting spatial dimensions applied after the convolutional
layer to reduce the feature dimension and to avoid over-
fitting problem. The fully connected layers normally con-
stitute the last few layers of CNNs, computing the class
scores. A Deep CNN normally consists of alternating con-
volutional and pooling layers, followed by fully connected
layers [43], [44].

In this section, the Deep CNNs that are proposed to classify
the military cartridge cases and segment the defects on their
surfaces are presented.

A. DEEP CONVOLUTIONAL NEURAL NETWORKS TO
CLASSIFY THE MILITARY CARTRIDGE CASES
Following are the models used in this work for classification
of the objects like military cartridge cases: (1) VGGNets, (2)
ResNets, (3) Inception, (4) Xception, (5) DenseNet and (6)
EfficientNet.

1) VGGNETS
VGG network is a deep convolutional neural network whose
main contribution was the study of the effect of depth of
networks in the classification of large-scale images while
using an architecture with a very small convolution filter
(3 × 3) [45]. VGG-16 and VGG-19 are two known VGG
network examples where 16 and 19 determine the number
of weighted layers. VGG networks are made up of convo-
lution, max pooling, activation, and fully connected layers.
Both trained on more than 14 million images belonging
to 1000 classes VGG16 and VGG19 models respectively
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achieve almost 90.1% and 90.0% top-5 test accuracy on
ImageNet dataset [46].

2) RESNETS
ResNets (Residual Networks) [47] use a technique called
skip connections. Along the network these connections skip
training flow from a few layers and connect directly to the
output. This approach allows the layers across the network
to fit the residual mapping instead of learning the underlying
mapping. So, instead of initial mapping, H(x), the network fits
F(x):=H(x)–x and gives H(x):=F(x)+x as output. ResNets
authors evaluated this architecture on the ImageNet dataset
with a depth of 152 layers, 8x deeper than VGGNets [45] but
still being less complex. Some of the most known ResNets
based models are ResNet50, ResNet101, ResNet152 where
50, 101, 152 determine the number of layers in the network.
In 2016, the authors of ResNets brought a new improvement
to ResNets which they called ResNetV2 [48]. The promi-
nent improvement is the insertion of batch normalization
and ReLU activation before 2D convolutions. The models
like ResNet50V2, ResNet101V2, and ResNet152V2 are the
second versions of the related model.

3) INCEPTION
One of the biggest problems encountered in the development
of deep neural networks is overfitting, the level of which can
rise as the network gets deeper and deeper. To solve this prob-
lem C. Szegedy et al. proposed DCNN architecture [49]. The
main idea behind this architecture is to use multiple filters
of different sizes at the same level instead of using multiple
layers. This results in a wider model with parallel layers
rather than a deeper model. This architecture is designed
from the building blocks symmetric and asymmetric which
contain convolutions, average/max pooling, concatenations,
dropouts, and fully connected layers. Having contributed a lot
to the Computer Vision literature, this architecture has been
reviewed many times and different versions have been devel-
oped. One of the best known of these versions is InceptionV3
[50]. Major improvements done on this version are factor-
ization of large filters into smaller ones, spatial factorization
into asymmetric convolutions, use of auxiliary classifiers and
efficient reduction of grid size. In 2016, the developers of
Inception model published a new article [51] in which they
presented a new model resulting from the combination of
Inception and ResNet architectures (so named InceptionRes-
Net). Leveraging the breadth of the Inception architecture and
the depth of the ResNet architecture, with its performance this
has made a great contribution to image classification tasks.

4) XCEPTION
Standing for Extreme version of Inception, Xception [52] is
a deep convolutional neural network proposed by F. Chollet
from Google. Inspired by Inception, the author replaced the
inception module in Inception architecture with depthwise
separable convolutions. Having the same number of parame-
ters as Inception, this architecture has been proven to perform

better than InceptionV3 on datasets such as ImageNet (for
which InceptionV3 was developed). The performance of this
architecture is due to its efficient use of the model parameters.

5) DENSENET
Like the ResNet architecture, the DenseNet architecture [53]
also uses dense blocks and skip connections. But unlike
ResNet, in DenseNet each layer gets additional inputs from
all previous layers and passes its own feature maps to all
subsequent layers. Another difference is that DenseNet uses
concatenations to combine features instead of summation.
These multiple inputs allow DenseNet to limit the number
of filters. In DenseNet layers are made up of pre-activation
batch normalization, ReLU activation then 3× 3 convolution
with output feature maps of k channels and between con-
tiguous dense blocks, 1 × 1 convolution and 2 × 2 average
pooling are respectively used. Some advantages of DenseNet
are: its strong gradient flow, maintenance of low complex-
ity features and computational efficiency. Some of the most
known DenseNet models are DenseNet101, DenseNet121
and DenseNet169, where 101, 121, and 169 determine the
number of layers in the model.

6) EFFICIENTNET
EfficientNet [54] is a convolutional neural network architec-
ture and model scaling method. Unlike conventional prac-
tices in which the depth, width and resolution dimensions
of the network are arbitrarily scaled, named compound scal-
ing method, this method uses a compound coefficient ø to
uniformly scale these factors. For example, α, β, γ being
fixed coefficients that can be determined by a small grid
search and if we want to use a resource costing 2∧ø we
increase the depth of the network to α∧ø, width to β∧ø
and resolution (input shape) to γ ∧ø. The need for such a
method is justified by the intuition that the higher the image
resolution, the deeper the network must be to have a large
receptive field and more feature maps to capture finer pat-
terns. The authors first demonstrated the efficiency of their
method in scaling the ResNets and MobileNets architectures,
and then, as the second part of this work, they developed
a new base network that they scaled to obtain a family of
networks called EfficientNets. All these models are made up
of 7 inverted residual blocks that use all squeeze and excita-
tion blocks with swish activation. Their only difference is at
the level of the parameterization which allows them to have
different dimensions of width/depth/resolution. Significant
results have been obtained with EfficientNetB7 (84.3% top-1
accuracy on ImageNet) allowing it to have its place among
SOTA models.

B. DEEP CONVOLUTIONAL NEURAL NETWORKS TO
SEGMENT DEFECTS ON SURFACE OF MILITARY
CARTRIDGE CASES
Following Deep CNNs are proposed to segment the defects
on the military cartridge case images: (1) U-Net, (2) ResUnet
and (3) DeepLabv3+.
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1) U-NET
U-Net is architecture for semantic segmentation. U-Net
[55] was developed for biomedical image segmentation that
is based on the fully convolutional network. U-Net is an
improvement and development of FCN [56]. The architec-
ture consists of a contracting path to capture context and a
symmetric expanding path that enables precise localization
so U-Net has a U shaped symmetric architecture.

2) RESUNET
Deep Residual U-Net [57] is referred to as ResUnet. It’s a
semantic segmentation encoder-decoder architecture created
by Zhengxin Zhang et al. It was first employed in the field
of remote sensing image analysis to extract roads from high-
resolution aerial photos. Researchers later used it for a variety
of other applications, including polyp segmentation, brain
tumor segmentation, human image segmentation, and many
others. ResUnet is a fully convolutional neural network that
is designed to get high performance with fewer parameters.
It is an improvement over the existing U-Net architecture.
It combines the strengths of deep residual learning and U-Net
architecture. This architecture brings two advantages: 1) the
residual unit will ease training of the network; 2) The skip
connections inside a residual unit and between low and high
levels of the network will makes it possible to design a
neural network with much fewer parameters however could
achieve comparable ever better performance on semantic
segmentation.

3) DEEPLABV3+
DeepLabv3+ [58] extends DeepLabv3 [59] by adding a sim-
ple yet effective decoder module to refine the segmentation
results along object boundaries. It modified the main net-
work again on the original basis. They are able to encode
multi-scale contextual information by using atrous spatial
pyramid pooling (ASPP). The encoder uses dilated convolu-
tion at multiple scales to handle multiscale contextual infor-
mation, while the decoder module refines the segmentation
results along object boundaries. The separable convolution
is also explored, which makes the suggested model faster
and stronger while reducing the computational complexity
significantly.

C. TRANSFER LEARNING
The transfer of knowledge from a basic task to amore specific
task remains an effective solution in the field where data
acquisition is difficult, especially inmachine/computer vision
tasks. Besides being an efficient optimization procedure, the
use of already pre-trained models on millions of data points
with a large number of classes in the classification task also
allows the improvement of the classification. The first layers
of CNN-based models are used to learn low-level features
such as edges and blobs while the top layers are used to learn
high-level features that are more abstract and task-specific
aspects of the image, such as military cartridge case defects.

FIGURE 1. Transfer learning process adopted in this study.

However, as illustrated in Fig. 1, the most adopted way of
using already pre-trained models in computer vision tasks is
to train the top layers according to the task concerned while
keeping the initial parameters of the first layers. This practice
allows having fewer parameters to train, which reduces the
risk of overfitting, which remains a big problem in training
neural networks.

As seen, the trained weights of a base network (Fig. 1(a))
pre-trained on a large-scale dataset are transferred to a task
specific fine-tuned network (Fig. 1(b)) to be trained for a
new task. In the new task network, the first layer group
is set untrainable by freezing the corresponding layers (see
‘‘Frozen Convolutional Layers’’ caption in Fig. 1(b)) and top
layers are reconstructed according to the task (see ‘‘Custom
Fully Connected Layers’’ caption in Fig. 1(b)).

Table 1 shows the details and performance on the Ima-
geNets dataset [46], [60] of the different CNN models used
in the image classification task which can also be used for the
feature extraction and fine-tuning tasks.

IV. PROPOSED METHODOLOGY
The proposed methodology for classification of the mil-
itary cartridge cases and segmentation of the defects on
the surfaces of the military cartridge cases consists of four
stages:

1. Creating the datasets;
2. Classification of the military cartridge cases;
3. Segmentation of the defects on the surfaces of the mili-

tary cartridge cases;
4. Evaluation of the results.
The flow chart of the proposed methodology is shown as

follows (Fig.2).
The stages of the proposed methodology are explained in

detail in the following subsections.
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TABLE 1. The details and performance of pre-trained Deep CNN models
on ImageNets dataset.

FIGURE 2. The flow chart of the proposed methodology.

A. STAGE 1: CREATING THE DATASETS
The military cartridge case is the metallic, cylindrical and
highly reflective object with non-uniform textured surface.
There are no commonly used datasets for deep learning mod-
els to classify the military cartridge cases and to segment
the defects on their surfaces in existing literature. So, special
datasets should be created. Following are the main steps
adopted in this work to create such dataset.

1) Taking the images from the cylindrical surface with
sectors of 60 degrees using a machine vision system [1]. So,
6 images taken from the surface of each cartridge case should
cover the whole 360-degrees surface without overlapping;

2) Preprocessing all images [1];
3) Dividing the images into smaller patches;

4) Creating the dataset for classification of the military
cartridge cases by grouping all images into non-defective and
defective classes;

5) Creating the dataset for segmentation of the defects
on the surfaces of the military cartridge cases by label-
ing/masking the defects on the images in defective class
created in previous step;

So, at Stage 1 of the methodology, 2 datasets are created:
1) Dataset for classification and 2) Dataset for segmentation.
The first dataset will be used at Stage 2 to classify the military
cartridge cases as defective or non-defective. On the other
hand, the second dataset will be used at Stage 3 to segment
the defects on the surfaces of the military cartridge cases.

B. STAGE 2: CLASSIFICATION OF THE MILITARY
CARTRIDGE CASES
Following are the main steps to classify the military cartridge
cases.

1) Using the classification dataset with non-defective and
defective classes created at Step 4 of Stage 1;

2) Selecting the deep learning model(s) presented in
Section III-A;

3) Training and validating the selected model(s) on the
training and validation sets generated from the classification
dataset, respectively;

4) Evaluating the trained models on the test set using the
metrics described at Stage 4;

5) If the obtained values of metrics are appropriate, finish
the classification stage. Otherwise trying to increase the val-
ues of metrics using one or some of the following techniques:

(a) Fine-tuning the model architecture and/or hyperparam-
eters;

(b) Optimizing the network using different neural network
optimizers;

(c) Applying preprocessing and/or post processing to the
datasets.

C. STAGE 3: SEGMENTATION OF THE DEFECTS ON THE
SURFACES OF THE MILITARY CARTRIDGE CASES
Following are the main steps to segment the defects.

1) Using the segmentation dataset with labeled/masked
defects created at Step 5 of Stage 1;

2) Selecting the deep learning model(s) presented in
Section III-B;

3) Training and validating the selected model(s) on the
training and validation sets generated from the segmentation
dataset, respectively;

4) Evaluating the trained models on the test set using the
metrics described at Stage 4;

5) If the obtained values of metrics are appropriate, finish
the defect segmentation stage. Otherwise trying to increase
the values of metrics using one or some of following tech-
niques;

(a) Fine-tuning the model architecture and/or hyperparam-
eters;
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TABLE 2. Confusion matrix.

(b) Optimizing the network using different neural network
optimizers;

(c) Applying preprocessing and/or post processing to the
datasets.

D. STAGE 4: EVALUATION OF THE RESULTS
Various evaluation metrics are used to determine how suc-
cessful the classification of the military cartridge cases and
the segmentation of the defects on the surfaces of the military
cartridge cases are. The values used in these metrics are
obtained from the confusion matrix (Table 2).

In order to evaluate the obtained results of classification
and segmentation the following metrics can be used: (1)
Accuracy; (2) Precision; (3) Recall; (4) F1-Score; (5) Jaccard
Index; (6) Mean Intersection over Union.

1) ACCURACY
Accuracy gives information about the overall performance of
the model. The accuracy score is between 0 and 1, and the
closer to 1, the higher the success of the model. It should be
used in cases where the class variable is evenly distributed
in the dataset. In an unevenly distributed dataset, the model
tends to predict the value of the majority class, resulting in
a biased high accuracy result. For this reason, other metrics
should be considered besides accuracy to evaluate the model
established with unevenly distributed data sets.

Accuracy =
(TP+ TN )

(TP+ TN + FP+ FN )
(1)

2) PRECISION
Precisionmeasures howmany of the cartridge cases predicted
as non-defective are actually non-defective. Precision is crit-
ical, especially when the cost of FP estimation is high.

Precision =
TP

(TP+ FP)
(2)

3) RECALL
Recall measures howmany of the cartridge cases predicted as
defective are actually defective. Recall can be thought of as a
measure of the integrity of the classifiers. Recall is a critical
metric where the cost of FN estimation is high. It should be
as high as possible.

Recall =
TP

(TP+ FN )
(3)

4) F1-SCORE
F1-Score is the harmonic mean of precision and recall values.
F1-Score provides the balance between precision and recall.
F1-Score is important as it fulfills the need for an evaluation

FIGURE 3. Examples for the cartridge cases.

metric that will include all error costs. The reason for using
harmonicmean instead of arithmeticmean is to prevent ignor-
ing data samples with extreme values. It is a better guide than
the accuracy metric, especially in unevenly distributed data
sets.

F1 score =
2× (Precision× Recall)
(Precision+ Recall)

(4)

F1 score =
2× TP

(2× TP+ FP+ FN )
(5)

5) JACCARD INDEX
JI, also called the IoU score (Intersection over Union) calcu-
lates the percentage of pixel overlap between the segmented
output and the ground truth.

JI (or IoU ) = TP/(TP+ FP+ FN ) (6)

6) MEAN INTERSECTION OVER UNION

mean IoU =
1
K

K∑
k=1

IoUk (7)

V. IMPLEMENTATION OF PROPOSED METHODOLOGY
In this section, the implementation details and results of
the proposed methodology on military cartridge cases are
presented.

A. CREATING THE DATASETS
This paper aims to classify the military cartridge cases and
segment the defects on their surfaces. As seen in Fig. 3.
the military cartridge cases have a metallic, cylindrical, non-
uniform textured and highly reflective surface.

In order to detect, classify and segment the defects such
as corrosion, scratch, crack, split, dent, fold, bulge, buckle,
and wrinkle on the surface of the military cartridge cases [61]
using deep learning techniques the dataset is required.

A custom prototype machine was built, and images are
collected from the prototype machine. Below are the main
steps adopted to create the dataset.

1) Taking the images from the cylindrical surface of the
cartridge case with sectors of 60 degrees using a machine
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FIGURE 4. Six images taken from the cylindrical surface of (a) the
non-defective and (b) the defective cartridge cases with sectors of
60 degrees.

vision system [1]. So, 6 images taken from the surface of each
cartridge case should cover the 360-degree surface without
overlapping (Fig. 4).

2) Extracting the surface parts. In this study, only the
surface part (see the big green rectangles in Fig. 4) of the
cartridge cases was under consideration. So, 6 images are
obtained from each cartridge case (Fig. 5).

3) Dividing each image in Fig.5 into 3 equal parches
(Fig.6).

4) Creating the non-defective and defective classes of
dataset that will be used for classification by grouping images
with defective and non-defective ones (Fig. 7).

By repeating the steps 1-4 for many cartridge cases,
the non-defective image class of dataset with 750 images
and the defective image class of dataset with 600 images
were obtained. Defective class of dataset was increased to
750 images by using data augmentation and creating syn-
thetic defects. After this process, a balanced dataset that has
2 classes with 750 non-defective and 750 defective images
was created.

5) Creating the dataset for segmentation of the defects
on the surfaces of the military cartridge cases by label-
ing/masking the defects on the images in the defective class

FIGURE 5. (a) Six images obtained from the non-defective cartridge case
shown in Fig.4(a) and (b) Six images obtained from the defective
cartridge case shown in Fig.4(b).

FIGURE 6. Examples for divided images of: (a) the non-defective (Fig. 5
(a)) and (b) the defective (Fig. 5 (b)) cartridge cases.

FIGURE 7. Example for (a) non-defective and (b) defective classes of
dataset.

created in the previous step. Examples for images (masks) in
the labeled dataset are shown in Fig. 8.

So, the non-defective and the defective classes of dataset
created for classification in the Step 4 will be used below
to classify the military cartridge cases. On the other hand,
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FIGURE 8. Examples for images (masks) in labeled dataset for defect
segmentation.

dataset obtained by labeling/masking the images in the defec-
tive class of dataset created in the Step 4 will be used below
to segment the defects.

B. CLASSIFICATION OF THE MILITARY CARTRIDGE CASES
In this section, the implementation setup and results of the
classification of military cartridge cases are presented.

1) IMPLEMENTATION SETUP
In this study, deep learning models listed in Table 1 were used
to classify the military cartridge cases as defective or non-
defective. These models were implemented using Keras neu-
ral network library running on top of Tensorflow framework
[60]. The input size of the models was set to 128× 128× 3
and the images in the dataset were resized accordingly. Train-
ing/validation/test splitting ratio was set to 60:20:20 which
allowed the training, validation and test sets to preserve the
general trends of the original dataset. Due to the use of
models already pre-trained on large datasets the number of
epochs (the number of rounds the model completes through
the entire training dataset) was chosen to set to 20, SGD
was used as default optimizer with a mini-batch size of 32.
The learning rate was set to 0.01. Due to its effectiveness
in binary classification, the cross-entropy loss function was
used. Accuracy metric was chosen to evaluate the trained
models.

2) IMPLEMENTATION RESULTS
The Deep CNNsmodels were trained and compared based on
their accuracy on the test dataset (Table 3).

Columns 3 and 4 in Table 3 show the implementa-
tion results using initial/default models/sub-models listed in
columns 1 and 2.

To obtainmore efficient and task-specificmodels, a 2-stage
performance upgrade study was adopted.

The first stage was to fine-tune the initial models.
Columns 5, 6 and 7 in Table 3 show the fine-tuning imple-
mentation results. The fine-tuning was carried out as follows:

1. The number of dense layer neurons in VGGNets was
reduced by half;

2. The dropout ratio decreased from 0.5 to 0.2;
3. The top of themodels like ResNets, EfficientNets; which

uses average pooling and dense layers at the head of the
model, has been replaced by a sequence of layers which is as
follows: flatten - dense (2048 neurons) – dropout (0.2 ratio) -
dense (2048 neurons) – dropout (0.2 ratio) - dense (1 neuron).
The output of the last layer corresponds to the probability that
the input is a non-defective cartridge case.

TABLE 3. Implementation results of classification of the military cartridge
cases.

The majority of pre-trained models are complex mod-
els specially designed for large datasets like ImageNet.
Therefore, fine-tuning is a critical process in transferring
knowledge from these models to a specific task network to
avoid problems like overfitting and non-generalization during
model training. As shown in Table 3, except for the Xception
and InceptionV3 models, the above fine-tuning processes
allowed us to obtain more efficient and task-specific models
than the default models which did not generalize as well
as expected in our experiments, especially the default Effi-
cientNet models. The fine-tuning has also made it possible
to reduce the number of parameters almost by half of the
VGGNets models while keeping the same good results or
even better than the default models. During model training,
the weights of the convolutional neural network filters are
optimally adjusted to minimize the loss function. The direc-
tion and magnitude of this adjustment is very dependent on
the optimizer used to train the model.

The effect of this fine-tuning was measured as a percent-
age according to the accuracy obtained (increase / neutral /
decrease) (see column 7 in Table 3). Then, for each model,
the one with the highest accuracy was selected (see results

74970 VOLUME 10, 2022



S. Tural et al.: Deep Learning Based Classification of Military Cartridge Cases and Defect Segmentation

TABLE 4. Evaluation of optimizers’ performance on Deep CNNs
pre-trained models.

marked in bold in columns 3 and 5). The best result was
obtained with the fine-tuned EfficientNetV2S with 99.3%
accuracy with an improvement of 11.0% on the initial model
and the lowest result with the initial EfficientNetV2L (69.7%
accuracy) whose performance was also improved by 25.6%
by fine-tuning. According to their accuracies, for each archi-
tecture shown in column 1 in Table 3, the model with the
highest performance was selected as Maximum Accuracy as
shown in column 8 in Table 3.

At the second stage of performance upgrade, the
selected models of fine-tuned VGG16 for VGGNets, fine-
tuned ResNet101 for ResNets, fine-tuned DenseNet169 for
DenseNet, initial Xception, initial InceptionV3 and fine-
tuned EfficientNetV2S for EfficientNet were trained using
different optimizers such as SGD, RMSprop, Adam, Nadam,
Adagrad and obtained results were compared in Table 4.
As seen in Table 4, the improved results are marked in
bold. While this optimizer setting did not have a positive
effect on some models such as fine-tuned VGG16, fine-
tuned ResNet101, and initial InceptionV3 and fine-tuned
EfficientNetV2S, it allowed the performance improvement of
models like fine-tuned DenseNet169 which achieved 100.0%
accuracy with RMSProp, Adam, and Nadam optimizers.

C. SEGMENTATION OF THE DEFECTS ON THE SURFACES
OF THE MILITARY CARTRIDGE CASES
In this section, the implementation setup and results of the
segmentation of the defects on the surfaces of the military
cartridge cases are presented. Besides, the details of imple-
mentation of the improved U-Net, ResUnet and DeepLabv3+
models are also presented.

1) IMPLEMENTATION SETUP
In this section the images (750 in total) from the defective
cartridge case image class of the dataset for classification
created in Step 4 of Section V-A were labeled/masked. As a
result, the dataset with labeled/masked images was created
for defect segmentation. This dataset was split into train, test
and validation classes in 70:15:15 ratios. The dataset images
have been resized to 128×128 and theCNNmodels’ input has
been adjusted accordingly. U-Net [54], ResUnet [57, 62] and

TABLE 5. Implementation results of defect segmentation of the military
cartridge cases.

DeepLab3+ [58] are the three main CNN models used for
the defect segmentation. All models are implemented using
the Keras API with Tensorflow 2.8 as backend [60]. Train-
ing, validation and testing of models were done on Google
Colab pro using an NVIDIA Tesla P100 GPU with 32 GB
(27.3 usable) of RAM. The Adam optimizer [63] was used as
the default optimizer for calculating optimal weights during
backpropagation along the model. Binary cross entropy loss
function was used. The mini-batch size and the learning rate
were set to 32 and 0.01, respectively. The learning rate is
decreased by a factor of 0.1 when the loss function does
not register a decrease for 5 successive epochs. To avoid the
vanishing gradients problem the minimum learning was set
to 1e-6. We trained all models for 60 epochs. Inspired by the
[64] experiment the threshold was set to 0.50.

2) IMPLEMENTATION RESULTS
Mean Intersection over Union, Jaccard Index and F1-Score
metrics were used for all models to evaluate the segmentation
results. Implementation results are shown in Table 5. It can
be seen that the best result was obtained with the improved
U-Net and ResUnet models with mIoU=0.924, JI=0.854,
F1-Score=0.921. Below are the improvement details of these
models.

3) IMPROVED U-NET
We have significantly improved the original U-Net model to
suit our problem while keeping the general structure of the
architecture. The architecture input was set to 128× 128× 3
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FIGURE 9. Improved U-Net.

FIGURE 10. Encoder/Decoder Blocks of Standard ((a), (b)) and Improved
U-Net ((c) and (d)).

and for feature map extraction, 4 successive coding blocks
were used along the contraction path (Fig. 9).

For the downsampling through the contraction path each
block is followed by a 2 × 2 max pooling operation with
stride 2. The number of feature maps (number of channels) is
doubled at each downsampling step [54] to iteratively extract
new features. Dropouts at different ratios (0.25, 0.50 and
0.75) were applied to regularize the network [65]. The last
encoder block was followed by a bottleneck with a feature
map size of 256 and a drop rate of 0.50 which ensured
feature map compression and the transition of these com-
pressed feature maps to the decoder (expansive path) [66].
In the expansive path max pooling operations were replaced
with 2 × 2 convolution transpose operations to up-sample
the feature maps then the skip connections were used to
concatenate the feature maps of the shallow and deep layers
of the contraction path with the high-level features (semantic
and spatial information) constructed through the expansive
path [67]. At the final layer we performed a 1×1 convolution

FIGURE 11. Encoder/decoder blocks of the improved ResUnet.

FIGURE 12. Architecture of DeepLabv3+.

to map the features to 1 channel where the value of each pixel
represents that pixel to be a part of the defect regions in the
corresponding input image. To solve the interval covariate
shift [67] we used a batch normalization layer after each con-
volution layer (before activation function) in the network and
parameters were set as epsilon=1e-3, beta_initializer=0.01,
gamma_initializer=1.0, momentum=0.5. The weights of the
convolutional filters in the network were initialized using
Xavier’s uniform initializer (‘‘glorot_uniform initializer’’)
[68]. Fig. 10. illustrates the encoder and decoder blocks of
the standard ((a) and (b)) and improved ((c) and (d)) U-Net
architectures.

4) RESUNET
We implemented the ResUnet model according to [62] where
Zhang et al. combined the U-Net architecture [54] and the
strengths of residual learning [47] for the segmentation of
road areas. The main difference between the implementation
of ResUnet and U-Net is the use of the residual unit in the
ResUnet model as encoder and decoder blocks. The residual
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FIGURE 13. Examples from obtained results on the test set for defect segmentation. (a) Input image; (b) Mask (Ground Truth); (c) Standard U-Net;
(d) Improved U-Net; (e) ResUnet; (f) DeepLabv3+ (ResNet-50-I1k); (g) DeepLabv3+ (ResNet-101-I1k); (h) DeepLabv3+ (ResNet-101-Ours);
(i) DeepLabv3+ (VGG-16-I1k); (j) DeepLabv3+ (VGG-16-Ours); (k) DeepLabv3+ (DenseNet-169-I1k); (l) DeepLabv3+ (DenseNet-169-Ours);
(m) DeepLabv3+ (Xception-I1k); (n) DeepLabv3+ (Xception-Ours); (o) DeepLabv3+ (InceptionV3-I1k); (p) DeepLabv3+ (InceptionV3-Ours);
(q) DeepLabv3+ (EfficientNetV2S-I1k); (r) DeepLabv3+ (EfficientNetV2S-Ours).
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TABLE 6. Comparison between improved U-Net and ResUnet models.

unit is composed of convolution, activation and batch normal-
ization layers and an addition layer that combines the input
feature maps of this unit with its output. This unit can be
illustrated as a general form:

yl = h(xl)+ F(xl,Wl), xl+1 = f (yl), (8)

where xl , xl+1 and Wl are respectively the input, output
and weights of the filters of the first residual unit. F(·) is
the residual function, h(xl) is the identity mapping function
h(xl) = xl and f (yl) is the activation function. Just like in the
U-Net network implementation, the weights of the convolu-
tional filters in the ResUnet networkwere also initializedwith
Xavier’s uniform initializer [68]. Fig. 11 shows the residual
units used in ResUnet architecture as encoder and decoder
blocks.

It can be observed in Table 5 that in general the mod-
els based on DeepLabv3+ architecture in which we used
the weights pre-trained on our dataset during classifica-
tion task perform better than those in which the Ima-
geNet pre-trained weights were used. Among these models
Deeplabv3+ EfficientNetV2S (ours) performed best with
mIoU=0.915, JI=0.837, F1-Score=0.911 metrics results.
Below is the improvement detail of this model.

5) DEEPLABV3+
DeepLabv3+ [58] was implemented using the same ASPP
(Atrous Spatial Pyramid Pooling) architecture as in the orig-
inal paper [58] with dilation rates of 1, 6, 12, 18 respectively
and a feature channel size of 256. In order to benefit from
the trained weights of the most efficient models developed
in the classification section, we used the models in Table 3
(plus the ResNet-50 model) as backbone networks (fea-
ture extractor networks) in the DeepLabv3+ implementation,
as illustrated in Fig. 12.

Two pre-trained weights were used in backbone networks:
(1) ImageNet pre-trained weights (I1k) and (2) Cartridge
cases dataset pre-trained weights (ours).

For a more specific comparison between U-Net and
ResUnet models Precision and Recall were used. Table 6
shows the comparative results of the improved U-Net and
ResUnet models used in this study for defective cartridge case
segmentation.

If the cost of FP estimation is high ResUnet model, else if
the cost of FN estimation is high the U-Net model should be
used.

Fig. 13 gives the results on the test set of datasets for
segmentation. Fig. 13 illustrates five examples of defective
military cartridge case images segmented using the Deep

CNN models listed in Table 5. To provide a good visual
understanding of the results, the defect regions have been
outlined with red boxes. As can be observed in the Fig. 13,
except for the standard U-Netmodel, all other models are able
to segment simple defect surfaces well (see Examples 1 and
2 in Fig. 13), especially the improved U-Net and ResUnet
models, which segment defect regions with high precision.
In Example 3, we can see that the improved U-Net, ResUnet
and EfficientNetV2S (ours) models are the most efficient
models (in accordance with the results of Table 5) in the
segmentation of less visible defects. Because the labeling of
segmentation data is on a per-pixel basis, it is difficult to
perform segmentation perfectly. Therefore, it can be seen that
some pixels are missed as a result of labeling. As a result of
the studies, it can be observed that our improved U-Net and
ResUnet models are able to segment these defects (missed
at the labeling stage) with very high precision (as shown in
Example 4). As reported in Table 6, ResUnet performs better
than the improved U-Net model in terms of precision while
the latter has the highest recall. This qualitative comparison is
illustrated in Example 5 where ResUnet predicts the defective
surface of the military cartridge with higher precision than
all other models as well as the mask in which some defective
pixels are missed. It can also be noticed in some complicated
examples the better performance of the models initialized
with our pre-trained weights above those initialized with the
weights pre-trained on ImageNet (g-h, q-r pairs in Example
3 and i-j, k-l pairs in Example 4).

VI. CONCLUSION
Low accuracy, low performance and high cost are the dis-
advantages of manual quality control of industrial products,
especially military products like cartridge cases. To find solu-
tions to these disadvantages the automatic quality control
using machine vision systems is widely used. These systems
take the images from the surfaces of objects by cameras
during the production process in real-time. So, the quality of
images is very important to get suitable accuracy of defects
detection. Another factor that affects the accuracy is the
non-uniform texture of the product surface. Distinguishing
the product non-uniform texture from defect texture is a
challenging problem. In order to bring the solutions to this
problem, the methodology for classification of the military
cartridge cases and segmentation of defects on their surfaces
with non-uniform texture was proposed to increase the accu-
racy. In the scope of proposed methodology, the dataset was
created and the deep learning models for classification and
segmentation were developed and implemented. In the exist-
ing literature, the accuracy of classification of 97% and 96%
of the military cartridge cases have been obtained with image
processing [1] and deep learning [2] techniques, appropri-
ately. In this study, the accuracy of the existing literature has
been improved. In other words, obtained results have shown
that the proposed methodology has increased the accuracy of
classification of the military cartridge cases to 100% with the
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DenseNet169 model and the F1-Score of defect segmentation
to 92.1% with improved U-Net and ResUnet.

The main finding of this study is that the deep learning
techniques have potential to reach the required NATO stan-
dards for classification and segmentation of the defects on
the surface of the military cartridge cases. Another finding
is that the obtained results have proved that the deep learn-
ing techniques can distinguish the defect textures from non-
uniforms textures on the surfaces of the cartridge cases better
than image processing techniques.

As feature work, the effect of data argumentation applied to
our dataset on the defect detection and segmentation will be
examined. Also, improved U-Net and ResUnet models which
have given the best results will be optimized.
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