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ABSTRACT This article provides a review about how uncertainties in increasingly complex production
and supply chains should be addressed in scheduling tasks. Uncertainty management will be particularly
important in Industry 5.0 solutions that will require the close integration of operators and technical systems.
To prepare for these challenging developments, this work reviews the sources of uncertainty and the
scheduling algorithms that deal with the different types of models developed to handle the uncertain nature
of the elements and the environment of complex technological systems. The paper not only identifies the
challenges, but also the main building blocks that can help to manage and reduce uncertainties based on
the I4.0 and I5.0 solutions. We hope that this study will serve as a starting point for R&D projects and
algorithm developments, which will be needed primarily in the field of multi-agent, multistage and inverse
optimizations.

INDEX TERMS Scheduling, optimization, Industry 4.0, Industry 5.0, decision support.

I. INTRODUCTION
This article reviews the challenges of managing the differ-
ent types and aspects of uncertainty in scheduling tasks to
develop Industry 4.0 and Industry 5.0 solutions.

With the advent of new technologies brought about by
Industry 4.0 [1], [2], the complexity of production systems
continues to increase to ensure a high degree of adaptabil-
ity [3], flexibility [4], reconfigurability [5], [6] and robust-
ness against the increased level of uncertainty [7]. The
challenges brought about by increased complexity are inher-
ent in Industry 4.0 solutions [8]. The envisioned concept
of Industry 5.0 carries the aims beyond efficiency and pro-
ductivity by placing the worker at the center of the pro-
duction process [9] and emphasizing sustainability [10].
Consequently, the complexity and uncertainty of the resultant
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system of systems further increase the difficulties concerning
optimization and the scheduling of problems.

Thanks to the advent of new technologies of Industry 4.0,
it is possible to handle these challenges. The importance of
flexibility largely determines the ability of a system to deal
effectively with a variety of uncertainties and their conse-
quences [8].

Our aim is to overview the different types of uncertainties
that can arise in the manufacturing industry and highlight
what kind of Industry 4.0 solutions are available to address
these uncertainties.

Although we recently provided an overview of how opti-
mization algorithms should be developed according to the
Industry 4.0 paradigm [11], but the detailed analysis of
how scheduling algorithms should provide good solutions
in line with Industry 4.0 principles, especially in handling
the increased uncertainty, is missing. Our literature review
concluded that the uncertainties inherent in Industry 4.0 and
the opportunities arising from the concept have not yet been
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used to address the uncertainty issue. Our goal is to provide
an overview of how uncertainty affects the solutions to the
problems that occur in Industry 4.0 and to review the solution
methods that play an important role in solving this problem
area. Then, we present how to use these solution methods to
achieve results that stand their ground in manufacturing and
how they can be used to formulate long-term opportunities
for future research.

The Industry 4.0 guiding principle did not initially focus
on providing solutions to the ecological problems faced by
production, but on boosting productivity, revenue growth,
and competitiveness [12], as it built on the digital transfor-
mation and AI-driven technologies to increase the efficiency
and flexibility of production systems [13]. Nowadays, digital
transformation is also motivated by the necessity of produc-
tion within environmental constraints in order to be geared
towards sustainability.

The transformed industry will change the role of industry
workers. Workers will be empowered in their industrial work
and attracted to work in new high-tech environments [14].
The increased integration and complexity will require robust
planning and scheduling solutions.

As a result of these trends, the Fifth Industrial Revolution
builds on the pairing of humans and machines, so that man
and machine work together wherever possible. Man con-
tributes to productivity by providing the creativity needed to
carry out tasks, while machines do the rest of the work. The
implementation of Industry 5.0 consists of two visions [15].
One is ’human-robot co-working’, where machines and
humans work together. The other is the bioeconomy, where
the clever use of biological resources for industrial purposes
helps maintain a balance between economy, industry and
ecology. The prerequisites for Industry 5.0 are the fulfill-
ment of the objectives set out in Industry 4.0 in addition to
the requirements to achieve the previously mentioned objec-
tives [16], which mainly consist of the Data Interoperability
of Networked Sensors, Multiscale Dynamic Modeling and
Simulations: Digital Twins [17], Shop-floor Trackers, Virtual
Training, Advances in Sensor Technologies and Machine
Cognition [18], Intelligent Autonomous Systems and Deep
Learning Methods [19].

The motivation of this work is to systematically explore
scheduling algorithms that should be developed to handle
uncertainty in human-centered and sustainability-oriented
technological systems.

The major contribution of the paper is highlighted as
follows:
• We have studied the nature and types of the scheduling
problems and have highlighted that these optimization
tasks significantly affect the efficiency of a manufactur-
ing system.

• We have overviewed the uncertainties occurring in pro-
duction systems and affecting the scheduling tasks.

• An Industry 4.0 focused review is presented about the
scheduling algorithms from the last ten years which can
handle uncertainties.

• The new requirements of Industry 5.0 are investigated
according to how uncertainties should be handled to
ensure sustainability and improve the working environ-
ment of the operators.

• We have summarized the challenges and have iden-
tified the most promising scheduling-related research
directions.

The article is organized as follows: In Section II, a review
is given of the scheduling problems and types of uncer-
tainty related to complex production systems occurring in the
Industry 4.0 and Industry 5.0 concepts as well as their impact
on scheduling tasks. Section III reviews and presents in detail
the scheduling solutions that address the issue of uncertainty
and provides a good solution basis. Section IV takes a look
at how the areas presented in the previous chapters appear
in the complexity of the Industry 4.0 and 5.0 concepts, the
challenges that need to be addressed, and the opportunities
available to address them properly in order for the whole
system to work effectively.

II. SCHEDULING PROBLEMS AND TYPES OF
UNCERTAINTY
A. FORMALIZATION OF SCHEDULING PROBLEMS
Scheduling problems appear almost everywhere from the
management of public transportation through CPU time allo-
cation to the manufacturing industry. Although scheduling
problems differ in terms of their characteristics, their aim is
to assign resources and time intervals to all tasks. Different
classifications of scheduling problems are found in the lit-
erature. A categorization of batch-scheduling plants based on
13 different parameters is presented in Fig. 1, which is mainly
used by chemical production plants [20].

• Although the process topology describes the structure
of manufacturing, which is sequential in most cases,
recipes containing the mixture and splitting of opera-
tions (network topology) are present.

• The assignment of equipment can be fixed or variable,
which means that only one piece of equipment or multi-
ple pieces are available for each task, respectively.

• The pieces of equipment can be fully connected, i.e.,
materials can be transferred between pieces directly, but
can also be partial, e.g., a pipe network between the
pieces that are not connected directly to each other.

• Scheduling problems can be classified based on the
storage policy of the intermediate material. The most
common case is unlimited storage of the intermediate
material, where storing materials between tasks is unre-
stricted. When intermediate materials are not stored,
such materials can only be stored in the unit that pro-
duced them. Finite intermediate storage means that stor-
age units, where materials can be stored, are available.
The zero-wait policy means the intermediates must be
used immediately after their production.

• The transfer of materials between units can occur instan-
taneously or over a period of time.
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FIGURE 1. Classification of the scheduling problems of batch plants [20].

• The amount of material (batch size) can be fixed or it
can be a decisive factor for a scheduling problem.

• The processing time of a task can be constant,
or depend on both the unit used and the size of the
batch.

• Each product may have deadlines by which the product
must be finished or a time horizon can be given, during
which all products must be finished.

• The units of equipment should be exchanged between
the use of different materials. The time of such a

changeover can be zero, vary for different units and
depend on the order of materials.

• Even though a unit of equipment must be assigned
to each task in order to perform the task, additional
resources might be needed. These resources can be dis-
crete (e.g. human resources) or continuous (e.g. water).

• A scheduling problem can be subject to some natural
time constraints. Working hours or shifts can define time
intervals for manufacturing and units being serviced are
unavailable.
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FIGURE 2. Topologies of shop-scheduling problems (m1, m2, . . . , m7 denote machines, o1, o2, . . . , o9 denote operations and
A, B, C denote jobs).

• Besides time parameters, cost is also an important factor
when scheduling problems. Costs can be incurred due to
the storage, changeover and operation of units as well as
the consumption of utilities.

• Last but not least, the parameters of a scheduling prob-
lem can be deterministic or stochastic.

As can be seen, scheduling problems can be described in
great detail, but this is unnecessary in this paper. Therefore,
we use the concept of shop-scheduling (machine-scheduling)
problems and their classification, which is widely used in
operations research.

In shop-scheduling problems, a set of jobs J is present,
which contains n jobs. Job j belongs to a set of operations Oj
consisting of cj operations. A set of machinesM containingm
machines which can be operated. (In manufacturing systems,
jobs, operations and machines are equivalent to products,
tasks and operating units, respectively.) The topology of jobs
is sequential, i.e., the order of the operations of a job is fixed
(except for open-shop problems). Each operation of a job
has to be performed to complete the job. Each operation is
uninterruptible and an operation can be processed by only
one machine. At a specified time, each machine is only able
to process one operation. According to the topology of the
jobs, the scheduling problems can be classified in following
ways:

Single machine Only one machine is available (m = 1) and
each job consists of one operation (cj = 1, j ∈ J ).
An optimal permutation of the jobs has to be defined.
(Fig. 2a)

Parallel machines There is more than one machine (m > 1)
and each job consists of only one operation (cj = 1,
j ∈ J ), i.e., every machine has the same functionality.
Each operation has to be assigned to a machine and the

optimal order of operations for each machine must be
defined. (Fig. 2d)

Flow shop Each job consists of the same number of opera-
tions (cj = c, j ∈ J ) and the order in which the machines
are used is the same for each job, i.e., the number of
machines is equal to the number of operations in a job
(m = c). Moreover, the first operation of each job can be
performed by the first machine, the second operation can
be performed by the second machine, and so on. These
steps are also often referred to as stages. The optimal
order and timing of operations for each machine have to
be defined. (Fig. 2b)

Flexible flow shop Similar to the flow-shop problem, but
more than one machine is available for each stage (inte-
gration of flow shop and parallel machines). Each job
consists of c stages and there are identical machines in
parallel at each stage. Each operation has to be assigned
to a machine, moreover, the optimal order and tim-
ing of operations for each machine must be defined.
(Fig. 2e)

Job shop Each job can consist of a different number of oper-
ations and the order and type of operations can vary for
different jobs. Amachinemay be usedmore than once to
complete a job or it may not be used at all. Furthermore,
only one machine is available for each operation. The
optimal order and timing of operations for each machine
have to be defined. (Fig. 2c)

Flexible job shop This is an extension of the job shop prob-
lem. In this case, more than one machine may be avail-
able to perform an operation. The processing time of an
operation can depend on the machine used for process-
ing. Each operation has to be assigned to a machine and
the optimal order as well as the timing of operations for
each machine must be defined. (Fig. 2f)
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Open shop The order of the operations for a job is not
defined in advance. To complete a job, all of its oper-
ations have to be processed exactly once in an arbitrary
order. The optimal order and timing of operations for
each machine must be defined.

In addition to topology, the definition of a scheduling prob-
lem contains data about tasks, jobs and machines. In general,
tasks and jobs are characterized by the following data [21]:
• pki denotes the processing time needed to complete
operation k with machine i. The transportation time
between machines and the period of time required to set
up a machine are included in the processing time.

• aj denotes the arrival time (ready time) when job j
arrives in the system. The job cannot be started earlier.

• dj denotes the due date by which job j should be com-
pleted. Failure to meet the due date usually results in
some kind of penalty.

• lj denotes the deadline by which job j must be com-
pleted. It cannot be violated.

• wj denotes the weight (priority) expressing the relative
urgency of job j.

The aforementioned characteristics describe the input of
a scheduling problem. To measure the quality of a solution,
additional attributes are needed which can be used to min-
imize (or maximize) their values during optimization. The
most commonly used attributes are summarized below [22]:
• Sj denotes the starting time of job j when the first
operation of the job starts.

• Cj denotes the completion time of job j when its last
operation finishes. The objective might be to minimize
the maximum completion time (makespan, Cmax) or the
average completion time (mean completion time, C̄).

• Fj denotes the flow time of job j while the job is in the
system (shop), i.e., is the difference between the starting
and completion times of the job (Fj = Cj − Sj). The
objective might be to minimize the maximum (Fmax) or
average flow times (mean flow time, F̄).

• Tj denotes the tardiness of job j, by which the job is
delayed according to the due date, i.e., the positive dif-
ference between the completion time and due date of the
job (Tj = max{0,Cj−dj}). Lateness is penalized and the
early completion of jobs goes unrewarded. The objective
might be to minimize the sum of the tardiness time (total
tardiness,

∑
j∈J Tj), the average tardiness time (T̄ ) or the

number of tardy jobs.
• Lj denotes the lateness of job j equating to the difference
between the completion time and due date (Lj = Cj−dj).
The lateness is penalized and the early completion of
jobs goes unrewarded. The objective might be to min-
imize the maximum lateness (Lmax).

• Wi denotes the workload of machine i, which is the
sum of its processing times (Wi =

∑
j∈J

∑
k∈oj pki).

The objective might be to minimize the total workload
(
∑

i∈M Wi) or maximize the workload (critical machine
workload, maxi∈M {Wi}).

B. UNCERTAINTIES ACCORDING TO THE DYNAMIC
SCHEDULING CONCEPT
In the previous subsection, the classification of scheduling
problems with regard to the topology of jobs as well as the
characterization of tasks and jobs according to inputs and
attributes were presented. This chapter presents the different
types of uncertainties that can be approached from several
perspectives, according to the goal to be achieved, knowledge
and information available, depth of uncertainty to be investi-
gated and events that can lead to uncertainty.

In reality, various other confounding factors can be present
that affect the existing schedule, e.g., emergency order, inac-
curate processing and arrival time predictions, which can
cause an already completed schedule to become obsolete.
Therefore, in view of the current circumstances, a dynamic
schedule is required, in which changes to a process neces-
sitate the schedule to be changed in order to continue to
meet new challenges [23]. The static schedule differs from
the dynamic schedule in that the jobs to be performed are
ready for execution and, depending on the goal to be achieved,
the schedule is completed so it does not need to be modified
later [24].

These solutions for a static schedule have a significant
disadvantage, namely that they do not pay enough attention to
the consequences of the impact of various events, as a result
of which the established schedule may even become invalid.
In reality, the specified conditions must be met in order for
the processes and characteristics of the real physical system to
remain within the defined behavioural limits. Initially, its exe-
cution requires a baseline that retains the desired characteris-
tics to guarantee its execution. The importance of the offline
and online phases may vary depending on the factors influ-
encing the behaviour. To properly address these two phases,
a broader interpretation of the schedule is worthwhile by
taking two aspects into consideration: the static subproblem
(a set of activities and a set of constraints) and the dynamic
subproblem (monitoring the implementation of the schedule
and improving the current solution). A review is required
when the occurrence of some exogenous events affects the
success of the schedule. Consequently, each event can be
placed in a two-dimensional space (Fig. 3) with dimensions
of the offline and online components relative to the applied
solution method. By implication, no scheduling solution lies
entirely on the offline axis, for which the result could only be
interpreted in terms of a deterministic execution environment
that is unrealistic [25].

The methodology with the smallest online component is
the Robust Solution [26]–[28], where some information on
occurring exogenous events is used, thereby masking envi-
ronmental uncertainties.

In the case of Partially Defined Schedules, uncertainty is
not taken into account but it consists of partially ordered
activities, thus maintaining the possibility to re-establish the
relationship between tasks in time in the light of new events
that occur and the consequences they result.
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FIGURE 3. Scheduling approaches regarding the offline and online phases.

The online phase of the Reactive Scheduling approach
requires more effort as rescheduling must be performed dur-
ing implementation when exogenous events occur so as not
to compromise the consistency of the result. Depending on
the set of activities involved, the strategy can be local [29],
[30] or global [31]. In the case of the former, a limited
number of tasks must be rescheduled, and in the case of the
latter, a completely new reschedule must be drawn up with
regard to the tasks. It can be seen that the two techniques
require different levels of effort, therefore their results are also
mixed.

Dynamic Scheduling does not include an offline compo-
nent, meaning that all decisions are made online. Therefore,
instead of an initial schedule, a dynamic schedule is executed
depending on the circumstances.

The different scheduling processes that occur in the man-
ufacturing industry provide a good breeding ground for the
analysis of different stochastic occurrences and their effects.
During the performance of a task, various factors may change
over time, which may lead to the rescheduling of the existing
production schedule to continue tomeet goals under changing
conditions. These changes can influence the performance
either positively or negatively [32]. Of the parameters con-
sidered in a schedule, those that provide constraints with
regard to the schedule determine a good starting point for
examining the dynamic perspective. These constraints can
be categorized by criteria and thus grouped according to
whether organizational goals and rules or physical, general,
availability and preference constraints are being discussed.
These stochastic factors can, by their nature, dynamically dis-
rupt scheduling. These types of events that occur in dynamic
scheduling can be divided into the following four classes as
follows [33], [34]:
• Workpiece-related events: processing time is uncer-
tain, workpiece arrives randomly, delivery time changes,
dynamic priority and order change.

• Machine-related events: damage to the machine limits
its available load, conflict between production capacity
and the actual utilization of the machine.

• Process-related events: process is delayed, quality is
objectionable and production is unstable.

• Other events: absence of the operator, late arrival of raw
materials, defects in raw materials, etc.

There are also a number of uncertainties that can occur in
real life as a result of certain activities that must be identified
in order to deal with them. One way to do this is to first
identify these cases as events and then classify them into
classes as seen above. Factors that may cause such real-
life disturbances include: breakdown of machines, cancel-
lation of orders, changes in delivery times, uncertain due
dates, uncertain processing times, overhaul of equipment and
addition or removal of operations [35]. More examples are
shown in Table 1, where the type of events and the sources of
uncertainty are the reasons for the occurrence of uncertainty
factors during scheduling.

C. EXTENSION OF THE TYPES OF UNCERTAINTIES FOR
COMPLEX PRODUCTION SYSTEMS
The management of uncertainties in complex production sys-
tems requires a more thorough understanding and manage-
ment of the uncertainties. The aim of this chapter is to break
down the types of uncertainties according to their sources in
more detail.

The causes of uncertainties in complex production systems
can result from different sources, e.g., outputs and parameters
of the model. Knowledge uncertainty can be defined based on
the cause of various sources, e.g., parameters, input data and
the unknown errors, overall. However, it does not have to be
interpreted due to the lack of knowledge. A model can have
imprecisions, since it always somewhat simplifies reality by
arranging viewpoints in different ways. Inaccuraciesmay also
be caused by the lack of knowledge or simply because known
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TABLE 1. Dynamic event classes.

errors are introduced for practical reasons. Natural variability
may arise from the conditions determined by the available
environment, the degree of which cannot be reduced. In the
case of decision uncertainties, when future decisions made
by other actors and factors cannot be predicted, the conse-
quences they cause can not be predicted.

To address uncertainty, first it is worth exploring the rea-
sons that contribute to its occurrence, on the basis of which
the delimitation into three categories can be made. Based on
this, it is possible to narrow down the approaches needed to
manage it. Examining Fig. 4 can help determine the source
needed for identification. To identify the type of uncertainty
variable, the trigger for a different event or variability due
to some causes must be determined. These events or varia-
tions can be down to behavioural variability, workpiece or
machine-related events, or a technological surprise, which
can occur not only locally but also globally (societal random-
ness, inherent randomness of nature, amongst other events).
These triggers can result in multiple uncertainties at once,
each of which can be addressed by a workaround or treat-
ment solution. To deal with one, it must be known exactly
what type of variability it is, namely temporal, spatial or
discrete, and how to reduce or eliminate the negative conse-
quence it causes. In some cases, such a consequence cannot
be avoided, in which case, an appropriate policy must be
developed to manage it, e.g., technological surprise; social,
economic and cultural dynamics or the inherent randomness
of nature. In the case of Knowledge uncertainty, the triggers
can be divided into two categories: structural uncertainty
(conflicting evidence, reducible ignorance, interdeminancy,
irreducible ignorance) and unreliability (inexactness, lack
of observations / measurements, practically immeasurable).
As can be seen, these sources stem from inadequate knowl-
edge or some kind of ignorance. The consequences can be
the choice or creation of an inappropriate model (model,
parameter uncertainty), from which potentially misleading
erroneous conclusions can be drawn that can result in seri-
ous consequences. Furthermore, identifying the source in
itself can present significant difficulties at this level that
can in some cases be reduced to some extent by expanding
knowledge (if possible), therefore in other cases, this is not
possible, its occurrence needs to be adapted and strategies
are to be developed to avoid the damage it can cause. The

third category is Decision uncertainty, the source of which
is difficult to identify as it can result from the combined
participation of several different factors, including variability
and knowledge uncertainty, but it can also result from internal
events (process-related) and external independent ones. Goals
(goals - objectives, values - preferences) may change, which
may arise not only from actors inside the company, but also
from outside (external security as well as social, economic
and cultural dynamics).

Uncertainties can also be distinguished according to
whether we are related to the aleatoric or epistemic type of
uncertainty [83]. Epistemic or epistemological uncertainty
results from the lack of knowledge or data. This type of uncer-
tainty can be reduced by collecting more data or using more
advanced scientific principles. Aleatoric uncertainty results
from the internal randomness of a phenomenon. In a sense,
the randomness carried by human nature can be categorized
into aleatoric uncertainty derived from nature.

The aforementioned classifications and categorizations
will be explained in detail in the following sections.

1) VARIABILITY
Random or stochastic uncertainty can result from the unpre-
dictability of human nature or natural systems. The variability
in human nature may stem from individual bias [84] towards
some benefits or from certainty in the correctness of their own
views [85]. The variability of natural systems is free from
intentional bias, derived from the chaotic features of nature.
Based on time series data, good approaches can be made.
These usually consist of historical data, which also include
historical conditions. Uncertainties deduced from environ-
ment with natural endowments usually cannot be reduced by
improving the structure of the model, therefore the degree
of variability remains unchanged. The measurement of errors
does not always lead to accurate results. Furthermore, there is
no guarantee that the measured historical data can accurately
adumbrate future data or that the difference between past
and future results can have a significant deviation, potentially
causingmajor effects. Usually, the output of the model is con-
sistent with the model input, but the extent of the variability
is affected by the varied errors and measured mismatches.

By examining the system, it can be seen that different
behaviours may occur, which may take on different names,
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FIGURE 4. Typology of uncertainties and their sources.

like ’stochastic uncertainty’ [86], ’objective uncertainty’ [87],
’external uncertainty’ [88] or ’random uncertainty’ [89].
Empirical quantities can vary uncontrollably, simply because
of their nature. In such cases, the uncertainty may be an
inherent randomness or caused by occurrences related to the
input data, functions or parameters.

According to a classification [90], two varieties can be
classified in terms of variability:
• External uncertainty, including the availability of feed
streams, product demands, prices and environmental
conditions;

• Discrete uncertainty such as the availability of equip-
ment and other random discrete events, e.g., the absence
of operational personnel. Machine breakdown is con-
sidered as an uncertainty that may occur during job
processing [91].

The following categorizations, which are distinguishable
from sources [92], fit into the variability-type uncertainty:
• Inherent randomness of nature: processes that occur in
nature that are unpredictable and difficult to predict.

• Human behaviour: characteristic forms of human
behaviour, which are not rational when there is no
overlap between what the individual has to say and
their actual action (cognitive dissonance), or when the
behaviour is characterized as ‘‘different than expected’’.

• Social, economic and cultural dynamics: Scenarios of
processes in society, which are inconsistent or can pose
serious threats.

Although all of these sources can be classified as uncertain-
ties of variability [93], how they are handled is less clear, as it
is not always possible to reduce the uncertainty depending on

the environmental properties and origin of the source [94].
However, due to the lack of reducibility, it is still crucial for
the policy decision to expand the information available so
that as much detail as possible is available in the decision-
making process. During the modelling process, a frequency
distribution can be used if a property resulting from the
absence of some information is uncertain in order to represent
this uncertainty [95]. This allows the resulting parameters
(mean, deviation, median) to represent the uncertainty of that
particular property accurately.

However, it is a common mistake that the uncertainty
resulting from sampling, which is the uncertainty of vari-
ability, is not equivalent to the epistemic uncertainty, i.e.,
when the uncertainty arises from a knowledge gap [96], both
can be present at the same time, as well [97]. In addition,
by focusing on their input functions, they can also exhibit
variability. These may be part of the model structure but also
appear as external inputs [98], [99], which may act as inputs
to the model, as well, or as an element of its structure that can
contain statistical or scenario uncertainty [100], recognized
or completely ignored. If the purpose of the applied model is
to predict a future case, i.e., the circumstances and experience
during the development of the model did not serve the same
purpose, their application to the aforementioned method may
be of concern.

2) LIMITED KNOWLEDGE
Limited knowledge is a quality that investigators may
possess or the state of our current knowledge (episte-
mological). Like the previous one, this can have differ-
ent appellations, e.g., ’subjective uncertainty’ [86], [101],
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’internal uncertainty’ [88], ‘secondary uncertainty’ [102] or
’informative uncertainty’ [87], [101]. This form of uncer-
tainty can take many forms such as limited and inaccurate
data [103], measurement errors, limitations of understanding,
lack of knowledge and inappropriate models. The NUSAP
method [104] can be used to derive a concept (the concept of
pedigree) that allows the assessment of deficiencies, which
in turn allows the extent to which various uncertainties are
reduced to be determined. Increasing the pedigree may also
increase the degree of uncertainty, as research can shed light
on the details of our perception of a particular area, which can
increase the level of complexity.

Modeling is the process of understanding processes, which
attempts to predict responses and supports the decision-
making process [105]. The initial conceptualization stage
develops into a numerical or computational representa-
tion [106], which is the most important stage and where
uncertainties may spread further during the rest of the mod-
elling. Given that the features consisting of multiple factors
and their dependencies are complex, they need to be sim-
plified, where oversimplification can lead to the omission
of essential details but undersimplification can result in an
overly complex model [107]. A proportion of the items from
the classification belongs to limited knowledge [90]:

• Model-inherent uncertainty (model mismatch) such as
kinetic constants, physical properties and mass/heat
transfer coefficients. There are cases, when different
parts are assembled to create a product. The properties of
these parts can deviate geometrically, where the inaccu-
racy can cause the final products to fail [108]. When the
parts are lighter because of the material(s) they are com-
posed from, they can be as flexible, as sheet metals. The
variability in or the uncertainty of these products results
in a need for consolidated methodologies, which can
predict these properties during the design stage [109].

• Process-inherent uncertainty such as variations in the
flow rate and temperature fluctuations in the quality of
the stream, processing time [35], [52] and the avail-
ability of equipment [110], like in the case of squeeze
casting, where the temperatures of the shot sleeve, punch
and smelting can be non-uniform [111].

Based on the level of knowledge, the degree of uncertainty
can be categorized as follows: Although the two extremes are
complete certainty and complete ignorance [112], a transition
between these two sides as shown in Fig. 5 can occur. This
transition also needs to be broken down into several levels,
to which a separate procedure can be provided to deal with
uncertainty in decision-making properly [113].

• We start from the point of complete certainty (that can-
not be achieved), which is the state in which every-
thing is known exactly, i.e., we are in possession of
proper knowledge. At the levels of uncertainty in Case 1
(Fig. 5a), it is recognized that something cannot be
completely certain and it is impossible or undesired to
measure this uncertainty [114]. Such a case is treated

by sensitivity analysis, so that the effects of different
disturbances on the results can be assessed by examining
the parameters belonging to the model.

• Uncertainty at Level 2 (Fig. 5b) consists of knowledge
generated through processes, facts that can be used to
infer contingencies, which are uncertain but statistically
derivable. These can be associated with the probability
of them occurring in the form of a single or multiple
prediction or confidence intervals.

• In the case of the next level (Fig. 5c) of uncertainty,
several probabilities can be listed before being ranked
based on how likely they are to be detected. Therefore,
the set of input and output parameters of the model also
includes alternative options that can be ranked according
to their probabilities. Although these alternatives are
often recorded in scenarios in order that they can be
ranked according to their perceived probabilities, prob-
abilities are not assigned to them [115], [116].

• Level 4 uncertainty (Fig. 5d) is referred to when these
scenarios can still be produced but not ranked. The lack
of this ability may be due to the fact that an insufficient
amount of knowledge or data is available to establish the
necessary criteria, against which we could produce the
perceived probabilities. In the absence of these (which
may also result from the lack of a convention required to
establish the ranking), it becomes very difficult to deter-
mine the uncertainties associated with the key parame-
ters of the model.

• The last level (Fig. 5e) is total uncertainty, which is the
case when the unknown is known. It is important to
point out that this uncertainty can already be recognized,
as it will identify the outcomes of scenarios that could
have dire and unacceptable consequences. This level of
uncertainty rarely occurs, which is why it is treated more
in principle like absolute certainty is.

3) DECISION UNCERTAINTY
Uncertainty in process operations can originate from many
aspects, including internal and external factors. Uncertainties
arising during modeling may also result from an unexpected
turn of events in the future. The occurrence of these events
can originate from sources such as the environment, nature,
an individual’s personal goals and interests, activities, needs,
limitations and various impacts [117]. For example, a change
in the standard operating procedure affects existing processes,
more precisely, the effect on the process changes its sub-
sequent outcome and consequences. Even though the con-
struction of the model is greatly influenced by the measured
data, if the policies determining the implementation of the
measurement change [118], the results obtained after this
can affect the result of the model in unexpected ways. For
systems, where the interrelationship requires a serious degree
of cohesion, it is important to estimate the effects of changes,
so that the system can be properly prepared for the conse-
quences. These changesmay result from individual decisions.
In the case of complex integrated production systems, the
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FIGURE 5. Levels of uncertainty.

impact of individual decisions and the changes they cause
are of great and paramount importance, which need to be
addressed.

There are sources in the categories differentiated by
sources that also apply to decision-type uncertainty [90], [92]:
• Social, economic and cultural dynamics: Social events
that have a significant effect on parts or all of the
operation, from partial transformation to complete
cessation, or even on the operation of the entire
system [119]–[121].

• External uncertainty: Organizational or operational
changes required as a result of external decisions
(sales, policy decision or changed operating princi-
ples) [122]. The relationship between decision and
external uncertainty can be determined when a gov-
ernment’s (economic) policy decision has significant
consequences or a policy change triggered by some
external effect results in a changing environment in the
banking sector [123]. The theory of precautionary sav-
ing is similar, where a larger degree of economic pol-
icy uncertainty forces more capital to be accumulated,
thereby reducing the consequences of the risks arising
from uncertainty [124], [125].

In heuristic approaches, decision uncertainty is a factor,
where the treatment of which contributes greatly to the explo-
ration of the appropriate outcome. An interpretation is that
certain criteria, methods or principles are used to decide
which alternative method promises to be the most appropriate
or effective to achieve a goal [126]. Consequently, if the
problem is divided into subproblems, a decision tree can be
constructed, from which the next most advantageous step
must be decided. To achieve this, the consequences of each
decision option must be assessed. Ideally, the exact conse-
quences of each decision are known, therefore the desired
result can be achieved following a series of appropriate deci-
sions. In reality, however, the consequences of decisions are
uncertain, which is why it is extremely important to apply the
appropriate method [127] that takes into account the goal to
be achieved as well as the associated conditions, aspects and
guidelines when dealing with decision uncertainty. By exam-
ining heuristic approaches from a different perspective, cases
that use random numbers for the purpose of avoiding local
optimal jams should be mentioned. These uncertain values
may affect the result of the method, or alternatively, different

implementations may result in different timelines with differ-
ent objective values [128].

III. SCHEDULING ALGORITHMS THAT HANDLE
UNCERTAINTIES OF PRODUCTION SYSTEMS
The aim of the first attempt was to solve deterministic
scheduling problems. The first attempt to solve a problem
which contained uncertainty was published in 1957 [23].
In that publication, a distinction between static and dynamic
scheduling was made. In static scheduling, all data is known
in advance and the schedule is fixed, i.e., it cannot be modi-
fied later.

In industrial environments, many unexpected events occur,
e.g., machine breakdown, the arrival of emergency orders,
etc. (as has been shown in Section II-B). To handle these
unexpected events, the schedule must be modifiable, which is
referred to as dynamic scheduling. Although static scheduling
has already been classified as an NP-hard problem, dynamic
scheduling is more complex and more difficult to solve. That
is why specialized scheduling algorithms have been devel-
oped to solve specific problems.

There are four fundamental ways to tackle production
scheduling that is subject to uncertainty [129]:

• Proactive approach It constructs solutions by mod-
elling uncertainties [130], [131] or optimizing the per-
formance in different scenarios [132]. Such an approach
can be viewed as a form of under-capacity scheduling in
order to maintain the robustness in different scenarios.
(Fig. 6b)

• Reactive approach It changes the schedule during man-
ufacturing. Usually it is based on simple rules, therefore
the computational cost is low and easy to understand.
As a result of only using local information to generate
a new schedule, it may not provide a globally optimal
solution. (Fig. 6c)

• Predictive-reactive approach It is a two-step process.
Firstly, a predictive schedule is generated over the time
horizon by typically using a static scheduling method.
Secondly, the schedule is modified during its execution
in response to unexpected events. (Fig. 6d)

• Proactive-reactive approach In the first step, an initial
schedule is generated considering future disruptions like
the robust approach. Nevertheless, reactive steps also
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FIGURE 6. Scheduling approaches.

take place but usually less modification is necessary
because of the robustness of the schedule. (Fig. 6e)

Fig. 6 summarizes the differences between the different
approaches. Furthermore, Fig. 6a shows the static scheduling
approach, which does not take uncertainties into account.
Static scheduling algorithms can be used to generate the ini-
tial schedule for the predictive-reactive approach. Therefore,
in this section, a short outlook on static scheduling methods
is provided before enumerating the most commonly used
approaches for uncertain scheduling problems.

A. STATIC SCHEDULING
As typical in operations research, exact heuristic methods
are used to solve static scheduling problems [133]. Exact
methods can provide the globally optimal solution. Given the
NP-hard nature of the problem, its approach needs a lengthy

CPU time for large-scale problems. Themost commonly used
approaches are the following [134]:

• Most of the papers formulate a Mixed-Integer Linear
Programming (MILP)model for the problem and apply a
general purpose solver like CPLEX or GuRoBi. Accord-
ing to the representation of time, two groups of models
are available. The first one is the so-called time point-
based formulation, where the time horizon is discretized
by a predefined number of time points and binary vari-
ables belonging to these points [135]–[137]. The sec-
ond one is the precedence-based formulation, where
the orders of the operations are represented by binary
variables [138]–[140].

• There are some graph-based approaches, where a
directed graph represents the problem and a branch and
bound algorithm determines the optimal solution. The
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FIGURE 7. Execution of reactive scheduling.

S-graph relies on such tools and has been developed
with acceleration techniques and generalizations [141].
Alternative graphs apply a similar mathematical model
and branching strategy [142].

• It is worth mentioning the space enumeration-based
methods, which also use graphs. These approaches use
Linearly Priced Timed Automata [143] or Timed Petri
Nets [144].

Although heuristic methods cannot guarantee the global
optimality of a problem, they are relatively fast compared to
exact methods. These approaches also involve uncertainties
(decision uncertainty) as has been noted in Section II-C3.

• There are lots of high-level metaheuristic methods that
can solve job-shop problems, for example, simulated
annealing, tabu search and genetic algorithms. More-
over, they can be used in parallel with exact algorithms
guiding the search.

• Heuristic rules-based approaches use rules that can help
to choose the next job to manufacture on a specific
machine, e.g., a rule can choose the task, which has
the shortest processing time and the machine with the
smallest workload. These rules are usually based on
local information and do not take into account the result
of the decision. Since these methods are widely used
in the literature, there are numerous different rules for
different objectives [145]. The advantages of heuristic
rules are that they are easy to understand and to apply
and they are relatively fast, as well.

• Artificial intelligence is a broadly used approach, which
cannot guarantee optimality, either. The most widely
used method is to use a neural network that simulates

the operation of a human neural network [146]. A neural
network consists of individual neurons with weighted
connections. Each neuron receives weighted inputs and
uses an activation function on the sum of them. The
weight of the inputs can be adjusted according to the
current problem,moreover there are other artificial intel-
ligence methods that can be used to solve scheduling
problems like knowledge-based systems, fuzzy logic
and case-based reasoning [147].

B. REACTIVE SCHEDULING
For reactive scheduling, an initial schedule has to be gener-
ated beforehand. During reactive scheduling, this schedule is
modified or re-optimized upon the realization of the uncertain
parameters or occurrence of unexpected events. The term
’rescheduling’ is also widely used in the literature. Themajor-
ity of papers not only focuses on the reactive scheduling
algorithm but on the method to determine the initial schedule
(predictive-reactive approach), as well.

Rescheduling can occur periodically, where the length of
the periods can be constant or variable (Fig. 7a). The length
of the period is not trivial, researches have been conducted
to try and determine the optimal value. In the case of the
event-driven approach, rescheduling is executed when an
unexpected event occurs like a machine breakdown or the
arrival of a new important job (Fig. 7b). Furthermore, hybrid
solutions exist, where the periodical approach is used but for
a few particular events, rescheduling also takes place.

Reactive scheduling can be full or partial. In full schedul-
ing, all tasks and resources are rescheduled, while in par-
tial scheduling only a part of the schedule is modified.
Full rescheduling is not viable because it is time-consuming
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TABLE 2. Reactive scheduling, rescheduling.

and often has to be performed. As a result, fast heuristic
approaches are very common for reactive scheduling.

Table 2 provides a summary of the reactive schedul-
ing (rescheduling) applied in papers concerning manufactur-
ing systems. The topic, the examined uncertainty and the
method used are presented. Although reactive scheduling
is sometimes integrated with other problems (e.g. control,
planning), this is beyond the scope of this paper.

C. STOCHASTIC SCHEDULING
Stochastic scheduling has two meanings in the literature. The
first meaning is a scheduling problem containing some kinds
of uncertainty and the second is a solution method which
can solve this type of problem. In this chapter, the second
meaning will be investigated.

A deterministic scheduling model can be solved by tra-
ditional mathematical programming methods. A stochastic
scheduling model is a modification of a deterministic one
treating the uncertainties using stochastic variables. The
method is based on a probability-based description of uncer-
tainties. It can be used in cases when information about the
behaviour of uncertainties is available. The uncertainties can
be described by the probability of unexpected events, where
the frequency of occurrence of an event can equate to the
probability of occurrence.

In modeling, the continuous probability distribution func-
tion is usually discretized, which is referred to as scenario

generation, and can result in a large number of scenarios as
well as it can affect the tractability of a solution. Therefore,
it is necessary to compile a subset of initial scenarios without
the loss of generality, which is usually referred to as scenario
reduction.

The aim of a stochastic model is to minimize or maxi-
mize the expected value of an objective function. To solve a
stochastic model, special techniques are required. There are
two main types of stochastic models, the two-stage (multi-
stage) stochastic programming and the chance-constrained
programming-based approach. In two-stage (multi-stage)
stochastic programming, the decision horizon is separated
into two (more) parts, referred to as stages. The first-stage
variables are determined before an uncertainty occurs, and the
second-stage variables are determined after the realizations of
uncertainties are observed.

Stochastic programming is one of the most popular
methodologies to solve uncertain scheduling problems.
Table 3 provides an overview of papers that apply a stochastic
programming approach for scheduling problems of manufac-
turing systems.

D. FUZZY PROGRAMMING
Fuzzy programming can handle uncertainties when no
historical data is available and probability distributions
are unknown. Instead of using stochastic variables, fuzzy
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TABLE 3. Stochastic scheduling.

programming approaches use fuzzy numbers to model uncer-
tain parameters and fuzzy sets as well as membership
functions for constraints. Although complicated integration
schemes are needed in this type of models for continu-
ous probability models, a large number of scenarios as the
discrete probabilistic representations of uncertainties is not
needed [192].

A classical set S is a collection of elements, which is
well-defined, where an element x may or may not belong to
S. For a fuzzy set, the membership function is not binary-
valued (0 or 1) but can take on any value between 0 and 1:
the higher its value, the higher the degree of membership
is [193]. A fuzzy set Ã is specified by a membership function
µÃ(x). For element x, the value of µÃ(x) defines the degree
to which x belongs to Ã. A fuzzy number is a convex and nor-
malized fuzzy set with a piecewise-continuous membership
function [194], where the value of the number is not limited
to the [0, 1] interval.

To understand this more clearly, triangular fuzzy num-
bers (TFN) are presented. A TFN is defined by a triplet of
points Ã = (A1,A2,A3) where the value of the fuzzy number

Ã can be between A1 and A3. A1 is the most optimistic, A2 is
the most likely and A3 is the most pessimistic value for Ã.
µÃ(x) is the membership function of the TFN Ã, where the
highest degree of membership belongs to A2 (Fig. 8a).
Fuzzy numbers can represent uncertain variables in the

form of an interval. Moreover, by using membership func-
tions, some constraints can be violated and the satisfaction of
such a constraint can be measured by a [0, 1] fuzzy number,
which represents the degree of fulfilment. Objective functions
are treated as constraints with lower and upper bounds defin-
ing some expectations.
The aforementioned ordinary or type-1 fuzzy number

membership functions characterize the type-1 fuzzy sets.
Type-2 fuzzy sets exist, whose membership functions are
fuzzy themselves, which are also used to model uncertain-
ties [195]. For element x ′ there is exactly one member-
ship value (µÃ(x

′)) in case of type-1 fuzzy sets (Fig. 8a)
and there are more possible values for µÃ(x

′) in case of
type-2 fuzzy sets (Fig. 8b). For a type-2 set the member-
ship function is extended to three dimensions to handle this
uncertainty.
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FIGURE 8. Triangular fuzzy number membership function.

FIGURE 9. Schematic figure of the Solution Robust Optimization.

Both type-1 and type-2 fuzzy sets can be used for differ-
ent types of scheduling problems. For example, to schedule
the tasks of real-time embedded systems to achieve energy
efficiency, type-1 [196] and type-2 [197] solutions exist.

One of the first papers about scheduling using fuzzy pro-
gramming was published in the 1970s [198], [199]. Table 4
provides an overview of the works using the fuzzy approach
for scheduling problems of manufacturing systems.

E. ROBUST SCHEDULING
One of the most important goals of robust scheduling is
to incorporate uncertainties into the model describing the
scheduling task, making the scheduling less sensitive to var-
ious confounding factors. During robust scheduling steps,
the effects of disruptions on the performance measure are
to be minimized and optimized schedules must not differ
drastically. The two basic aspects of robust optimization are
solution robustness and quality robustness [236]. The for-
mer approach examines the effect of changes in input data
on optimal scheduling. In that case, the order changes are
examined when the input data change slightly. In Fig. 9, the
goal is to make a decision that is feasible and optimal for
the worst-case objective function. The values of the various
parameters can be taken from predefined intervals, resulting
in different scenarios. Among these scenarios, the goal is to
make a decision that is feasible and optimal for the worst-case
objective function.

The purpose of the latter that is, quality robustness, is to
ensure that the value of the objective function deteriorates
slightly in the event that it is disturbed by uncertainties.
In robust optimization, not only is the value of the objective
function considered when determining the optimal solution,

it is also important to consider how the expected value of
the objective function changes in the optimal environment.
As can be seen in Fig. 10, while in the traditional opti-
mization, the red point provides the best solution, in robust
optimization, the green point yields a more stable, robust
optimum [237]. The example also proves that variability is
an important consideration in the optimization process.

Robust optimization can be applied in many areas of prac-
tical tasks: flexible manufacturing, energy systems, job-shop
scheduling, refinery and resource leveling problems, etc. (see
Table 5). The range of uncertain parameters is wide, namely
time, market demand and price, as well as machine break-
downs and failures are all determinant factors. Due to the
diversity of the optimization models described, the modeling
and solution methods may also differ.

Given that robust scheduling is an essential part of many
application areas, many illustrative examples are found
in Industry 4.0, software and various scheduling projects,
as well as in the energy and industrial sectors. Some featured
articles are shown in Table 5.

F. THE TOLERANCE SCHEDULING PROBLEM
Many scheduling, production and related optimization tasks
require effective responses to unexpected events during their
execution. Measuring the impacts of these unexpected events
determines whether intervention and/or rescheduling is nec-
essary to implement the given operations effectively. The
study of such tasks is the subject of tolerance scheduling,
which is an intensively studied area in optimization theory.

For many practical optimization and scheduling problems,
little information is available about the uncertain parameters
of the model. For example, the distribution functions of these
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TABLE 4. Fuzzy scheduling.

FIGURE 10. Schematic diagram of the Quality Robustness Optimization.

uncertain parameters are unknown and only lower and upper
bounds on their possible values can be given. There are

several ways to formalize uncertain parameters, for example,
p1 ∈ [u11, u12] or |p1 − p̂| ≤ ε, where p1 denotes the ’exact’
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TABLE 5. Robust scheduling.

FIGURE 11. Schematic diagram of Tolerance Optimization.

value, p̂ stands for the nominal value and ε represents the
given uncertainty level. In order to handle such cases, interval
arithmetic, which requires knowledge only of the feasible
ranges of the uncertain parameters, can often be used effec-
tively. Within these limits, the uncertain parameter can take
any value. The lower and upper bounds can be determined by
analyzing historical data.

The tolerance scheduling problem is based on an initial
optimal or near-optimal solution, where the accepted toler-
ance values of the operating characteristics are known.

A schematic description of tolerance optimization is shown
in Fig. 11. For each job, the upper and lower bounds with
regard to the processing times of the job are known, which
define an interval. The blue vertical dashed lines refer to the
lower bound, while the red vertical lines refer to the upper
bound of the processing times of the jobs. The result of
tolerance optimization is the assignment and scheduling of
jobs as well as machines where the processing times of the
jobs fall within the given intervals.

In the case of a production scheduling problem, such tol-
erance values can apply to, for example, execution times,

where the variation in parameters can strongly influence
the quality of the overall production process. Features that
fall outside of the tolerance range may induce a complete
rescheduling of the original plans and processes, which
could yield a different optimal solution. However, for each
rescheduling, the costs involved must be taken into account.
A dominant class of tolerance scheduling tasks focuses on
fault tolerance. The uncertainty resulting from failures and its
modelling can determine both the execution and completion
times of jobs, therefore, it is a key factor in scheduling algo-
rithms. Table 6 highlights some of the results on scheduling
and uncertainty published in recent years.

G. INVERSE SCHEDULING PROBLEM
Adaptation of the solution techniques developed in inverse
optimization started in the early 2000s [253]. In a traditional
scheduling task, all parameters are given and the goal is to
identify the job sequences, for which the completion time is
minimal. In contrast, in inverse scheduling, the exact values
of the processing times are unknown and the task is to specify
their values within given bounds so that the predefined job
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TABLE 6. Tolerance scheduling.

FIGURE 12. Schematic diagram of Inverse Optimization.

sequences are optimal. In some cases, the parameters of
inverse scheduling tasks focus on the determination of the
coefficients associated with the objective function, while in
scheduling tasks, the unknown features are mainly related
to various parameters of the jobs such as processing times,
due dates, release times, job arrivals, machine breakdowns,
etc. A schematic diagram of the steps comprising the inverse
optimization can be seen in Fig. 12. Using the uncertain input
data, a mathematical model can be built, which will form
the basis for inverse optimization. Several solving algorithms
may be suitable for solving this model, e.g., traditional LP
solvers, local search methods, genetic algorithms or evolu-
tionary algorithms can be used effectively. These steps yield
the parameters within the searched constraint or objective
function.

The tasks considered may also differ in terms of the way
they are solved. Solving the problem with traditional opti-
mization tools requires the investigation of complex models,
while evolutionary-based algorithms can often yield valuable
results. The given problems become even more complex
when they have to be solved in uncertain environments.
Table 7 shows examples of such problems, including the
solution methods used by the authors and the uncertain
parameters.

H. SCHEDULING WITH AGENT AND MULTI-AGENT
SYSTEMS
Agent and multi-agent systems are often used to solve plan-
ning and scheduling problems. Planning and scheduling

problems in manufacturing have to adapt to changing events.
In many cases, traditional solutions are unable to handle
the dynamic properties of the modelled systems effectively.
However, usingmulti-agent systems can serve as a good alter-
native approach, which has been widely applied in numerous
papers.

The concept of agent-based, multi-agent systems is based
on distributed artificial intelligence. Intelligent autonomous
entities help to solve various scheduling tasks, where coop-
eration between these entities implements a distributed
AI-based approach. In the solutions, agents can be regarded
as software modules that solve a predefined task, while being
sufficiently intelligent to solve the task autonomously and
communicate with the environment.

In a multi-agent system, three types of agents can be dis-
tinguished. The User Interface Agent is responsible for the
communication tasks as well as monitoring and providing
information to the Job Agents and Resource Agents. The
User Interface Agent is also responsible for generating the
required number of jobs and resource agents, which depends
on the number of jobs and machines in the scheduling job.
In addition, the agent is also responsible for assigning the
appropriate Job Agent to each job. The Job Agents process
the information of the different jobs and are responsible
for supervising their execution, while Resource Agents are
responsible for producing the appropriate schedules. The
schematic structure of all these agents is shown in Fig. 13,
where green and red boxes indicate job and resource agents,
respectively.
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FIGURE 13. Model of a multi-agent scheduling system [259].

Several publications provide agent-based solutions for
solving scheduling problems with an Industry 4.0 focus.
A summary of these relevant works is presented in Table 8.

I. SUMMARY
Table 9 summarizes the information of Tables 2-8 according
to the uncertainties. As can be seen, the most examined uncer-
tainties are related to activity times, like processing time,
execution time, and setup time.

IV. REQUIREMENTS OF THE 5th INDUSTRIAL
REVOLUTION
The first four industrial revolutions focused primarily on
technological solutions / developments and their collabora-
tion. While in the case of Industry 5.0 - in addition to tech-
nological issues - other focal points emerge such as social,
ecological, sustainability and psychological issues. A set of
complex systems, such as smart materials with embedded
bio-inspired sensors, comprises the enabling technologies of
Industry 5.0. It is also clear from this brief introduction that
the next industrial revolution will create even more complex,
more uncertain and oftenmulti-purpose systems, in which the
importance of assistive technologies, such as scheduling, will
continue to grow [281].

The aim of this chapter is to present the requirements of
the Fifth Industrial Revolution as well as to highlight why and
what uncertainties emerge in addition to what effects they can
have. Enabling technologies of I5.0 and their requirements for
the development of scheduling algorithms will be introduced
first. Next, the tasks and challenges of Industry 4.0 solutions
related to the management of uncertainty will be discussed.
Finally, potential solutions will be proposed and further rec-
ommendations will be made.

A. ENABLING TECHNOLOGIES OF INDUSTRY 5.0 AND
THEIR REQUIREMENTS FOR THE DEVELOPMENT OF
SCHEDULING ALGORITHMS
Industry 4.0 has brought about important advances in terms
of approach and technology. Industry 4.0 deals with sustain-
ability and the people involved in the production process to
a limited extent. Therefore, the focus points of Industry 5.0
have been rethought and are the following.
• Rather than taking an emergent technology as a starting
point and examining its potential for increasing effi-
ciency, a human-centered approach in industry places
core human needs and interests at the heart of the pro-
duction process. We want to use technology to adapt the
production process to suit the needs of the workers.
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TABLE 8. Agent and multi-agent systems in scheduling.

TABLE 9. The number of publications in the last 10 years about uncertain scheduling in Industry 4.0.

• Industrial production needs to be sustainable, namely
it should develop circular processes as well as reduce
waste and the environmental impact. Technologies like
AI can play a significant role here by optimizing
resource efficiency and minimizing waste.

• Resilience refers to the need to develop a higher degree
of robustness in industrial production, enabling it to deal
with disruptions better as well as making sure it can

provide and support critical infrastructure in times of
crisis.

Each of the aforementioned points requires the treatment
of uncertainty. These are explained in more detail below.

It is important to manage human-machine interactions
properly for social, psychological and humanitarian reasons
it is essential to integrate humans into modern production in
the Industry 5.0 concept. On the other hand, it is important to
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learn as much as possible about this segment as it involves
many uncertainties. This can only be achieved if an indi-
vidualized human-machine interaction is present. One major
part of this kind of interaction is the mental and physical
tracking of employees, because this is the source of essential
information that scheduling and other algorithms/techniques
can make use of. In this changed work environment, many
solutions become natural. A good example of this is when
humans work with cooperative robots (cobots) in a common
workspace. The roles depend on the specific work phase. The
human and the cobot could play assistive and/or subordinate
roles. It is important that a human should never be placed in
a subordinate role; there are currently numerous examples
of this, e.g., feeding raw material, and moving a finished
workpiece. However, it should also be noted that the uncer-
tainties present in scheduling processes increase as the human
role is strengthened. This is why the use of technologies
that can provide feedback to people and systems needs to
be strengthened to decrease this effect. Examples of this are
augmented, virtual or mixed reality technologies. Expanding
human (physical and other) skills is also an important area
to remain competitive in the new work environment. Their
stable application is only possible if new human-machine
interfaces are developed that can be used to control, for
example, exoskeletons efficiently. In addition to physical
abilities, enhancing cognitive abilities is also of paramount
importance. To bring about this, a new integration and devel-
opment level is needed between decision support systems
and people. This is only possible if appropriate scheduling
algorithms are used that handle the uncertainty adequately.
Many papers have dealt with this [282]–[285].

In Industry 5.0, scheduling problems have different
attributes than usual shop problems, which are presented in
Section II-A. In a shop problem, each operation is executed
by a single machine, while in I5.0, a human also has to be
assigned to the operation in addition to the machine. The
majority of scheduling algorithms has to be modified to be
capable of making this type of decision. Furthermore, the
handling of uncertainties becomes more important because
human operations are not as strict as machine operations. For
example, the operating time varies for a human but is fixed
for a robot.

In Industry 4.0, the concept of ’digital twin’ has already
emerged, meaning a digital pair of real processes. A number
of options for running simulations in this environment is
available to increase the accuracy of digital twins with the
help of continuous feedback. Finally, all functions and ele-
ments - including all uncertainties - are included in the digital
twin. In Industry 5.0, the importance of the digital twin is
increasing with the advent of human-centered thoughts. Since
many different alternatives can be tested, includingworkplace
safety issues, the scope and modelling of simulation and
scheduling tasks go beyond mere technology issues. It is
worth noting that as complexity and multi-purpose optimiza-
tion challenges increase, multi-scale dynamic modelling and
simulation need to be used more and more frequently. This in

turn brings about the need to build scheduling tasks on top of
each other. Ultimately, the goal is to create a well-designed
and functioning cyber-physical system as well as a digital
twin, where all maintenance and manufacturing processes
operate below a certain level of risk, which is still a topic of
research: [286]–[289].

Furthermore, in the case of Industry 5.0, the transmission,
storage and analysis of data are key areas as on the one
hand, a lot of data is generated due to networked sensors,
but on the other hand communication between cooperat-
ing (autonomous) systems / modules is essential. The gener-
ated data should be stored efficiently as well as securely and
the authorized device / entitymust have secure access to them.
This can only be addressed effectivelywith a scalable solution
for such complex systems as I5.0 that can adequately handle
multi-level cyber security, cloud computing infrastructure,
big data management, traceability and edge computing. Com-
munication and traceability are particularly critical areas in
terms of uncertainty [10], [290]–[293].

Artificial intelligence is a dynamically evolving field,
whose potential capabilities are also needed in Indus-
try 5.0. Nowadays, advanced correlation analysis tech-
nologies are often referred to as AI. This is important
because AI strongly influences the future and opportuni-
ties of Industry 5.0 [10], [15], [294]–[296]. However, to be
truly implementable, the following areas need to be further
developed:
• Individual, human-centered Artificial Intelligence,
where the main goal of AI is to determine the best
solution for the operator.

• Swarm intelligence, where communication and shared
information are essential parts of the operation.

• Informed deep learning, where AI is combined with
expert knowledge.

• In addition to correlation-based AI, causality-based AI
must also evolve.

• New kinds of effective interfaces between humans and
AI, for example, the brain-machine interface.

• Ability to handle, find as well as to discover abstract
and complex relationships between different dynamic
systems.

• Ability to react to new and/or unexpected conditions
without human interaction/support.

• Safe, reliable and energy-efficient AI.
Modern technology is primarily powered by electricity

and many methods are known to produce it. Sources of
electricity can be renewable or non-renewable. It is impor-
tant that the share of renewable resources increases in the
future and, at the same time, be used as economically as
possible. Many energy sources (such as wind energy) show
pulsed energy production, that is, energy is not generated
when consumers want to use it. Therefore, electricity stor-
age networks can improve energy efficiency. However much
Industry 5.0 is implemented, its energy demand will be high.
Any effort to use renewable energy is a big step towards
sustainability [10], [295], [297].
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Although the type of energy usage is important, it must not
be forgotten that not only electricity is used in the industrial
process, therefore the resources used in the whole process
must be taken into account. This is a serious problem because
the resources of our Earth are finite. Moreover, there are
many signs that current human activities are unsustainable
and potentially catastrophic. Responsible action can only be
taken if industrial processes become sustainable. The circular
economy paradigm seeks a solution to this. One solution
could be, for example, to introduce a CO2 footprint label
that makes it clear to the customer how much and what kind
of resources have been used in the production of a given
product. A greater amount of responsibility lies with people
as far as power and resources are concerned. An average
person can also do a lot to make a difference, therefore
full integration of customers throughout the value chain is
needed to inform them about the environmental and/or social
value created. People incorporate this into their choices and
willingness to pay. In order to achieve this goal, it is essential
that professionals and scientists working in different fields
work together throughout the life cycle of products, thereby
formulating important ideas and expectations for products
that put industrial processes on a more sustainable path.
The selection of sustainable alternatives can be effectively
supported with the help of the Industry 5.0 toolkits such as
digital twins and simulations. Some papers have dealt with
the relationship between Industry 5.0 and sustainability [9],
[16], [292], [297], [298].

For such complex systems as those implemented in
Industry 4.0 or 5.0, scalability is important and essential
in terms of operability. In practice, the expectations of
Industry 4.0 may not be met, especially in SMEs or across
entire value chains, for many reasons ranging from finan-
cial problems to the introduction of conscious multiphases.
Whatever path a company chooses to take with regard to
Industry 4.0, it is important to pay attention to scalability
as this is how it can be developed in the light of needs and
resources [298]–[301].

In summary, the complexity of the systems and the poten-
tial uncertainty increases. Sources of uncertainty can range
from a human to an algorithm, which are subject to uncertain-
ties in terms of their operation, e.g., genetic algorithms. As the
complexity of systems as well as the number of communica-
tion events/technologies increase and multipurpose objective
functions emerge, the number of sources of uncertainty can
only increase. In addition to identifying uncertainties and
integrating them into models, it is important to integrate
our social and natural environment as well as the resources
more effectively to make the whole process sustainable and
reduce the unwanted impact of uncertainty to a manageable
level. Traceability processes as well as collecting, storing
and processing as much information as possible is therefore
important. Above a certain level, data processing is a big
challenge, where Artificial Intelligence can be an important
tool, which is capable of providing a solution for these kinds
of complex systems.

B. TASKS, CHALLENGES RELATED TO UNCERTAINTY
MANAGEMENT IN I4.0 SOLUTIONS
Although the challenges seen earlier in Industry 5.0 raise a
number of issues, it is important to clarify that identifying
and addressing uncertainty in Industry 4.0 also poses signif-
icant challenges because it will bring to the fore the use of
technologies with a high degree of adaptability, increasing
the efficiency of their collaboration and application of the
paradigm. As a consequence, the effect of an unexpected
event can influence the operation of multiple elementary
modules. Due to the complex system and interconnection
between the elements, the effect can spread like a chain
reaction between the elements, causing serious unexpected
consequences [302].

Industry 4.0 technology has enabled new manufactur-
ing strategies, especially through the application of cyber-
physical systems, which require highly customized solutions.
The ultimate goal of this concept is to facilitate flexible, cus-
tomized manufacturing to approach the typically lower costs
of mass production. In addition to the personalization and
regionalization trends that have become commonplace today,
platform-type, modular products supporting both directions
can emerge, which in most cases are non-consumer prod-
ucts. However, industrial products are built from modules
and the manufacturers seek to standardize and produce the
components by mass production. In general, a ’reversing’
trend is also observed, with a declining product range and
a particularly large product volume. Partly due to existing
’old-style’ mass-production capabilities, and partly due to the
more expensive production costs than traditional equivalents,
a ’reversing’ trend can also be observed with a decreasing
product range, in case of a particularly large volume of prod-
ucts. These trends can be seen in Fig. 14. In summary, the
current industrial processes show an increase in complex-
ity, variability and the number of cooperating (autonomous)
subsystems in the new trends. The consequence of these
processes is that uncertainty also increases. The purpose of
this subsection is to identify the sources of uncertainties and
their effects.

OEE (Overall Equipment Effectiveness) is the primary
measure of the efficiency of production systems with regard
to where losses are systemized based on time. These losses
can be linked to unplanned events, the flexible manage-
ment of which involves a scheduling task. In these cases,
the significant - unplanned - events that take place in
the production area necessitate the immediate review and
rewriting of plans. A flexible manufacturing environment
is one aim of Industry 4.0, which effectively reduces
these losses and increases productivity. Our approach is
based on the OEE methodology in a similar way because
the primary goal is to increase productivity by reducing
uncertainties.

Considering the time available during production, effi-
ciency can be increased by increasing the ratio of production
time to other time components. In the process, it is very
much beneficial if the factors that influence and reduce the
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FIGURE 14. Changes in the variety and quantity of products. New paradigms are
driven by the needs of the market and society. [303].

FIGURE 15. Time classification of production.

production time can be identified and their impact minimized.
Fig. 15 shows the time components of production.

In most (real) production systems, conditions, such as the
constant arrival of new tasks and/or unexpected downtime are
constantly changing. Unexpected real-time events are divided
into three categories, as was seen in Chapters II-B and II-C.
As has been seen, production time is the most signifi-

cant when defined as the total time required for production.
Although the time duration of many components of pro-
duction can be planned and scheduled, as the complexity
of systems increases, the number of uncertainties also rises.
A number of ways to address these types of challenges was
mentioned earlier such as flexible and dynamic scheduling.

In general, the risks in the manufacturing area of the Indus-
try 4.0 are the following [304]:

• Manufacturing process management (Information risk
associated with data losses, loss of integrity and avail-
able information.)

• Maintenance (Problemwith the availability and integrity
of data for maintenance)

• Operation methods and tools used (Errors in data
processing)

• Machines and manufacturing technologies (Sensitiv-
ity and vulnerability of data problems related to
cyber-attacks)

• Human sources (Low number of qualified workers)
• Machine environments (Attacks from the Internet net-
work, problems related to electromagnetic compatibility
and electromagnetic emissions affecting manufacturing
machines.)

Industry 4.0 has some requirements and characteristics that
include inherent uncertainties that occur directly or indirectly
during optimization and / or scheduling tasks as outlined in
Table 10.
The most appropriate scheduling strategies for

Industry 4.0 and 5.0 problems should be determined based
on their characteristics. The most important aspect is that the
problem has to be solved offline or online. In addition, based
on the available information, it has to be determined whether
a deterministic or stochastic approach should be followed.
Finally, the type of uncertainty is also a crucial characteristic,
which can effectively determine how to solve the problem.
All these characteristics restrict the set of possible solution
strategies. All of these aspects are illustrated in Fig. 16, which
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TABLE 10. Uncertainties of the requirements of Industry 4.0.

TABLE 11. Additional requirements of Industry 5.0.

defines three decision levels for choosing the right solution
strategy for scheduling problems. Although the complexity
of scheduling tasks may increase for Industry 5.0-related

problems, the mathematical and algorithmic solution to these
problems requires similar considerations as the solution
methodologies presented earlier.
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FIGURE 16. Decision levels for selecting proper algorithms for scheduling problems.

In summary, the Industry 4.0 paradigm is creating increas-
ingly complex systems made up of autonomous modules that
are able to communicate with each other. As a result, the
number of elements of uncertainty will inevitably increase.
Integration processes can somewhat compensate for the
aforementioned negative effects. These can be organized into
two large groups, namely the vertical and the horizontal
integration.

C. TOOLKIT OF SOLUTION OPTIONS, INHERENT
POSSIBILITIES IN HORIZONTAL AND VERTICAL
INTEGRATION
Vertical integration focuses primarily on the internal pro-
cesses. The structure of the ISA-95 standard helps to under-
stand this flow as depicted in Fig. 17.
Vertical integration creates a clear connection between data

transfer flow and the levels. This is necessary in the Industry
4.0 paradigm, because it works with smart products and smart
resources that have to communicate with, for example, other
entities as well as IT systems.

Fig. 17 clearly shows the solutions, decision times and
communication techniques for each level. Since Level 0 is
closest to the physical intervention, in this case, the least
amount of time is available to make a decision, in extreme
cases, this might only be a few microseconds. At the next
level, the logical units are the first to process the incoming
information and, if necessary, instruct the interveners on
Level 0. A PLC is a typical logical unit that is located this

level. Given that the time response is also important in this
case, the equipment uses field network solutions. Level 2 is a
distinct level in several respects. On the one hand, field com-
munication communicates/replaces IP-based communication
at this level, but on the other hand the number of human-
machine interfaces has increased at this level, e.g., the simple
HMI or complex SCADA systems. The primary task of the
next level is the structured collection of data from the entire
factory/company. Special data analysis and forecasting solu-
tions have already been developed at this level. Importantly,
the reaction rate of this layer slows down further. In practice,
this means that making a decision can take minutes or even
hours, depending on the method, hardware environment and
amount of data which is processed. MES is the most popular
solution at this level. Business logic takes place at the top
level, which deals with aggregated data in many cases and its
primary task is to support strategic decisions. ERP and PLM
are good examples of tools at this level. The reaction time
slows down further, it can even take months, due in part to the
fact that certain decisions/forecasts can only be made with a
sufficient amount of data.

It is easy to see in this solution that a minimum of 7 dif-
ferent systems must work harmoniously by communicating
with a minimum of 2 different solutions. The used systems
are usually made by different manufacturers, which equates
to additional risks during their integration. The proper imple-
mentation of vertical integration reduces the number of uncer-
tainties to a manageable level.
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FIGURE 17. The structure of the ISA-95 standard for constructing vertical integration.

While vertical integration focuses primarily on internal
processes, horizontal integration focuses more on external
ones as it may include thewhole supply chain. Practically, this
means that the integration process covers all components of
the supplier and customer networks. It is important to realize
that this process is so complex and multi-stakeholder that the
information flow can often only be solved by a cloud-based
service.

In terms of uncertainty, similar problems arise in this case
as have previously been seen, because countless systems
work together using several communication solutions. The
main difference is that in this case, (software) systems oper-
ating at the same level communicate with each other and
although the communication network is the same, these share
information through numerous kinds of interfaces and solu-
tions. Another significant difference between the two kinds
of integration is that while vertical integration in many cases
can be considered closed/local, horizontal communication
occurs over the open Internet, where important open services
(also available on the Internet) are often used. This results
in another uncertainty concerning the operation of systems.
Since the system is open, one of the most important chal-
lenges are security issues. In this case, since, integration can
also mitigate the negative effects of the resulting uncertainty,
it is important and indispensable.

In the following list, the main causes of uncertainty have
been collected, which can be normalized by integration:
• Large and complex systems
• Wide variety of cooperating systems
• Multiple communication solutions
• Different response times
• Security issues
• Open system
It is important to note that both types of integration pro-

cesses have similar uncertainties and the biggest difference
between them is whether they can be considered as external

or internal processes for a given company. Based on this
consideration, the integration process organizes the uncer-
tainties into two large groups. Vertical integration contains the
internal uncertainties, while horizontal integration includes
the external ones.

Virtualization techniques are another important area that
can help handle uncertainty. To be able to create the digital
twin, that is, the virtual equivalent of manufacturing, a fully
digitized factory is needed in addition to knowledge and
modelling of processes in great detail. The process of creating
a digital twin is already capable of exploring and/or correcting
any errors and uncertainties. The parallel operation of virtual-
ization and real production provides an opportunity to check
the accuracy of one’s modelling continuously, resulting in a
system that is very close to reality and accurately identifies
and manages the uncertainties in the system. Furthermore,
this is an advantage for large and complex systems that can
ensure stable and predictable operation in the long run.

In summary, both integration and virtualization techniques
use a procedure in their design that identifies uncertainties in
different areas and, where appropriate, eliminates ormitigates
their effects. Such complex systems can only be operated effi-
ciently and as expected if the uncertainties are managed well.
Table 12 shows which techniques are suitable for reducing
the impact of uncertainties in different situations.

D. DISCUSSION - RECOMMENDATIONS FOR TOOLS THAT
SHOULD BE APPLIED AND DEVELOPED
Responsible thinking, rational use of resources, materials
recycling, and social discipline and stability are all part of
sustainable thinking. Industry 5.0 is opening up strongly in
this direction, and (next to the Industry 4.0’s technology-
driven goals) sustainability and a livable society are the most
prominent new focal points. It is important to note that these
new directions increase potential uncertainties significantly.
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TABLE 12. Possibilities to solve / manage uncertainties.

The challenges, characteristics, and uncertainties of
Industry 4.0 were discussed previously, which are summa-
rized in Table 10. Although Industry 5.0 has the problems of
Table 10, there are some new challenges in addition, and we
need to address them. These requirements are the following:
corporate social responsibility and sustainability; human-
centric thinking; the wellbeing of the worker; advanced
employees skills and training management; social stability;
resilience against external shocks; responsive supply chain.
These are shown in detail in Table 11. Since the Industry 5.0 is
mainly accredited with bringing sustainability requirements,
these goals can be linked with Sustainable Development
Goals (SDGs), which were adopted by all United Nations
Member States in 2015. Of the seventeen SDGs, SDG#7
’affordable and clean energy’, SDG#9 ’industry, innovation
and infrastructure’, SDG#12 ’responsible consumption and
production’ and SDG#13 ’climate actions’ are related to
environmental issues. As stated in [12], technologies that
enable Industry 4.0, like digitization (IoT and CPS), real-time
monitoring and data collecting, and big data analytics, can
create new opportunities to achieve sustainability targets.

SDG#8 ’decent work and economic growth’, SDG#9
’industry, innovation and infrastructure’, SDG#12 ’responsi-
ble consumption and production’ are strongly connected to
the human-centric aspect of Industry 5.0. that puts human
needs and interests at the heart of the production process.

That is why, the development of Industry 5.0 solutions
demands the handling of the uncertain societal goals to
become a resilient provider of prosperity by making pro-
duction respect the sustainability boundaries and placing the
well-being of the industry workers at the centre of the pro-
duction process. The integration of economical, ecological
and societal aspects further increases the necessity of han-
dling uncertainty (see Fig. 18). This requirement urges the

development of tools applicable for the analysis of interre-
lations and communicating uncertainty, methods that can be
applied for the systematic reduction of the uncertainty, and
models and simulators that can be used in digital twins. In the
following subsections we will discuss the details of these
suggested development directions.

1) TOOLS FOR THE ANALYSIS AND COMMUNICATING
UNCERTAINTY
This problem should be described in several ways (mathemat-
ical risk analysis, quantitatively, qualitatively and verbally)
and shared with all the relevant groups (e.g., managers, rel-
evant members of the public and partners). It can also be
observed that different methods have proven to be effective
for different groups of participants. Qualitative information
is generally more effective for stakeholders and the public
than quantitative information. However, it is worth noting that
quantitative uncertainty analysis often serves as a basis for
qualitative information.

One approach to make risks/uncertainties more under-
standable is to compare risks/uncertainties. However, it is
important to understand that this should be done with cau-
tion and, wherever possible, monitored, especially if the
comparison is intended to demonstrate/achieve reductions
in risks/uncertainties [305]. A graphical representation of
uncertainties is usually useful and aids the communication
process.

2) SYSTEMATIC REDUCTION OF UNCERTAINTIES - SIX
SIGMA PROJECTS
Uncertainties can be reduced by examining the environment
in which they occur and taking the necessary steps to adapt
to it. In the case of performance measures, a target value
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FIGURE 18. The concept of Industry 5.0 requires the integration of economical, ecological and societal aspects that further increases
the necessity for handling uncertainty.

is needed. Defining this target value is paramount, but not
always clearly feasible. There are several ways to identify
this target value, which can be used to express the uncer-
tainty associated with different values. The goal is to assign
a distribution to the possible target values subjectively. This
distribution then can be examined using trade-off analysis.

Six Sigma competitive business strategies increase the
sensitivity of employees to quality and provide a rational
framework for measuring and improving them by taking
into account the control of costs. This solution has been
introduced by many companies [306]–[308], whereupon they
produce a more robust and desirable product that contributes
greatly to revenue growth by improving internal productiv-
ity growth as well as reducing costs and warranties [309].
The Six Sigma methodology usually includes the following
programs: Quality Function Deployment, Failure Modes &
Effects Analysis, Statistical Distributions & Process Capa-
bility, Design of Experiments (DOE) & Response Surface
Methods, Statistical Process Control and Robust Design
Optimization [310]. Although applicable techniques are
widespread, their application is often based on a determinis-
tic model [311]. It is particularly important to consider the
uncertainty concerning the transmission functions between
inputs and outputs and to examine the uncertainty of the
quality characteristics of the products with regard to the
performance and cost of the product [312]. In the case of com-
plex process characteristic of production systems and supply
chains, the loss due to process uncertainty is much more
significant than that resulting from changes in production
processes. By ignoring variance or uncertainty, modifications
can be made that can result in adequate performance but
yield misleading results. By taking uncertainty into account,
the occurrence of quality properties outside the specification

limits can be reduced, thereby increasing confidence and
examining variability, which can be offset by robustness to
achieve significantly more efficient results [313], [314].

By using Six Sigma/Lean tools effectively, companies can
remain competitive and increase their production efficiency.
This also requires the need to appear in the schedules of
various manufacturing tasks. To make the supply chain cus-
tomizable and lean, manufacturing in smaller batches can be
a good solution. The downside of this is the frequency of
changeovers (due to the production of different products) and
that downtime increases significantly, the cost of which can
be more significant than previously estimated [315]–[317].
This challenge [318] requires policies for increasing sustain-
able manufacturing and competitiveness [319]. To achieve
this, the Single-Minute Exchange of Die (SMED) system,
which is a Lean and Six Sigma device, is a good solu-
tion to reduce the changeover times of machines [320].
Changes in consumer demand and the increase in demand
for variable products require manufacturers to produce dif-
ferent parts quickly. SMED is becoming crucial to meet
these requirements [321]–[323] and imperative in any
organization.

A Manufacturing Execution System (MES) is an informa-
tion system that meets the needs of production management
which collects, processes and analyzes data with regard to
manufacturing processes. It can be used to increase the effi-
ciency of processes, yields and delivery properties. MES is
widely used in, for example, the automotive, pharmaceuti-
cal, petrochemical and aerospace industries. To increase the
efficiency of MES, the implementation of DMAIC (Define,
Measure, Analyze, Improve, Control) achieves significant
results, as well [306], [324], [325]. Integrating MES can
reduce the cycle time and unnecessary processes while
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increasing value-added production. There are five stages in
the implementation of DMAIC [306].

During the first phase, the purpose, boundary, schedule
and direction of the project as well as various other areas of
project management are defined, thus the financial benefits
are also estimated. When combined with the MES tracking
database, it contributes greatly to the rapid and accurate
identification of process problems.

During the Measurement phase, basic information about
the situation is collected (such as a control diagram, esti-
mation of process performance, capability indicators and
a Pareto diagram) and problem areas are delineated [326],
[327]. This is the most complex phase of DMAIC [328].

The third phase is Analysis, where the root causes of
the problems are identified. Information can be described
statistically by discovering important factors and solutions.
MES contributes to statistics with information derived from
work in process (WIP).

During the Improvement phase (proactive analysis), solu-
tions or suggestions for change are implemented to address
the root causes identified during the analysis. MES pro-
vides and analyzes repair information during the design of
experiments (DOE) and also accesses the best operational
variables of the response surface methodology (RSM). MES
with embedded statistical process control (SPC) can track
production time and quantities as well as contribute to control
processes with markings.

The Control phase additionally improves documents with
information and the state-of-the-art business process man-
agement stays in the Improvement phase, which is inte-
grated into the daily routine. In this phase, MES is connected
to ERP and other application softwares. Linking MES and
ERP provides access to production data so companies can
leverage their ERP investments more [329]–[331]. It also
allows for quick inspection with regard to plant capacity upon
receipt of a new order, progression, cost and profitability
control, manpower used, amongst other resources. Linking
other software to MES provides analytical capabilities for
internal operations, thereby contributing to the dissemination
of information [332].

Industry 4.0 has a major impact on the future development
of MES, as the paradigm shift with I4.0 brings about changes
and requirements in complex processes that are of paramount
importance to MES engineers and researchers [333]. Given
the I4.0 maturity model, 2 of the 6 stages are prerequisites
for I4.0, while the other 4 are part of it. Computerization is
the first step that is a prerequisite for digitization where dif-
ferent forms of information technology are used. The second
step is connectivity, where interconnections between these
different technologies must be present in order for the entire
production chain to be ready to accommodate the develop-
ment of Industry 4.0. The remaining 4 stages are visibility,
transparency, predictive capacity and adaptability [334]. The
so-called digital shadow of a company is required for proper
maintenance andmonitoring of various data requires the com-
pany’s so-called digital shadow, therefore decision-making

processes can be done based on completely real data. A com-
plete overview alone is insufficient, as causal relationships
carry high-quality knowledge, therefore knowing the root
of the root causes contributes greatly to decision-making
processes. Given that the Big Data paradigm contributes
greatly to this, it is an essential part of MES solutions. After
analyzing the collected data, the predictive ability can be used
to run simulations, based on which the best cases can be
identified, thereby ensuring the most appropriate solution is
applied in the future. An adaptable company is able to con-
form quickly and efficiently to changing conditions, thanks to
the automated operation of the entire system and previously
mentioned features [335], [336]. Therefore, a new generation
ofMES is required to meet with new challenges of I4.0 [337].

3) DEVELOPMENT OF FORECASTING MODELS AND DIGITAL
TWINS
Managing uncertainty is also a priority for forecasting mod-
els, since the proper handling and mapping of uncertainty has
a significant impact on the quality of the models prescribed.
Such forecasting models can include price, inventory and
consumption planning, for which a number of methodologies
are known [338].

Generally speaking, in both scheduling and optimization
problems the uncertainty of their optimal solutions can be
reduced by using more accurate mathematical models. On the
one hand, the accuracy of models can be achieved by increas-
ing the reliability of their input data, but on the other hand
it is necessary to choose such problem-solving techniques
that support the handling of models with uncertainty. Data
science solutions can help to reveal unknown relationships
between input data, thereby reducing the level of uncertainty
in the inputs [339], while machine learning techniques can
further reduce the uncertainty in the solutions of complex
optimization models. Fuzzy and stochastic models are of
particular importance that can be used to describe uncer-
tainties in optimization problems efficiently. One such mod-
elling approach is survival analysis, which can be effectively
applied to scheduling problems by introducing non-linear
models [340]. Here, survival functions represented by the
Weibull distribution describe the uncertainty of each activity
as a function of time. Survival analysis as a data-driven
method can also be used to identify frequent sets of events in
such cases, where the occurrence of a set of events and their
combinations may result in some critical events [341]. Hybrid
semi-mechanistic models take advantage of the integration of
discrete event models, related to process simulators and data-
based models. The hybrid semi-mechanistic models consist
of a white-box model based on mechanistic relationships and
black-box substructures to describe less defined parts.

Digital twins are often based on such mathematical models
that require very high computational demand. Such mod-
els may include modules for various optimization, schedul-
ing and management tasks, in which missing knowledge
and uncertain information make it difficult to manage the
tasks accurately. Surrogate models can be used to replace
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black-box models, which are computationally expensive to
evaluate [342]. These special surrogate models can be used
to describe the given optimization problems and solve them
approximately. Surrogate models can be used to study many
engineering problems. The descriptive model itself can be a
neural network, polynomial function, radial basis function,
support vector machine, linear regression, fuzzy model, etc.
The most important step in the application of surrogate mod-
elling is to develop a surrogate that describes the target area
sufficiently and accurately and requires just a few calculation
steps when evaluating the simulation results [343].

Multi-stage models take uncertainty in the tasks into
account at several levels. Different scenarios can be used to
account for the characteristics of uncertainties in the task. The
drawback of this approach is the large number of computa-
tional steps, as the number of scenarios can grow exponen-
tially, which greatly increases the time required to solve the
problem [344], [345].

E. OPEN RESEARCH CHALLENGES AND LIKELY
EMERGING RESEARCH DIRECTIONS
The initial goals of control engineers were to develop
unmanned factories, however, for ethical, social and
impracticable reasons anthropocentric cyber-physical sys-
tems (ACPS) have become the focus [346]. As a result, all
related physical components (PCs), cyber components (CCs)
and human components (HCs) must be displayed at each
operational level.

In another approach, the connected CC and PC are man-
aged by humans [347]. In any case, in production, the context
of CPS in Industry 4.0 can be observed in three components:
HC, CC, and PC. Furthermore, HC-CC, CC-PC, and HC-PC
interfaces play an important role in interconnecting compo-
nents to become a unified system. Due to the growing demand
for customized products and changes in machines/systems
in CPS-based manufacturing in Industry 4.0, the manufac-
turing process requires a shorter product life cycle and the
rapid application of new innovative solutions. Replacing
traditional components with dynamic and intelligent CPS
requires a broader expertise of the human worker, which
necessitates faster learning techniques [348], [349]. This
also includes interactive user guides based on work-based
learning [350] and augmented reality (AR) [351]. A human-
centered approach is also a significant requirement in Indus-
try 5.0, as shown in Table 11. A human being is a significant
component in the processes, therefore human-centered solu-
tions and those that put human well-being first play a key
role. In addition, empowering employees with evolving skills
and trainings is needed to increase the competitiveness of the
company.

The challenges facing CPS can be divided into four cat-
egories: production improvement, dynamic reconfiguration,
standard and information technology. Sudden changes in cus-
tomer requirements and unsatisfactory design can cause CPS
to fail. Flexible and efficient manufacturing systems [348],
[352] and efficient human-machine interaction are always

inevitable in reducing machine control and maintenance
time [353], as well as raising the issue of adaptation to
new technology [350], [354]. Uncertainties regarding the
quality and quantity of product returns are becoming an
inevitable problem [355]. Efficient data and storage man-
agement is required for intelligent monitoring and intelli-
gent control [356] and also increases interoperability [357].
Cloud-based data storage is a solution to this problem, but it
also presents three challenges: resource management virtual-
ization, cloud resource scheduling and lifecycle management
(LCM) [358].

Having formal methods is a serious problem in defining
and controlling interactions between industrial equipment
and machines [359]. The emergence of dynamic recon-
figurability affects several areas. A new modular, flexible,
data-intensive reconfigurable manufacturing [360], [361] for
on-demand, customizable products is in high demand [362],
[363]. Flexibility also manifests itself in the need for eas-
ily programmable industrial robots, and minimizing time
due to increasing product life cycle uncertainty, increasing
product variability and globalization [364]. The challenge
is to manufacture industrial robots [365] and to integrate
self-optimization into the mechatronic system [366]. Human-
machine interface and machine-to-machine interaction are
required for the evolution from computer integrated manu-
facturing to Industry 4.0 [367]. Cryptographic authentication
and secure storage are important in automated manufactur-
ing [368] to avoid any deception. The development of new
and flexible industry-oriented middleware is also a challenge
to deal with a dynamically changing market [369]. The intro-
duction and ramp-up of a new product can often cause several
different unforeseen failures, which require formidable fail-
ure management systems [370].

Using CPS in manufacturing is an emerging technol-
ogy, which requires standardization. Several challenges have
already been addressed, such as seamless process integra-
tion [371], seamless data aggregation and disaggregation
[372], standardization compliance [373], product-service
innovation, product variety, quality standards, support
devices and immediacy or order satisfaction [374]. Indus-
trial automation systems are being developed using IEC
61131 standard [347], with Vision 2.0 addressing the new
challenges of complex industrial automation systems, how-
ever further work on standardization is needed.

Information technology (IT), which is an important part of
CPS, can be divided into two main types: people-centric and
cyber-centric. Holistic production control is required [375]
to control and optimize production. Due to the frequent
changes in the intelligent space, the need for a broader
range of skills to understand and manage the wide range of
interactions between physical objects and digital equivalents
is paramount [349]. Cyber components are becoming key
challenges in the development of model management soft-
ware design methodologies, Sense Compute-Control appli-
cations [376], software-compatible hybrid solutions [377]
and enterprise vision prediction [378]. Furthermore, real-time
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optimization of hardware using cyber components is an
essential and significant task [379], [380].

It is also necessary to mention the convergence of
Industry 4.0 and the circular economy approach, for which
the potentials are available to varying degrees. Sustainabil-
ity also poses a challenge to Industry 5.0, which needs to
be addressed in conjunction with a human-centric approach
and liveable society goals. The main barriers to inhibiting
the circual economy (CE) are process digitalization, seman-
tic interoperability, sensor technology, CPS standards and
specifications as well as design challenges [381]. Through
Integrated Industry 4.0-CE, the manufacturing industry can
gain promising solutions such as monitoring waste and
natural resources, transforming closed-loop supply chains
into technological supply chains, regulating coal and energy
consumption.

V. CONCLUSION
Scheduling is one of the most important optimization
research areas, which has a significant effect on the efficiency
of a manufacturing system. In classical scheduling problems,
all data are known in advance and do not change during
the manufacturing process. In real-life problems, unexpected
events can occur and the forecast data can be inaccurate,
which has to be taken into account.

In this review, uncertainties which can occur in Industry
4.0 and 5.0 systems have been investigated.

First, a brief overview of the classical scheduling prob-
lems of manufacturing industries from the literature has been
presented and a classification of uncertainties that occur in
real-life problems given. Then, themost common approaches,
which can solve scheduling problems, were surveyed focus-
ing on the cases of uncertainties published since 2010.
Finally, Industry 4.0 and 5.0 concepts were examined in the
light of uncertainties and scheduling.

We have shown that uncertainty is an unmissable aspect
of scheduling under the I4.0 and I5.0 paradigms. I4.0 solu-
tions rely on horizontal and vertical integration that signifi-
cantly increase the complexity of the scheduling problems.
The increased complexity and the requirement of robustness
and self-organising behaviour motivate the development of
meta-heuristic optimisation algorithms. With the concept of
I5.0, the integration of societal, economical, ecological and
societal aspects further increases the necessity for handling
uncertainty. This requirement urges the development of:

• tools applicable for the analysis of interrelations and
communicating uncertainly,

• methods that can be applied for the systematic reduction
of uncertainty,

• models and simulators that can be used in digital twins.
• preference for sustainable solutions when modelling
optimisation problems and determining the best
solution.

As I5.0 places the industry workers into the centre of the pro-
duction system, the integration of the models and solutions

that represent the uncertain human nature of the workers
defines the most important research direction to the future.

Industry 5.0 provides new opportunities to achieve Sustain-
able Development Goals (SDGs), especially that are related
to SDG#7 ’affordable and clean energy’, SDG#8: ’decent
work and economic growth’, SDG#9 ’industry, innovation
and infrastructure’, SDG#12 ’responsible consumption and
production’ and SDG#13 ’climate actions’.

The issue of sustainability has an impact on the optimiza-
tion and scheduling of tasks at several points. Corporate social
responsibility and sustainability require the harmonization
of socially and economically sound objective functions. The
wellbeing of the worker needs the sustainable use of mod-
ern technologies. Social stability raises further aspects to be
highlighted in the context of optimization, which requires,
among others, the consideration of societal randomness in the
modeling and the optimization steps.

By the synthesis in this paper, we hope to encourage
more researchers and decision-makers to take a further step
in developing and applying goal-oriented robust scheduling
algorithms that can result in efficient, resilient, and sustain-
able production systems.

The role of scheduling tasks will be further enhanced by
Industry 5.0 requirements. We reviewed the enabling tech-
nologies and scheduling requirements impacting Industry 5.0
considerations. We highlighted the role of agents and multi-
agents in scheduling tasks, we have provided a systematic
summary of the most important related methods and the
nature of the uncertainties addressed. We reviewed the publi-
cations of the last 10 years on scheduling tasks methods used
to manage scheduling tasks, taking into account the different
types and nature of uncertainty. In particular, we highlighted
the requirements of Industry 5.0, which need to be addressed
in the context of scheduling tasks.
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