
Received 26 May 2022, accepted 11 July 2022, date of publication 15 July 2022, date of current version 22 July 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3191115

Developer’s Roadmap to Design Software
Vulnerability Detection Model Using Different AI
Approaches
POOJA S 1, CHANDRAKALA C. B. 1, AND LAIJU K. RAJU 2
1Department of Information & Communication Technology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal,
Karnataka 576104, India
2dltledgers India Private Limited, Thiruvananthapuram, Kerala 695035, India

Corresponding author: Chandrakala C. B. (chandrakala.cb@manipal.edu)

ABSTRACT Automatic software vulnerability detection has caught the eyes of researchers as because
software vulnerabilities are exploited vehemently causing major cyber-attacks. Thus, designing a vul-
nerability detector is an inevitable approach to eliminate vulnerabilities. With the advances of Natural
language processing in the application of interpreting source code as text, AI approaches based on Machine
Learning, Deep Learning and Graph Neural Network have impactful research works. The key requirement
for developing an AI based vulnerability detector model from a developer perspective is to identify which
AI model to adopt, availability of labelled dataset, how to represent essential feature and tokenizing the
extracted feature vectors, specification of vulnerability coverage with detection granularity. Most of the
literature review work explores AI approaches based on either Machine Learning or Deep Learning model.
The existing literature work either highlight only feature representation technique or identifying granularity
level and dataset. A qualitative comparative analysis on ML, DL, GNN based model is presented in this
work to get a complete picture on VDM thus addressing the challenges of a researcher to choose suitable
architecture, feature representation and processing required for designing a VDM. This work focuses on
putting together all the essential bits required for designing an automated software vulnerability detection
model using any various AI approaches.

INDEX TERMS Machine learning, deep learning, graph neural network, feature representation, tokeniza-
tion, granularity.

I. INTRODUCTION
Aflaw in software code allows access to internal system
or network and is termed as cyber security vulnerability.
These vulnerabilities if not patched, leave the system open for
hacking, account transfers, malware attacks etc. The National
Vulnerability Database (NVD) [1] is fed by Common vul-
nerabilities and Exposure (CVE) list [2] has currently over
1,50,000 entries [3]. In 2021 the NVD holds 21,957 vulnera-
bilities which is much in higher compared to 18,362 in 2020,
17,382 in 2019. According to Edgescan’s report [4], orga-
nizations with more than 101-1000 employees have largest
portion of high-risk vulnerabilities. Companies with 10,000+

The associate editor coordinating the review of this manuscript and

approving it for publication was Daniel Augusto Ribeiro Chaves .

employees see largest portion of medium and critical-risk
vulnerabilities.

Now software vulnerability detection can be modeled as
Natural Language Processing (NLP) problem with source
code treated as texts. Thus, recent advances in Artificial Intel-
ligence (AI) models like machine learning (ML) [5] mod-
els, deep learning (DL) [6] models, Graph Neural Network
(GNN) [7], tries to addresses software vulnerability detec-
tion. ML models is successful at object detection, speech
recognition and with deep learning paradigm it is capable
in capturing hidden patterns of videos, images, text. GNN
is a class of deep learning methods [8] which infers data
described using graphs. GNN has seen an upcoming potential
in its use case for software vulnerability detection [9]. The
vulnerability detection models aim for binary classification

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 75637

https://orcid.org/0000-0002-2635-7695
https://orcid.org/0000-0003-3818-0679
https://orcid.org/0000-0002-7688-8320
https://orcid.org/0000-0001-5274-6646


Pooja S et al.: Developer’s Roadmap to Design Software Vulnerability Detection Model Using Different AI Approaches

FIGURE 1. Spread of literature from year 2018 to 2022 for vulnerability
detection in C/C++ and java source code.

i.e. categorizing input code as vulnerable or secure code;
or as a multiclass classification, additionally classifying into
particular type of vulnerability.

This systematic literature review aims to analyze the dif-
ferent AI approaches used to analyze software vulnerabilities
for C/C++ and java programming language. The high-level
languages like java and C are designed for better human
interaction and expression. Thus, have a likeness with Nat-
ural Language Processing (NLP). Vulnerability detection is
a borrowed concept from NLP. This work will act as a
guide for future researches in considering various aspects
while designing vulnerability detection model for different
AI approaches. The key aspects highlighted in this study
are dataset availability, targeted vulnerabilities, feature repre-
sentation, feature vectorization, algorithms used for training
with respect to each of the AI approaches considered here.
Thus, work gives a complete overview on the current trends
of AI approaches used for software vulnerability detection
model. The literature considered for this study ranges from
the year 2018 to 2022 so that recent trends can be studied
and evaluated. It is shown using Figure 1. The study has
considered 3 papers for ML based approach, 9 papers for
DL based approach and 10 papers for GNN based approach
which targets vulnerability detection using C/ C++ and java
based source code projects. This spread of paper is also
represented in Figure 2.

The existing literature work [5], [10], [11], [12], [13] gives
thorough review in the VDM based on either on Machine
learning only or on Deep Learning model. Table 1. Presents
the major contribution of the proposed work in compar-
ison with other literature survey. [5] covers VDM based
on ML, DL architecture. The work reviews feature repre-
sentation used, vulnerability coverage considered, metrics
used for performance evaluation and whether the VDM con-
sidered for review provides a binary /multiclass classifier.
It lacks specification on granularity level archived by the
literature work under consideration. Also, the paper has not
considered the GNN based VDM which is a research area
in its infancy. [10] reviews vulnerability detection model
based on DL /neural network based models. Work has

highlighted feature representation techniques, granularity,
dataset labelling. It has not listed the metrics used to measure
the performance of the VDM. The work also does not detail
the key aspects for ML based VDM. [11] reviewed articles
only based on DL models. The work has classified literature
work based on feature representation based semantic source
code representation, code gadget representation and binary
representation of source code. It lacks details about vector-
ization technique used for VDM, has not mentioned metrics
and type of classifier the reviewed work could achieve. [12]
reviews work on android based malware detection using ML
and DL based model. The literature work has categorized
based on different DL architectures available. The work has
discussed about feature representation, feature vectorization
techniques, metrics used for evaluating performance. But
GNN based work is not highlighted in the work. [13] focuses
only on ML models and specify different analysis technique
of source code based on static analysis, symbolic execution
and fuzzing. Less focus is given in detailing the vulnera-
bility granularity detection, dataset availability, vulnerability
coverage. The proposed work thus collects the key aspects
for VDM based on ML, DL and GNN based architecture.
It presents a clear picture on the methods used for feature rep-
resentation, feature vectorization, granularity level achieved
by the work under consideration, availability of labelled
dataset, metrics considered for evaluation, and whether the
classifier is binary or multiclass.

Section 2 gives a brief overview on the key aspects required
for a software vulnerability detection model. Section 3 gives
a detailed report based on literature review done on each of
the aspects. Section 5 gives the conclusion of the study.

II. KEY ASPECTS CONSIDERED FOR VULNERABILITY
DETECTION MODEL (VDM)
Software vulnerability detection model based on AI algo-
rithm, requires availability of labelled dataset for the tar-
geted programming languages. The researcher cannot feed
the source code or intermediate code directly to the clas-
sifier. It needs to represented in machine understandable
form using feature representation and feature vectorization
technique. Based on the availability of labelled vulnerability
classes, the model can be trained to output as a multiclass
or a binary classifier specifying the granularity of detection.
The researcher should ensure availability of standard dataset.
These key aspects is shown in Figure 3. Dataset contains
vulnerabilities is identified by using standard term, common
vulnerabilities and exposure identifier (CVE-ID) or common
weakness enumeration identifier (CWE-ID). For the current
study, Java and C/C++ open source datasets are considered
and reviewed. The other paramount importance is given to the
ground truth labelling of the dataset using open source tools
like PMD or availability of labelled dataset itself. Labelled
dataset is based on the type of vulnerabilities the source
code has. Vulnerabilities targeted for C/C++ source code
are mostly based on buffer overflow vulnerability identi-
fied by (CWE-119), resource management error (CWE-399)

75638 VOLUME 10, 2022



Pooja S et al.: Developer’s Roadmap to Design Software Vulnerability Detection Model Using Different AI Approaches

FIGURE 2. Spread of literature on different AI based VDM from 2018 to 2022.

and improper resource lifetime control (CWE-644). For java
source code, most common vulnerabilities considered are
SQL injections, denial of service, cross-site scripting etc.
These vulnerabilities are identified by CWE-ID’s, CWE-89,
CWE-119, CWE-120, CWE-80.

The next stage of VDM is the representation of fea-
ture. Feature representation can be categorized as text-based,
sequence-based or graph-based. Text-based feature represen-
tation converts source code into textual tokens. These tokens
are software metrics [14] extracted from program source
code such as cyclomatic complexity, average number of lines,
return type of functions, parameters, number of statements,
number of local methods, number of blank lines, maximum
depth of class in inheritance tree. Sequence based feature
representation comprises sequence of code based on syn-
tactic similarity, function call sequences. Code gadget can
accurately capture syntax or semantics of the vulnerabil-
ity candidate obtained from the dataset. It can be extracted
using commercial tools only, Checkmarx [15]. The other
open source tools like Flawfinder and RATS have simple
parsers and imperfect rules Graph based feature representa-
tions makes use of graph data model [16] which is a fairly
established field in program analysis. Abstract Syntax Tree
(AST) [17] helps in understanding fundamental structure of
program which in turn helps in identifying syntactic errors.
It is an ordered structured representation of source code.
It presents code, content, context and control flow of the
source code. Control Flow Graph (CFG) [18] describes all
the path traversed when program is executed. CFG nodes
indicate statement and edges indicate transfer of control.
It has two variants inter-procedural and intra-procedural.
Data Flow Graph (DFG) [18] used to track usage of vari-
ables through CFG. DFG edge presents subsequent access
or manipulation of same variables. Data Dependence Graph
(DDG) [18] is multi-digraph where vertices are program
statements and edges are flow from source statement to des-
tination statement. It requires both intra-procedural control

flow information and inter-procedural control flow. Control
Dependency Graph (CDG) [18] is a directed tree where ver-
tices are program statements and each vertex have control
dependency on parent vertex. It is generated by analyzing
AST. If there is a relationship between nodes Sa and Sb, i.e.
Sa-> Sb. By analyzing node Sa, it can be analyzed if node
Sb will be executed. Program Dependency Graph (PDG) [18]
consists of two subtypes of graph mainly control depen-
dence graph (CDG) and data dependence graph (DDG). Code
Property Graph (CPG) [18] is a combination of AST, CFG,
PDG. The different types of feature representation is shown in
Figure 4. AI models cannot interpret text as it is, in order for
the text to bemachine readable, features need to be vectorized
using feature vectorization technique. The source code or
intermediate code to be fed to the AI based model need to
be vectorized using technique based on syntactic represen-
tation and semantic representation. Syntactic word represen-
tation does not capture words like ‘‘airplane’’, ‘‘aeroplane’’,
‘‘plane’’ and ‘‘aircraft’’ are often used in same context. Few
types which are the current trends are N gram, Bag-of-words,
TF-IDF, Word2Vec, etc. In N-Gram [19] set of n-word which
occur in that order in the dictionary of words. It is common
to use 1-gram, 2-gram, and 3-gram vector representation.
The Bag-of-words (BoW) model [20] in turn is called as
1-gram representation. But it loses the order information of
the words. It is used in NLP, document classification and
retrieval in Machine learning etc. In Term Frequency-Inverse
Document Frequency (TF-IDF) [21] it tells the frequency
of the word in the dictionary. Inverse document frequency
allots higher weights to word with higher or lower frequency
term.

Word embedding is mapping of each word or phrase from
dictionary to vector of n dimension. Mainly three differ-
ent vectorization techniques are discussed here. Most of the
literature work reviewed has used word2vec model. Other
reviewed vectorization technique in this study is shown in
Figure 5.

VOLUME 10, 2022 75639



Pooja S et al.: Developer’s Roadmap to Design Software Vulnerability Detection Model Using Different AI Approaches

FIGURE 3. Key aspects of vulnerability detection model.

FIGURE 4. Different feature representation techniques used in AI based vulnerability detection model.

In addition to it the paper will discuss Index-based vec-
torization, Count vectorizer. The Index- based vectorization
is the simplest method, wherein each word takes each num-
ber. Thus, different words take different number. So, codes
which contain multiple words contain vectors of numbers,
which then has to limited or padded to some threshold value,
because classification model takes fixed size vectors. Count
Vectorizer counts the frequency of the word in the entire
training dataset. It is similar to bag-of-words. Vector length
here will be total number of words in the dictionary. But it
loses the order of word information. Word2Vec [22], [23]
uses shallow neural network with hidden layers such as
continuous bag-of words (CBOW) [24] and Skip-gram [19]
model to create high dimension vector for each word. CBOW
uses multiple word for a given target of words. Continuous
skip-gram model predicts current word based on context.
CBOW and continuous skip-gram keep syntactic and seman-

tic information of sentences. In FastText [25] each word is
represented using bag of character n-gram. Example for the
given ‘‘word’’ and n= 3. Tri-grams may represent wo, or, rd,
wor, ord. It uses Skip-gram model with default parameters.
In Global Vectors forWord Representation (GloVe) [26] each
word is represented by high dimension vector and trained
based on nearby word over huge dictionary. Pre-trained word
vectorizations can have 100, 200 or even 300 dimensions.

Once the vectorized tokens are extracted it is fed into the
algorithms based on AI approaches. AI Models can detect
vulnerabilities at varying granularity levels. Granularity of
code varies from coarse granularity to finer granularity is
shown in Figure 1. Coarse granularity again needs depen-
dency on human expertise for pinpointing vulnerability loca-
tion. It can vary from release level [27]–[29], file level [30],
package level [14] to program level [31], [32]. Finer granu-
larity can pinpoint vulnerability varying level ranging from

75640 VOLUME 10, 2022



Pooja S et al.: Developer’s Roadmap to Design Software Vulnerability Detection Model Using Different AI Approaches

FIGURE 5. Different feature vectorization techniques used in AI based
vulnerability detection model.

FIGURE 6. Varying granularity levels during vulnerability detection of
source code analysis.

function level, to code fragment [10,28,33], to statement
level and to the finest granularity, to token level [33], [34],
[35]. Figure 6 represents the granularity for program source
code analysis which can be achieved by vulnerability detec-
tion model based on conventional machine learning algo-
rithm or deep learning algorithm or graph neural network
algorithm.

Metrics used for Evaluation [36] considered for evaluating
the proposed work are Precision, accuracy, recall, ROC curve
and Kappa Statistics. The system should aim for low False
Positive Rate and False Negative Rate and high Precision(P),
Recall(R) and F1 measure(F1).

1) True Positive (TP) Rate [36] ratio of actual positives,
which are predicted as positives. It is given using
equation (1) [36], where tp is true positive and fn is
false negative. Former in vulnerability context indicates
detecting vulnerability when vulnerability exist in the
system and latter indicates it does not detect condition
when vulnerability exist in the system.

TPRate =
tp

tp+ fn
(1)

2) False Positive (FP) Rate [36] ratio of negative instance
which are incorrectly labelled as positive. In vulner-

abilities context, it can be termed as non-vulnerable
instances which are termed as vulnerable. It is repre-
sented using equation (2) [36]

FPRate =
fp

tp+ fp
(2)

3) Precision [36] is the positively predicted instances
which are actually classified as positive. It can be given
using the equation (3) [36]

P =
tp

tp+ fp
(3)

4) Recall [36] is the ratio of predicted vulnerabilities that
are actually vulnerable to the total number of vulner-
able classes in the system. It is given using equation
(4) [36]. Higher Recall means a smaller number of vul-
nerabilities which goes undetected. Recall is directly
related to increase in FP rate.

R =
tp

tp+ fn
(4)

5) F-Measure [37] is weighted average of precision and
recall. It gives equal weightage to both precision
and recall using harmonic mean. The formula for
F-Measure is given in equation (6) [37] as follows:

Fβ =
(β2 + 1)Precision× Recall
β2 × Precision+ Recall

(5)

where β balances between Precision and Recall.
If β = 1, indicates F1 measures equivalent to har-
monic mean of precision and recall. If β > 1 it is
more oriented towards precision else it is favoring
recall.

6) kappa statistics relates observed accuracy with
expected accuracy. It helps in evaluation classifiers
among themselves. It is presented using equation (6),
where Pr(a) and Pr(e) is observed agreement among
experiments and latter is hypothetical probability of the
raters.

k =
Pr(a)− Pr(e)
1− Pr(e)

(6)

7) Receiver Operating Characteristics (ROC) [36] Curve
it analyzes the performance of the system in terms of TP
rate and FP rate. It is used for organizing, visualizing
and measure performance.

8) Intersection over Union (IoU) [38] is to evaluate the
location precision of vulnerability detector. It is rep-
resented by equation (7) [38], where U indicate set of
truly vulnerable code and V is detected set of vulnera-
ble lines.

IoU =
U ∩ V
U ∪ V

(7)

9) Matthews Correlation Coefficient (MCC) [39] predicts
the degree to which the predicted model matches with

VOLUME 10, 2022 75641



Pooja S et al.: Developer’s Roadmap to Design Software Vulnerability Detection Model Using Different AI Approaches

the ground truth labels. It is represented using equation
(9) [39].

temp= (TP+ FP)(TP+ FN )(TN + FP)(TN + FN )

(8)

MCC =
(TP× TN − FP× FN )

√
(temp)

(9)

III. REVIEW OF THE KEY ASPECTS OF VDM BASED ON
DIFFERENT AI APPROACHES
A. KEY ASPECT OF VDM ON MACHINE LEARNING MODEL
Key aspects such as feature representation, feature vector-
ization, granularity level, metrics used for performance eval-
uation is elaborated in this section. For machine learning
based model, metrics or textual based input is used as fea-
ture representation. Fig 7 represents techniques used in keys
aspects of an automated vulnerability detection model sys-
tem based on ML model. Software metrics, such as class
level and method level metrics are derived using Understand
Tool [40] which is used in research work [14], [41]. This
tool in addition to having the set of standard metrics also can
perform vectorization of this metrics presented in the tool.
Thus, it a compact tool which present metrics and generate
vector for the corresponding metrics. The only drawback is
this tool is it can be used for java source code only. [34]
uses deep learning for representation of feature and feature
vectorization. The technique used is CBOW [23] for feature
representation and LSTM for feature vectorization. Thus,
such type of feature representation and vectorization is able to
achieve more inter-sequence information which Understand
tool lacks. For collecting feature metrics, Understand tool is
used for both [41] and [14].Metrics at class, function, project,
package level can be extracted. After the feature metrics
is extracted, [14] used manual labelling which may have
caused the work to have less accuracy, since manual labelling
requires domain experts. [41] used already labelled instances
from the Apache Release dataset [42]. Stanford SecuriBench
dataset [43] used ESVD tool [44] to identify vulnerable
classes and methods. Autor [41] performed Mann-Whitney
U test [36] to identify significant set of metrics. Hence the
accuracy of prediction is better than [14]. The ML model is
able to achieve only a binary classifier but with finer gran-
ularity if combined with deep representation learning [34].
The limitation of [34] is that, this deep learning representation
is used to detect only two types of vulnerabilities based
on C/ C++ program code which are buffer overflow and
resource management error. Another advantage of [34] over
the other two current trends is that the [34] has used ensemble
classifiers instead of experimenting with different conven-
tionalML algorithms. [34] uses Logistic Regression (LR) and
MultinomialNB(NB) as base classifiers and Random Forest
as the final classifier. It can also be observed that granularity
level achieved by [34] is word level, compared to class level
and method level obtained in [41] and [14] respectively.
ML model could only achieve to produce a binary classifier,
which classifies the code as secure or vulnerable. Thus, fur-

ther effort is required to achieve a multi-class classifier since
that can effectively reduce the effort of developer.

1) REVIEW OF RELATED WORKS
The detailed review of software vulnerability detection
model on machine learning is discussed and it is presented
in Table 7. [41] aims to predict vulnerability for java
projects at two levels of granularity, class level and function
level using supervised ML algorithm like Support Vector
Machine (SVM) and Logistic Regression (LR). The dataset
consists of ApacheTomcat [42] releases 6 and 7, Apcahe
CXF [45] and Stanford SecuriBench dataset [43]. The apache
dataset can be found in [46]. The work predicts that class
level metrics is able to classify dataset with better precision
in dataset [45] and [43]. The dataset was not balanced hence
a classBalancer filter [47] in WEKA 3.8 is applied which
reweighs the instances in the data. The metrics for class level
and function is extracted using commercial tool called Under-
stand 4.0 [40]. [41] makes use of software metrics, Avg-
Cyclomatic [48] which averages the McCabe’s cyclomatic
[48] complexity metric for class level and for method-level
software metric which include structural complexity of func-
tions, dependency on other method, parameters, return types
it uses Max-Nesting [49]. The work is binary classifier. And
is evaluated using metrics like precision, recall, accuracy.

[14] uses 32 supervised machine learning algorithm and
focusses mainly on 3 types of vulnerabilities. The work
is validated using tenfold cross validation and other sta-
tistical parameters like ROC curve, Kappa statistics [36],
Recall, Precision. The feature metrics are selected at project,
package, method and class level. It makes use of all the
object-oriented metrics obtained from Understand Tool [40]
developed by Scitools. Some of the metrics used are Avg-
LineCode, CountClassBase, CountCoupleCoupled, Count-
ClassDerived, CountLineCode and so on. Out of 32 algorithm
J48, AdaBoostM1 and Local weighted Learning (LWL) are
the best performers. J48 algorithm implements C4.5 decision
tree. The dataset used is from previous work [50] and is
balanced using stratified sampling.

[34] proposes for an automated vulnerability detection
model using deep representation learning and ensemble clas-
sifiers [51]. Source code is tokenized into code sequence
which consist token, its preceeding token and succeeding
token. This token is vectorized using non- static embedding,
namely continuous bag-of-words (CBOW) [23]. The word
vectors are fed into concatenated Convolutional Neural Net-
work (CNN) [52] and LSTM. The features created will learn
more structure and semantics of data. These features are
trained using ensemble classifiers [51] which are stacked in
two stages. Stage 1 contain Logistic Regression (LR) and
Multinomial Naïve Bayesian (MNB). This stack 1 output
is fed as input to stack 2 which contain Random Forest
Classifier. The work has tried to achieve low false positive
and whilst maintaining a high recall rate. Dataset used for
the proposed work includes from [1], [53], [54] for training,
testing and validation. Also, the model is a binary classifier.

75642 VOLUME 10, 2022



Pooja S et al.: Developer’s Roadmap to Design Software Vulnerability Detection Model Using Different AI Approaches

FIGURE 7. Represents specification of the key aspect of VDM based on ML model.

2) DISCUSSIONS
The most performing ML based VDM employs J48 algo-
rithm, with class level metrics vectorized using Understand
Tool. Though it is said that ensemble classifiers perform
better than conventional ML algorithm, it is not so, as is
proved by [14]. But it is also to be noted that, when using con-
ventional algorithm, using feature representation and vector-
ization using word2vec+ CNN based representation learning
helps the conventional ML algorithm to perform better as
shown in the work [34]. Least performing ML algorithm
is LR based VDM model which takes only input from
Word2Vec. Also, the metrics generated from Understand tool
performs better than Word2vec for conventional ML algo-
rithm. This comparison is shown in Figure 8 which shows
comparison of performance based on F1 and Recall score
from the literature’s considered for this work shown via
Table 2.

B. KEY ASPECTS OF VDM ON DEEP LEARNING MODEL
Main difference between machine learning and deep learning
is, former is probabilistic and latter is deterministic. Existing
solutions rely on human experts for feature extraction and
selection. DL relives humans of such a tedious task which
is error prone, time consuming and require efficient human
expertise. Deep learning is popular in vulnerability detection
since it alleviates from manual feature detection and extrac-
tion process. Deep learning is successful in image processing
and natural language processing using models on Recurrent
Neural Network (RNNs) [55], Convolutional Neural Network
(CNNs) [52] and Deep Belief Network(DBN) [56]. Fea-
ture representation used for DL models is mostly sequence
based representation. Sequence based feature representa-
tion makes use of features such as sequence of statements,
function call execution etc. [57] makes use of code gadget
along with employing and comparing different vectorization

method such as index-based, count vectorizer, and word2vec.
Code gadget is generated from data flow-based analysis of
code. [58] uses refined technique of code gadget for feature
representation i.e. code attention which captures data depen-
dence and control dependence relation. [33], [59] makes use
of syntax based vulnerability candidate (SyVC) and sematics
based vulnerability candidate(SeVC). SyVC is piece of code
that bears some vulnerability generated by AST of program
source code. SeVC is generated from intermediate code based
on SyVC. SeVC capture semantic information induced from
data dependency and control dependency graph. The DL
models incorporates parser like clang [60] and joern’s open
source tool [16] to extract the AST or CFG from C/ C++
programs. These graph representation of program is vector-
ized using Word2vec tool. The vectorized token is then used
to train DL model based on RNN and CNN. Usually it is
observed that variants of RNN like BLSTM and BRNN is
mostly used in existing literature work. The advantage of DL
is higher accuracy, finer granularity [33], [58] and ability to
map multiclass vulnerability [33], [58] which ML and GNN
based vulnerability detector system fails to achieve. The only
limitation is that the work on DL based VDM on java projects
is not much explored. It can be attributed to absence of well
labelled java open source projects with real projects. Figure 9
represents an automated vulnerability detection system based
on DL model with the techniques used for each key aspect.

1) REVIEW OF RELATED WORKS
The detailed review of software vulnerability detectionmodel
on deep learning model is discussed and it is presented
in Table 8. [33] aims for deep learning-based vulnera-
bility detector for C programs source code. It offers an
improvement of 9.8%, 7.9%, 8.2% on F-1 measure, FP-rate
and FN-rate respectively when compared with [59]. The
system uses intermediate representation of code and uses

VOLUME 10, 2022 75643



Pooja S et al.: Developer’s Roadmap to Design Software Vulnerability Detection Model Using Different AI Approaches

FIGURE 8. Comparison of ML VDM based on F1 and Recall score for the key aspects of VDM.

TABLE 1. Comparison of literature survey work with the proposed work.

FIGURE 9. Represents specification of the key aspect of VDM based on DL model.

vulnerability syntax characteristics implemented in [59].
It further adds intermediate code representation component
to the output of [59]. It is followed by labelling the inter-
mediated code from as vulnerable or not, with line loca-
tion precision. The work uses Abstract Syntax Tree (AST)
[17] representation for retrieving syntax characteristics of
vulnerabilities. This intermediate code is fed into compiler
to generate intermediate representation (IR) files. It accom-

modates extra semantic information, uses the notion of
granularity refinement to pin down locations of vulnera-
bilities. A word embedding method is used to the encode
IR to vectors. The work has used Lower Level Virtual
Machine(LLVM) [61] intermediate code and dg [62] to
represent and define dependence relation between the IR
files. The work uses Bidirectional LSTM(BLSTM) and Bidi-
rectional GRU(BGRU) for accommodating preceding and

75644 VOLUME 10, 2022



Pooja S et al.: Developer’s Roadmap to Design Software Vulnerability Detection Model Using Different AI Approaches

subsequent statements required for vulnerability detection.
Further BRNN is extended with extra three layers of ie mul-
tiply, k pooling, and average pooling layer represented by
‘‘vdl’’. Thus BRNN-vdl achieves token level finer granularity
with an F-1 measure of 97.22. To deal with imbalanced
dataset it uses under-sampling method Near Miss-2 [63] and
oversampling method SMOTE [64]. It uses NVD [1] and
SARD [53] dataset. The disadvantage of the work is that it
requires to compile source code into intermediate code, and
cannot be used when a source code is not available or cannot
be compiled. It only support C. It cannot accurately detect
vulnerabilities that depend on dynamic information during
program running. [59] is a vulnerability detection model for
C/C++ source code programs. It detects 15 vulnerabilities
from 4 datasets. The DL model is based on Bidirectional
Gated Recurrent Unit (BGRU), which is more efficient than
unidirectional RNN, CNN and even DBN. The system makes
use of syntactic and semantic information through Abstract
Syntax Tree (AST) [17] and Control flow Graph (CFG) [18].
CFG is defined using data dependency graph [18] and control
dependency graph [18]. Program slices are retrieved from
syntax and semantic retrieval of source. These slices are
vectorized using user defined algorithm. It generates a binary
classifier labelling vulnerable code as 1 and 0 otherwise (non-
vulnerable). Also, the system is a binary classifier, thus it
is not labelling what kind of vulnerability the code slice
has, which in turn needs the intervention of human expertise
to identify the specific vulnerability type which is a major
limitation in this work. The reason for binary classification
is attributed to code slice granularity achieved by the work,
which results in imbalanced dataset. Its F1 is only 84.4% and
it can be attributed that the work does not consider important
code characteristics such as complexity which correlate with
vulnerabilities. The neural networks take a fixed size vector
as input, but on the other hand, the token number in each
source entity (slice or function) may be different which leads
to loss of information. Though it has significant improvement
upon [38], i.e. a F1- measure is 86% and false positive rate
of 10.1% and false negative rate (FN-rate) of 12.2%. This
is attributed to inaccurate analysis of cross file dependence
analysis of user defined or system define header files.

[65] It uses BLSTM neural network to detect software
vulnerability. The input to vulnerability detector is code gad-
get, which is set of lines which may not sequentially occur
but may be semantically related. To transform these tokens
into vectors word2vec tool [66] is used. It produces only
binary classifier. It has finer granularity but lacks mapping
to specific vulnerability type. It uses only data dependent
features to capture vulnerability characteristic. In the work
[58] author has tried to pinpoint the vulnerability location
along with multiclass labelling of the vulnerabilities found.
It captures both data dependent features as well as con-
trol dependent features to effectively contextual information
referred to as global semantics. To further localize the vul-
nerability, code attention mechanism is also used to capture
local semantics. These global and local semantics are fused

together and fed into BiLSTM networks to produce a multi-
class vulnerability classifier. Code attention is an additional
feature adopted from the work [65]. Code slice captures data
dependency relation and control dependency relation. Code
attention captures information specific to statement indicat-
ing arguments/parameters in a function call or API call. The
systemmodelled using Bidirectional Long Short-TermMem-
ory (BiLSTM) model. [65] detects vulnerability at multiple
levels of line. But the system discovers vulnerabilities of only
API/library calls. It uses only semantic information generated
from data dependency graph. The work uses only one DL
model based on RNN i.e. Bidirectional Long Short-Term
Memory (BLSTM). Also, it targets only 2 types of vulnera-
bilities. [35] uses hybrid neural network i.e. combining CNN
and RNN for efficient learning of local and global features
for feature extraction and learning process. The source code
is first converted to LLVM intermediate representation. This
LLVM IR is in the form of Static Single Assignment(SSA).
SSA provides explicit use-define chain and control depen-
dency in the context. It uses Word2Vec embedding for vec-
torization of tokens. This is fed into hybrid neural network.
It uses only SARD dataset for experimentation [53]. The
work aims for inter-procedural statement level granularity.
Thus, the vulnerability detector can detect in-project vulner-
ability. The work requires labelled dataset hence NVD [1]
cannot be used since it provides only difference between the
sample and patches. Thus, a rich labelled dataset is required
for the working of this model. In draper [67] dataset labelling
is done using static analysis which has problem of high
false positive rate. Hence is not used for the performance
evaluation of the work. The work is applicable to only C
program source code which can be compiled. And not to
other language, though the methodology may be adopted to
other languages. [57]compares deep learning and machine
learning algorithm and check the accuracy of vulnerability
detected by different algorithm of each model. The work also
compares different text vectorization technique which is used
to generate vectors from code gadget. Code gadget is in turn
generated using data flow analysis of the source code. [68]
The system uses deep learning to extract the features and use
deep learning algorithms to for prediction of vulnerabilities.
The work uses C/ C++ source codes which is tokenized at
slice level. It uses word embedding based on Fasttext using
Fasttext tool [69]. But the system has slightly higher false
positive rate compared to the obtained value of FNR and
it not able to explain the reason for the same. Also, the
work is only aiming for a binary classifier with code slice
granularity. [70] is DL based classifier for VDM based on
java source code. The method in itself has devised two types
of models with different method for comparison. One model
used AST to represent features and word2vec for feature
vectorization. Whereas another model uses AST but BERT
for feature vectorization. Thus, evaluated the performance
of both the model. The system makes use SARD, NVD and
Github which consist pf combination synthetic and semisyn-
thetic code snippets. The work has used VulFind tool to label

VOLUME 10, 2022 75645



Pooja S et al.: Developer’s Roadmap to Design Software Vulnerability Detection Model Using Different AI Approaches

the vulnerable code. Code from Github is mostly labelled via
the tool. The work covers 118 CWE vulnerability types. [71]
uses JavaLang Tokenizer [72] to tokenize the source code
collected from Juliet dataset. This tokenized vector is fed into
LSTM model to be classified. The work targets 29 type of
vulnerability.

2) DISCUSSIONS
The most commonly used feature vectorization technique in
DL VDM is Word2Vec. Code gadget and Graphical repre-
sentation can both be used to represent features. The most
commonly used algorithm in DL VDM is BLSTM. But its
performance is not in par with [35] which uses a combination
of CNN and RNN titled as Hybrid neural network. Moreover
it is noted that instead of using graphical representation, code
gadget representation performs better compared to Graph
based feature representation. DL model is the only model in
this literature review which have explored various vectoriza-
tion techniques (count vectorizer, BERT, FastText). FastText
Vectorization seems to give almost the same performance ad
Word2Vec. Thus FastText can be further explored with other
type of DL models to study its performance for VDM. This
is derived from the Table 3 and is represented in graph using
Figure 10.

C. KEY ASPECTS OF VDM ON GNN MODEL
Source code can be represented in many forms of graph like
abstract syntax tree, control flow graph, data dependency
graph etc. Thus work [31] is carried out on possibility of
neural network to understand relationship between nodes and
edges and can be extended for vulnerability detection system.
Graph neural network (GNN) [25] has seen its implications in
logic reasoning [73], code categorization [31], [74], variable
prediction of code [75]. Thus, it was implicit to extend GNN
in the field of cyber security domain of software vulnerability
prediction. GNN is a class of DL models. It is an advanced
variant of ANN model. GNN has work based on only C or
only java projects. Whereas DLmodels are more proficient in
C/C++ based java programs. The parser used in the existing
work are open source tool namely, Joern’ s [16] open source
tool and clang tool [60] for C/ C++ programs. For generating
graph for java source code open source tool, PROGEX [28].
It was designed and implemented based on ANTLRv4 [76]
parser generator. PROGEX extracts graph such as AST, CFG
and PDG with high speed in output formats like DOT, JSON
and GML. Thus GNN based VDM represents features in
using Graph based feature representation. For vectorization
Word2vec, Doc2Vec or TF-IDF is used. But new vectoriza-
tion technique such as Fasttext and GloVe can be explored
to get an increase in accuracy rate in GNN based models.
Much work is required in vulnerability detector model based
on GNN to produce finer granularity at code slice or word
level. The work reviewed here all are binary classifier which
is again a tedious task for developer to find which vulner-
ability type the source code exhibit. The other advantage is
that GNN and ML based VDM have mix of work based

on both C and java projects, whereas DL needs to exploit
its technique on java projects. The GNN explicitly focus
on C based programming language and not on C++. Thus,
future research work can focus on dataset with C++ source
code and aim for word level granularity. Figure 11 represents
a generalized working model of GNN based vulnerability
detector with the techniques incorporated for key aspects in
VDM model.

1) REVIEW OF RELATED WORKS
The detailed review of software vulnerability detectionmodel
on graph neural networkmodel is discussed and it is presented
in Table 9. [31] uses C programs source code from three
datasets [67], [77], [78]. The features are presented using
code property graph (CPG) [79]. CPG is a union of AST,
CFG and PDG graph. Then word2vec is used to vectorize the
graph nodes. Thus, the code graph vector is fed to the GNN
model which learns vulnerabilities and establishes relation-
ship between nodes and edges. The work uses Gated Graph
Neural Network (GGNN) [73] model has shown good results
in Juliet [77] and S-bAbL [78]. On draper dataset [67] F1 is
0.5 and average Precision is 0.4. The model compares with
conventional MLmodel namely Random Forest (RF) and DL
models like RNN andCNN.GGNNhas performed better than
both ML and DLmodels with F1 0.99 and F1 0.87 in S-bAbL
and Juliet dataset respectively. The work proposed has not
mentioned about granularity level which is open for future
research work.

[32] The work aims to evaluate the effectiveness of GNN
for program vulnerability analysis. The work has used both
Graph Convolutional Network (GCN) [80] and Graph Atten-
tion Network (GAT) [81]. To evaluate GNN models, work
is compared with static analysis tool like Spot Bugs [82] and
conventionalMLmethods like RandomForest (RF) ensemble
learning model. GCN has better accuracy compared to GAT
since GAT has better learning capacity which can be used for
learning cross-project analysis. Two vectorization technique
is compared namely, TF-IDF and Doc2Vec [83]. Doc2Vec
is an extension of word2vec which instead of word maps
sentences, paragraph or full documents to target vectors.
It is learned that TF-IDF is highly dependent on dimension.
Smaller dimension size vector has better accuracy for TF-IDF
which cannot be said for doc2vec model. The work has
performed code normalization and compared the results and it
is found that code normalization has negative effects on both
GNN models. It is aligned with the work of [84]. It is found
that for in- project analysis GCN has excellent performance
than baseline model. GAT performs well for cross-project
analysis since GCN suffers from overfitting problem. Also,
TF/IDF is more reliant compared to Doc2Vec for in project
analysis. System trains model for individual vulnerability and
perform metric evaluation, which is not efficient because of
time consumption requirement for training model on each
type of vulnerability. Also, the author has not mentioned
about the granularity level aimed for the proposed binary
vulnerability detector. The advantage of the system is existing

75646 VOLUME 10, 2022



Pooja S et al.: Developer’s Roadmap to Design Software Vulnerability Detection Model Using Different AI Approaches

TABLE 2. Comparison of performance of ML based VDM based on F1 and recall score.

FIGURE 10. Comparison of DL VDM based on F1 score for the key aspects of VDM.

FIGURE 11. Represents techniques used in the key aspect of VDM based on GNN model.

work aim for C/C++ program, but the author has tried on java
programming language dataset for which they have released
an open source tool PROGEX [85] to generate AST, CFG,
DDG for analysis.

[86] aims to address vulnerability at function level during
version changes commit. The work feeds AST with node

embedding and model GNN on it. The work uses GCN
and GraphSAGE [80], [87] based GNN model. To evaluate
the efficiency the work compares with CNN, SVM model,
RF model. It uses Wireshark [88] dataset which is written in
c programs and contains over 80 k commits. The system is
validated only in one dataset and is limited to c programs.

VOLUME 10, 2022 75647



Pooja S et al.: Developer’s Roadmap to Design Software Vulnerability Detection Model Using Different AI Approaches

TABLE 3. Comparison of performance of DL based VDM based on F1 score.

TABLE 4. Comparison of performance of GNN based VDM based on F1 score.

Thus, it can be implemented or tested on different dataset
[1,24] for validity of the predictor. Moreover, system aims for
binary classifier and granularity of token level. Thus, there is
scope for increasing the granularity level and to come up with
a multiclass classifier.

[29] model uses gated graph recurrent network (GGRN)
model for learning the features which uses combination of
AST, CFG, DFG and Natural code sequence (NCS). The
model aims for function level granularity operating in C
projects. First code is vectorized using Word2vec model
and fed to GGRNN model and predictions are made using
multi-layer perceptron (MLP). The work is done on manu-
ally labelled function dataset collected from 4 large C open
source projects that are popular and diversified, namely Linux
Kernel, QEMU, Wireshark and FFmpeg and is published for
open access in [89]. Thus, this manual process consumed
almost 600 Man hours to perform two round data labelling
and cross-verification. With all this effort the work is only
able to provide a coarse granularity at function level with
a binary classifier. [90] suggest the use of Bidirectional
Graph Neural-Network(BGNNN) by using sematic informa-
tion constructed through AST, CFG, data flow graph (DFG)
to represent features. CNN is used to further extract fea-
tures.manually detects 2149 vulnerabilities and 3867 vul-
nerable function. It collected C/C++ open source projects
(i.e. Linux Kernel, FFmpeg, WireShark, and Libav) from two
sources i.e NVD [1] and Github. The proposed work has
achieved higher precision and accuracy. [9] utilizes word2vec

embedding for encoding features extracted from AST, CFG,
DFG. The work is based on 3GNN which uses Crystal
Graph Convolutional Networks (CGCN) and Self Atten-
tion Graph(SAG) Pooling. The work makes use of Draper,
QEMU+ FFmpeg dataset. Model has a comparison between
BiLSTM, CNN, GGNN, 3GNN. The performance of the
model is enhanced by squeezing Random Forest to the final
extracted features. [91] uses dataset (i.e. QEMUand FFmpeg)
from dataset [89]. Features are represented as raw tokenized
source code with embedding generated from codeBERT [92]
and Graph- codeBERT [93]. The model is trained using
GCN and GGNN model. [94] uses Big-Vul dataset and D2A
dataset. The source code is represented using SIR graph
which combine code property graph(CPG) and natural code
sequence(NCS). The model is trained using GAT with atten-
tion mechanism with an accuracy of 95%. [95] uses CFG and
Value flow Graph(VFG) for representing source code. From
the code graph program slice is interest is extracted and is
vectorized using Doc2Vec and fed into kGNN. The parameter
k is set to 3. The dataset used in SARD and two real world
dataset namely redis [96] and lua [97]. [98] extracts control
flow dependencies and data flow dependencies from C/C++
projects using joern tool. It achieves statement level granular-
ity. The work has explored Doc2Vec, GloVe, CodeBERT vec-
torization techniques. GNN models used are GAT, GCN and
91 vulnerability types are learned to produce a binary classi-
fier. It uses labelled datasets such as Fan [99], Reveal [100]
FFMPeg+QEMU [89].

75648 VOLUME 10, 2022



Pooja S et al.: Developer’s Roadmap to Design Software Vulnerability Detection Model Using Different AI Approaches

FIGURE 12. Comparison of GNN VDM based on F1 score for the key aspects of VDM.

TABLE 5. Vulnerability coverage provided by dataset for specific programming type.

2) DISCUSSION
In GNN based VDM, it is inevitable to carry out the vul-
nerability detection without extracting CPG of the source
code. It can be interpreted from the comparison graph gen-
erated from considering F1 score of the reviewed articles.
Comparison graph is shown in Figure 12. This graph is
generate from Table 4. Other metrics are not considered since
many work has not mentioned the Recall, accuracy or FPR
or FNR. Hence the most used metric, using F1 score the
graph is generated and these observations are derived. CPG
is a combination of AST, CFG and PDF graph. Input to
GNNmodel works better when feature representation is CPG.
Most of work usesWord2Vec feature vectorization which has
improved performance compared to vectorization technique
based on BERT algorithm. In GNN VDM model, GGNN is
performing better than most commonly used GNN model i.e.
GAT and GCN. It can be attributed to the fact that the existing
work has explored GAT and GCN with vectorization tech-
nique like CodeBERT and Doc2Vec. The lower performing
model uses Code BERT algorithm for feature vectorization
which uses PDG and CDG only. It can be concluded that
GNN based VDM require CPG for feature representation.
VDM can make use of Word2Vec or Doc2Vec as feature
vectorization technique, CodeBERT doesnot seem to perform
better for GNN model. For GNN based VDMmodel, GGNN

works the best and GCN performs the worst. Most commonly
used GNN models are GAT, GCN further work needs to be
explored with word2vec and doc2vec feature vectorization
technique and their performance need to be evaluated.

D. REVIEW OF DATASET CONSIDERED FOR TARGETED
VULNERABILITIES
The proposed work has selected literature which has focused
on Java and C/C++ and C program based open source
projects. For C/C++ or java programs, the dataset used
is based on National Vulnerability Database (NVD) [1]
and Software Assurance Reference Dataset (SARD) [53]
dataset. Both have a labelled dataset of source code and its
corresponding vulnerability type. The details of the dataset
used for the considered work is listed in Table 10. The
table presents the dataset link, type of programming lan-
guage considered, whether the dataset contains synthetic or
semi-synthetic or real world projects. The Labelled field
indicates that the dataset is labeled using static analysis tool or
is labelled with predefined pattern or manually labelled using
human expertise.

1) DATASET FOR C/C++ PROGRAMMING BASED PROJECTS
NVD contains vulnerabilities of software in production,
whereas SARD is a standard dataset used to test vulnerability

VOLUME 10, 2022 75649



Pooja S et al.: Developer’s Roadmap to Design Software Vulnerability Detection Model Using Different AI Approaches

TABLE 6. Research gaps in the literature’s considered for the study.

detection tools on software errors. In NVD each vulnera-
bility is coined with unique identifier called by the term
common vulnerabilities and exposure identifier (CVE ID).
Vulnerabilities logged in SARD is identified by the term
common weakness enumeration identifier (CWE ID). The

two most common vulnerabilities considered from dataset
NVD and SARD for the research works, [34] and [65] are
buffer overflow identified with CWE-119 and resource man-
agement error (CWE-399). [33], [59], [68] uses collected
and labelled C/C++ program source code from [43], [45]

75650 VOLUME 10, 2022



Pooja S et al.: Developer’s Roadmap to Design Software Vulnerability Detection Model Using Different AI Approaches

TABLE 7. Key techniques used in VDM based on ML model.

TABLE 8. Key techniques used in VDM based on DL model.

which is publicly available in SySeVR dataset [54]. The
collected instances contain labelled instances with vulnera-
bility type such as Function call (FC), Array Usage (AU),
Pointer Usage (PU), Arithmetic Expression (AE). [57] also
makes use of dataset [43], [45] for C/C++ programs target-
ing buffer error vulnerabilities (CWE 119), resource manage-
ment error vulnerabilities (CWE 399), and improper resource
lifetime control (CWE 664). [35] uses only SARD dataset
and uses 11 type of vulnerabilities’ for training the model.
These are CWE-20, CWE-78, CWE-119, CWE-121, CWE-

122, CWE-124, CWE-126, CWE-127, CWE-134, CWE-
189 and CWE-399. [58] also uses SARD and NVD dataset
with a vulnerability coverage of 40 classes. C/C++ open
source datasets [97] & [96], which contains real-world
projects are not labelled. These datasets are used in [95]
are manually labelled with the help of experienced soft-
ware engineers. These datasets mostly have 10 common
types of vulnerabilities namely CWE-119, CWE-20, CWE-
125, CWE-190, CWE-22, CWE-399, CWE-787, CWE-254,
CWE-400, CWE-78. [98] uses combination of dataset Fan

VOLUME 10, 2022 75651



Pooja S et al.: Developer’s Roadmap to Design Software Vulnerability Detection Model Using Different AI Approaches

TABLE 9. Key techniques used in VDM based on GNN model.

[99], Revealchakraborty2021deep and FFMPeg+QEMU.
FFMPeg+QEMUis already a part of dataset released by [89].
It is used by work [90] along with draper dataset [67]. [94]
uses D2A dataset [101] and Big-Vul dataset [99]. D2A
consist of source code of real world projects and labelled
using static analysis tool, Infer [102]. Big-Vul dataset consist
of 91 vulnerabilities collected from open source projects and
CVE database.

2) DATASET FOR JAVA PROGRAMMING BASED PROJECTS
For collection of java source code programs, work [14]
used source codes downloaded from online Github repos-
itory. [14] targets 3 types of vulnerabilities denoted by
LawofDemeter (V1), BeanMemberShouldSerializeVulner-
ability(V2) and LocalVariableCould-BeFinalVaraible (V3)
published in dataset [50]. Collected source codes are exam-
ined using Programming Error Detector Tool (PMD) for
labelling the collected source code. PMD tool comes as
Eclipse Plugin which detect vulnerability in the source
code which in turn is fed as input to the model expected
to train. [41] collects Java source code from open source
projects like Apache release [42], [45] and Stanford
SecuriBench dataset [43]. The vulnerability reported by
Apache Tomcat report have uniqe CVE-ID, version number,
fixed version details. Some of the vulnerabilities considered
are SQL injections, Information disclosure, Denial of Ser-

vice, Cross-site Scripting, Arbitrary file deletion. The work
considered a total of 91 vulnerable classes by combining the
projects [42], [45] and [43]. [32] which is a GNN based VDM
is based on java source code targeting web application vulner-
abilities. The OWASP Benchmark Project [103] is a synthetic
java test suite, and has two version v1.1 and v1.2 consisting
of 11 classes of labelled vulnerabilities. [32] targets 7 most
common type of vulnerabilities namely, CWE-22, CWE-
78, CWE-79, CWE -89, CWE-90, CWE-501, CWE-643
which denotes Path Traversal, Command injection, Cross-site
Scripting, SQL injection, LDAP injection, Trust Boundary
Violation, XPATH Injection attack.

3) DATASET FOR C PROGRAMMING BASED PROJECTS
GNN based VDM [29] is mostly based on C projects are
retrieved from open source datasets such as Wireshark [88]
dataset and Devign [89] dataset. Devign consist of vulnerabil-
ities collected from 4 open source C librabries namely Linux
Kernel, QEMU, Wireshark and FFmpeg. Thus, [86] has only
limited its dataset on Wireshark and hence can be extended
on test other 3 libraries. [31] collected C program codes from
Juliet [77], Draper dataset [67] and s-bAbL [78]. Juliet consist
of synthetic dataset with labelled classes as good or bad for
non-vulnerable and vulnerable type. Draper dataset consist
of synthetic and well as codes from open source projects like
Debian and Github projects. It has 5 different vulnerability

75652 VOLUME 10, 2022



Pooja S et al.: Developer’s Roadmap to Design Software Vulnerability Detection Model Using Different AI Approaches

TABLE 10. Details of dataset for programming languages considered for
the study.

classes, CWE-119, CWE-120, CWE-469, CWE-476 and oth-
ers (combines other CWEs). s-bAbl dataset is a synthetic
dataset solely for buffer overflow vulnerabilities.

4) DISCUSSIONS
Based on the type of programming languages the datasets
that support maximum and minimum vulnerability coverage
is listed in Table 5 along with vulnerability type and number
of vulnerability targeted.

IV. SUMMARY OF RESEARCH GAPS
Research gaps while reviewing the literature work is listed in
Table 6.

V. CONCLUSION
For vulnerability detector system themost important requisite
are availability of labelled dataset, identify which technique

to use for feature representation and feature vectorization,
expected granularity detection for the vulnerability to be
detected and finally which algorithm should be used to model
the classifier.

For feature representation, instead of using vectorized
token as input which do not capture the context of the
statement it is better to use representations which not only
capture semantic, but also structural information. Thus, rep-
resentation using graphs like LLVM IR, AST, CPG, PDG
is the need of the hour [16], [24]. To provide more infor-
mation to the models under consideration it is also sug-
gested to use word embedding technique instead of just
using frequency-based representation. Embedding provide
high level source code representation while preserving con-
textual dependency. However, frequency-based representa-
tion captures insufficient information on semantic meaning
and contextual dependence of each term. Embedding tech-
nique like word2vec and countvectorizer, fasttext showed
better performance compared to BERT and understand
tool.

The system should aim for finer granularity level as it
lessens the interference of human experts which saves time.
Thus, developers can concentrate more on fixing the vul-
nerability instead of reviewing the code to look for which
code has caused vulnerability. ML model can achieve a max-
imum granularity of word level by using deep representation
learning. The other granularity varies from class level to
function level to project and package level. DL provides the
fines granularity i.e. at token level. GNN model shows the
best granularity at function level. Statement level granulairty
showed by GNN model has very low F1 metric.

ML based VDM have mix of work on java and C/C++
source codes. DL lackswork on Java based source codewhich
can be taken up as future work. Thus, DL based VMD can be
explored on open source java dataset [42], [45], [43], [103].
GNN has mix of work in C program and C/C++ program
based dataset [1], [53], [54] to check its credibility of stated
accuracy. GNNmodels need to be experimented more in java
based dataset, it can be attributed to the fact that there is no
real world java projects based dataset available which is also
labelled. Thus creating a well labelled java dataset for real
world project is also an open problem.

The advanced ML and ANN model like DL and GNN
based vulnerability models have achieved higher vulnerabil-
ity coverage, finer granularity and less false positive. But the
reviewedwork could achieve only 89 to 91%Precision. Thus,
there is enoughwork to be done to improve upon the precision
and recall while focusing finer level granularity at code slice
or token level.

The ML based VDM can be used where coarse granularity
is sufficient and provides a binary classifier. GNN model can
be used when the requirement is for finer granularity which
provides a binary vulnerability classifier. The vulnerability
detectormodels reviewed havemulticlass vulnerability detec-
tor only in DL basedmodel with finer granularity. GNNbased
model which is still in infancy stage can explore on providing

VOLUME 10, 2022 75653



Pooja S et al.: Developer’s Roadmap to Design Software Vulnerability Detection Model Using Different AI Approaches

a multiclass vulnerability detector since aim of automated
vulnerability detector system is to reduce human intervention
and less dependency on human expertise.

REFERENCES
[1] National Vulnerability Database, Nat. Inst. Standards Technol., U.S.

Dept. Commerce, Gaithersburg, MD, USA, Jul. 2009.
[2] Common Vulnerabilities and Exposures, U.S. Dept. Homeland Secur.

(DHS), Cybersec. Infrastruct. Secur. Agency (CISA), Washington, DC,
USA. Accessed: Mar. 18, 2022.

[3] 25+ Cyber Security Vulnerability Statistics and Facts of 2021, Edgescan
Smart Vulnerability Manage., New York, NY, USA, Jan. 2022. Accessed:
Mar. 18, 2022.

[4] A. O’Driscoll, ‘‘2022 vulnerability stats report,’’ Edgescan Smart Vul-
nerability Managementd, New York, NY, USA, Vulnerability Statist.
Rep. 2021, Jan. 2022. Accessed: Mar. 18, 2022.

[5] H. Hanif, M. H. N.M. Nasir, M. F. A. Razak, A. Firdaus, and N. B. Anuar,
‘‘The rise of software vulnerability: Taxonomy of software vulnerabilities
detection and machine learning approaches,’’ J. Netw. Comput. Appl.,
vol. 179, Apr. 2021, Art. no. 103009.

[6] S. Chakraborty, R. Krishna, Y. Ding, and B. Ray, ‘‘Deep learning based
vulnerability detection: Are we there yet,’’ IEEE Trans. Softw. Eng., early
access, Jun. 8, 2021, doi: 10.1109/TSE.2021.3087402.

[7] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, ‘‘Spectral networks and
locally connected networks on graphs,’’ 2013, arXiv:1312.6203.

[8] A. Menzli, ‘‘Graph neural network and some of GNN applications:
Everything you need to know,’’ Neptune Labs, Tech. Rep., Dec. 2021.
Accessed: Mar. 18, 2022.

[9] Y. Zhuang, S. Suneja, V. Thost, G. Domeniconi, A. Morari, and J. Laredo,
‘‘Software vulnerability detection via deep learning over disaggregated
code graph representation,’’ 2021, arXiv:2109.03341.

[10] G. Lin, S. Wen, Q.-L. Han, J. Zhang, and Y. Xiang, ‘‘Software vulnerabil-
ity detection using deep neural networks: A survey,’’Proc. IEEE, vol. 108,
no. 10, pp. 1825–1848, Oct. 2020.

[11] P. Zeng, G. Lin, L. Pan, Y. Tai, and J. Zhang, ‘‘Software vulnerability
analysis and discovery using deep learning techniques: A survey,’’ IEEE
Access, vol. 8, pp. 197158–197172, 2020.

[12] J. Qiu, J. Zhang, W. Luo, L. Pan, S. Nepal, and Y. Xiang, ‘‘A survey
of Android malware detection with deep neural models,’’ ACM Comput.
Surv., vol. 53, no. 6, pp. 1–36, Nov. 2021.

[13] J. Jiang, X. Yu, Y. Sun, and H. Zeng, ‘‘A survey of the software vulner-
ability discovery using machine learning techniques,’’ in Proc. Int. Conf.
Artif. Intell. Secur. New York, NY, USA: Springer, 2019, pp. 308–317.

[14] A. Gupta, B. Suri, V. Kumar, and P. Jain, ‘‘Extracting rules for vulnera-
bilities detection with static metrics using machine learning,’’ Int. J. Syst.
Assurance Eng. Manage., vol. 12, no. 1, pp. 65–76, Feb. 2021.

[15] Checkmarx, Checkmarx Limited, Ramat Gan, Israel. Accessed:
Mar. 18, 2022.

[16] T. Reps, ‘‘Program analysis via graph reachability,’’ Inf. Softw. Technol.,
vol. 40, nos. 11–12, pp. 701–726, Dec. 1998.

[17] R. E. Noonan, ‘‘An algorithm for generating abstract syntax trees,’’
Comput. Lang., vol. 10, nos. 3–4, pp. 225–236, Jan. 1985.

[18] J. Ferrante, K. J. Ottenstein, and J. D. Warren, ‘‘The program dependence
graph and its use in optimization,’’ ACM Trans. Program. Lang. Syst.,
vol. 9, no. 3, pp. 319–349, 1987.

[19] W. B. Cavnar and J. M. Trenkle, ‘‘N-gram-based text categorization,’’ in
Proc. 3rd Annu. Symp. Document Anal. Inf. Retr. (SDAIR), vol. 161175.
Princeton, NJ, USA: Citeseer, 1994, pp. 1–14.

[20] Y. Zhang, R. Jin, and Z. Zhou, ‘‘Understanding bag-of-words model:
A statistical framework,’’ Int. J. Mach. Learn. Cybern., vol. 1, nos. 1–4,
pp. 43–52, Dec. 2010.

[21] K. S. Jones, ‘‘A statistical interpretation of term specificity and its
application in retrieval,’’ J. Documentation, vol. 60, no. 5, pp. 493–502,
Oct. 2004.

[22] T. Mikolov, K. Chen, G. Corrado, and J. Dean, ‘‘Efficient estimation of
word representations in vector space,’’ 2013, arXiv:1301.3781.

[23] Y. Goldberg and O. Levy, ‘‘word2vec explained: DerivingMikolov et al.’s
negative-sampling word-embedding method,’’ 2014, arXiv:1402.3722.

[24] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, ‘‘Enriching word
vectors with subword information,’’ Trans. Assoc. Comput. Linguistics,
vol. 5, pp. 135–146, Dec. 2017.

[25] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,
‘‘The graph neural network model,’’ IEEE Trans. Neural Netw., vol. 20,
no. 1, pp. 61–80, Jan. 2009.

[26] J. Pennington, R. Socher, and C. Manning, ‘‘Glove: Global vectors for
word representation,’’ in Proc. Conf. Empirical Methods Natural Lang.
Process. (EMNLP), 2014, pp. 1532–1543.

[27] T. Zimmermann, N. Nagappan, and L. Williams, ‘‘Searching for a
needle in a haystack: Predicting security vulnerabilities for windows
vista,’’ in Proc. 3rd Int. Conf. Softw. Test., Verification Validation, 2010,
pp. 421–428.

[28] P. Morrison, K. Herzig, B. Murphy, and L. Williams, ‘‘Challenges with
applying vulnerability prediction models,’’ in Proc. Symp. Bootcamp Sci.
Secur., Apr. 2015, pp. 1–9.

[29] Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu, ‘‘Devign: Effective vulner-
ability identification by learning comprehensive program semantics via
graph neural networks,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 32,
2019, pp. 1–11.

[30] R. Scandariato, J. Walden, A. Hovsepyan, and W. Joosen, ‘‘Predicting
vulnerable software components via text mining,’’ IEEE Trans. Softw.
Eng., vol. 40, no. 10, pp. 993–1006, Oct. 2014.

[31] S. Suneja, Y. Zheng, Y. Zhuang, J. Laredo, and A. Morari, ‘‘Learning to
map source code to software vulnerability using code-as-a-graph,’’ 2020,
arXiv:2006.08614.

[32] S. M. Ghaffarian and H. R. Shahriari, ‘‘Neural software vulnerability
analysis using rich intermediate graph representations of programs,’’ Inf.
Sci., vol. 553, pp. 189–207, Apr. 2021.

[33] Z. Li, D. Zou, S. Xu, Z. Chen, Y. Zhu, and H. Jin, ‘‘VulDee-
Locator: A deep learning-based fine-grained vulnerability detector,’’
IEEE Trans. Depend. Sec. Comput., vol. 19, no. 4, pp. 2821–2837,
Jul. 2022.

[34] L. Wang, X. Li, R. Wang, Y. Xin, M. Gao, and Y. Chen, ‘‘PreNNsem:
A heterogeneous ensemble learning framework for vulnerability
detection in software,’’ Appl. Sci., vol. 10, no. 22, p. 7954,
Nov. 2020.

[35] X. Li, L. Wang, Y. Xin, Y. Yang, Q. Tang, and Y. Chen, ‘‘Automated
software vulnerability detection based on hybrid neural network,’’ Appl.
Sci., vol. 11, no. 7, p. 3201, Apr. 2021.

[36] C. J. Willmott, S. G. Ackleson, R. E. Davis, J. J. Feddema, K. M. Klink,
D. R. Legates, J. O’Donnell, and C. M. Rowe, ‘‘Statistics for the eval-
uation and comparison of models,’’ J. Geophys. Res., Oceans, vol. 90,
no. C5, pp. 8995–9005, 1985.

[37] N. Chinchor and B. M. Sundheim, ‘‘MUC-5 evaluation metrics,’’ in
Proc. 5th Message Understanding Conf. (MUC), Baltimore, MD, USA,
Aug. 1993, pp. 1–10.

[38] A. Rosebrock, ‘‘Software assurance reference dataset (SARD) manual
share,’’ PyImageSearch, Tech. Rep., Nov. 2016. Accessed: Mar. 18, 2022.

[39] B. W. Matthews, ‘‘Comparison of the predicted and observed secondary
structure of T4 phage lysozyme,’’ Biochimica Biophysica Acta, Protein
Struct., vol. 405, no. 2, pp. 442–451, 2016.

[40] UnderstandTM Quick Feature List, Sci. Toolworks, Hurricane, UT, USA.
Accessed: Mar. 18, 2022.

[41] K. Z. Sultana, V. Anu, and T.-Y. Chong, ‘‘Using software metrics for
predicting vulnerable classes and methods in Java projects: A machine
learning approach,’’ J. Softw., Evol. Process, vol. 33, no. 3, 2021,
Art. no. e2303.

[42] Apache Tomcat, Apache Softw. Found., Forest Hill, MD, USA. Accessed:
Mar. 18, 2022.

[43] B. Livshits, ‘‘Securibench micro,’’ GitHub, Tech. Rep., Dec. 2014.
Accessed: Mar. 18, 2022.

[44] Early Security Vulnerability Detector, Eclipse Found., Ottawa, ON,
Canada. Accessed: Mar. 18, 2022.

[45] Apache CXFTM : An Open-Source Services Framework, Apache Softw.
Found., New Orleans, LA, USA. Accessed: Mar. 18, 2022.

[46] Welcome to the Archives of the Apache Software Foundation! Apache
Softw. Found., Forest Hill, MD, USA. Accessed: Mar. 18, 2022.

[47] A. Verma, ‘‘Evaluation of classification algorithms with solutions to class
imbalance problem on bank marketing dataset using WEKA,’’ Int. Res. J.
Eng. Technol., vol. 5, no. 13, pp. 54–60, 2019.

[48] T. J. McCabe, ‘‘A complexity measure,’’ IEEE Trans. Softw. Eng.,
vol. SE-2, no. 4, pp. 308–320, Dec. 1976.

[49] W. A. Harrison and K. I. Magel, ‘‘A complexity measure based on
nesting level,’’ ACM SIGPLAN Notices, vol. 16, no. 3, pp. 63–74,
1981.

75654 VOLUME 10, 2022

http://dx.doi.org/10.1109/TSE.2021.3087402


Pooja S et al.: Developer’s Roadmap to Design Software Vulnerability Detection Model Using Different AI Approaches

[50] F. A. Fontana, M. V. Mäntylä, M. Zanoni, and A. Marino, ‘‘Comparing
and experimenting machine learning techniques for code smell detec-
tion,’’ Empirical Softw. Eng., vol. 21, no. 3, pp. 1143–1191, 2016.

[51] J. Cai, J. Luo, S. Wang, and S. Yang, ‘‘Feature selection in machine
learning: A new perspective,’’ Neurocomputing, vol. 300, pp. 70–79,
Jul. 2018.

[52] S. Albawi, T. A. Mohammed, and S. Al-Zawi, ‘‘Understanding of a
convolutional neural network,’’ in Proc. Int. Conf. Eng. Technol. (ICET),
Aug. 2017, pp. 1–6.

[53] Software Assurance Reference Dataset (SARD) Manual Share, Nat. Inst.
Standards Technol. (NIST), U.S. Dept. Commerce, Gaithersburg, MD,
USA. Accessed: Mar. 18, 2022.

[54] J. Vaidya, SySeVR: A Framework for Using Deep Learning to Detect Vul-
nerabilities, Rutgers Univ., Newark, NJ, USA. Accessed: Mar. 18, 2022.

[55] C. Dyer, A. Kuncoro, M. Ballesteros, and N. A. Smith, ‘‘Recurrent neural
network grammars,’’ 2016, arXiv:1602.07776.

[56] G. E. Hinton, ‘‘Deep belief networks,’’ Scholarpedia, vol. 4, no. 5,
p. 5947, 2009.

[57] W. Zheng, J. Gao, X. Wu, Y. Xun, G. Liu, and X. Chen, ‘‘An empirical
study of high-impact factors for machine learning-based vulnerability
detection,’’ in Proc. IEEE 2nd Int. Workshop Intell. Bug Fixing (IBF),
Feb. 2020, pp. 26–34.

[58] D. Zou, S. Wang, S. Xu, Z. Li, and H. Jin, ‘‘µVulDeePecker: A
deep learning-based system for multiclass vulnerability detection,’’
IEEE Trans. Depend. Sec. Comput., vol. 18, no. 5, pp. 2224–2236,
Sep./Oct. 2021.

[59] Z. Li, D. Zou, S. Xu, H. Jin, Y. Zhu, and Z. Chen, ‘‘SySeVR: A framework
for using deep learning to detect software vulnerabilities,’’ IEEE Trans.
Depend. Sec. Comput., vol. 19, no. 4, pp. 2244–2258, Jul. 2022.

[60] Clang: A C Language Family Frontend for LLVM, LLVM. Accessed:
Mar. 18, 2022.

[61] H. Liang, L. Wang, D. Wu, and J. Xu, ‘‘MLSA: A static bugs analysis
tool based on LLVM IR,’’ in Proc. 17th IEEE/ACIS Int. Conf. Softw.
Eng., Artif. Intell., Netw. Parallel/Distrib. Comput. (SNPD), May 2016,
pp. 407–412.

[62] M. Chalupa, ‘‘DG: A program analysis library,’’ GitHub, Tech. Rep.
Accessed: Mar. 18, 2022.

[63] I. Mani and I. Zhang, ‘‘kNN approach to unbalanced data distributions: A
case study involving information extraction,’’ in Proc. Workshop Learn.
Imbalanced Datasets (ICML), vol. 126, 2003, pp. 1–7.

[64] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
‘‘SMOTE: Synthetic minority over-sampling technique,’’ J. Artif. Intell.
Res., vol. 16, pp. 321–357, Jun. 2002.

[65] Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng, and Y. Zhong,
‘‘VulDeePecker: A deep learning-based system for vulnerability detec-
tion,’’ 2018, arXiv:1801.01681.

[66] R. Rehuřek, ‘‘Word2Vec embeddings,’’ 2018, arXiv:1801.01681.
[67] L. Kim and R. Russell, ‘‘Draper VDISC dataset—Vulnerability detection

in source code,’’ Center Open Sci., Tech. Rep., Sep. 2018. Accessed:
Mar. 18, 2022. [Online]. Available: https://arxiv.org/abs/1807.04320v2

[68] M. Alenezi, M. Zagane, and Y. Javed, ‘‘Efficient deep features learning
for vulnerability detection using character n-gram embedding,’’ Jorda-
nian J. Comput. Inf. Technol., vol. 7, no. 1, pp. 1–15, 2021.

[69] Fast Text Library for Efficient Text Classification and Representation
Learning, Meta Res., Toronto, ON, Canada, Apr. 2020. Accessed:
Mar. 18, 2022.

[70] H. Zhang, Y. Bi, H. Guo, W. Sun, and J. Li, ‘‘ISVSF: Intelligent vulnera-
bility detection against Java via sentence-level pattern exploring,’’ IEEE
Syst. J., vol. 16, no. 1, pp. 1032–1043, Mar. 2022.

[71] N. Saccente, J. Dehlinger, L. Deng, S. Chakraborty, and Y. Xiong,
‘‘Project achilles: A prototype tool for static method-level vulnerability
detection of Java source code using a recurrent neural network,’’ in Proc.
34th IEEE/ACM Int. Conf. Automated Softw. Eng. Workshop (ASEW),
Nov. 2019, pp. 114–121.

[72] C. Thunes, ‘‘Javalang,’’ MIT License, Tech. Rep., 2013.
[73] Y. Li, D. Tarlow,M. Brockschmidt, and R. Zemel, ‘‘Gated graph sequence

neural networks,’’ 2015, arXiv:1511.05493.
[74] P. Vytovtov and K. Chuvilin, ‘‘Unsupervised classifying of software

source code using graph neural networks,’’ in Proc. 24th Conf. Open
Innov. Assoc. (FRUCT), Apr. 2019, pp. 518–524.

[75] M. Allamanis, M. Brockschmidt, and M. Khademi, ‘‘Learning to repre-
sent programs with graphs,’’ 2017, arXiv:1711.00740.

[76] T. Parr, ‘‘ANTLR (another tool for language recognition),’’
ANTLR/Terence Parr, Tech. Rep., 2014. Accessed: Mar. 18, 2022.

[77] Test Suites, Nat. Inst. Standards Technol., U.S. Dept. Commerce,
Gaithersburg, MD, USA, Jan. 2006. Accessed: Mar. 18, 2022.

[78] C. D. Sestili, W. S. Snavely, and N. M. VanHoudnos, ‘‘Towards security
defect prediction with AI,’’ 2018, arXiv:1808.09897.

[79] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck, ‘‘Modeling and discov-
ering vulnerabilities with code property graphs,’’ in Proc. IEEE Symp.
Secur. Privacy, May 2014, pp. 590–604.

[80] T. N. Kipf and M. Welling, ‘‘Semi-supervised classification with graph
convolutional networks,’’ 2016, arXiv:1609.02907.

[81] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, ‘‘Graph attention networks,’’ 2017, arXiv:1710.10903.

[82] Spot Bugs Find Bugs in Java Program, Free Softw. Found. (FSF).
Accessed: Mar. 18, 2022.

[83] Q. Le and T. Mikolov, ‘‘Distributed representations of sentences and
documents,’’ in Proc. Int. Conf. Mach. Learn., 2014, pp. 1188–1196.

[84] M. Allamanis, E. T. Barr, P. Devanbu, and C. Sutton, ‘‘A survey of
machine learning for big code and naturalness,’’ ACM Comput. Surv.,
vol. 51, no. 4, pp. 1–37, 2018.

[85] S. M. Ghaffarian, ‘‘Progex (program graph extractor),’’ GitHub,
Tech. Rep., Apr. 2020. Accessed: Mar. 18, 2022.

[86] S. E. Şahin, E. M. Özyedierler, and A. Tosun, ‘‘Predicting vulnerability
inducing function versions using node embeddings and graph neural
networks,’’ Inf. Softw. Technol., vol. 145, May 2022, Art. no. 106822.

[87] W. Hamilton, Z. Ying, and J. Leskovec, ‘‘Inductive representation learn-
ing on large graphs,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 30,
2017, pp. 1–11.

[88] G. Combs, ‘‘Wireshark: Network protocol analyzer,’’ Wireshark,
Tech. Rep., 1998. Accessed: Mar. 18, 2022.

[89] Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu. (Oct. 29, 2021). Devign:
Effective Vulnerability Identification by Learning Comprehensive Pro-
gram Semantics Via Graph Neural Networks. [Online]. Available:
https://github.com/epicosy/devign

[90] S. Cao, X. Sun, L. Bo, Y.Wei, and B. Li, ‘‘BGNN4VD: Constructing bidi-
rectional graph neural-network for vulnerability detection,’’ Inf. Softw.
Technol., vol. 136, Aug. 2021, Art. no. 106576.

[91] V.-A. Nguyen, D. Q. Nguyen, V. Nguyen, T. Le, Q. H. Tran, andD. Phung,
‘‘ReGVD: Revisiting graph neural networks for vulnerability detection,’’
2021, arXiv:2110.07317.

[92] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang, and M. Zhou, ‘‘CodeBERT: A pre-trained model for
programming and natural languages,’’ 2020, arXiv:2002.08155.

[93] D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. Liu, L. Zhou, N. Duan,
A. Svyatkovskiy, S. Fu, M. Tufano, S. Kun Deng, C. Clement, D. Drain,
N. Sundaresan, J. Yin, D. Jiang, and M. Zhou, ‘‘GraphCodeBERT: Pre-
training code representations with data flow,’’ 2020, arXiv:2009.08366.

[94] Z. Song, J. Wang, S. Liu, Z. Fang, and K. Yang, ‘‘HGVul: A code vulnera-
bility detection method based on heterogeneous source-level intermediate
representation,’’ Secur. Commun. Netw., vol. 2022, pp. 1–13, Apr. 2022.

[95] X. Cheng, H. Wang, J. Hua, G. Xu, and Y. Sui, ‘‘DeepWukong: Statically
detecting software vulnerabilities using deep graph neural network,’’
ACM Trans. Softw. Eng. Methodol., vol. 30, no. 3, pp. 1–33, May 2021.

[96] Redis, Redis Ltd. Accessed: Mar. 18, 2022.
[97] Luaspot, Departamento de Informática, Rio de Janeiro, Brazil. Accessed:

Mar. 18, 2022.
[98] D. Hin, A. Kan, H. Chen, and M. Ali Babar, ‘‘LineVD: Statement-

level vulnerability detection using graph neural networks,’’ 2022,
arXiv:2203.05181.

[99] J. Fan, Y. Li, S. Wang, and T. N. Nguyen, ‘‘A C/C++ code vulnerability
dataset with code changes and CVE summaries,’’ in Proc. 17th Int.
Conf. Mining Softw. Repositories. New York, NY, USA: Association for
Computing Machinery, Jun. 2020, pp. 508–512.

[100] S. Chakraborty, R. Krishna, Y. Ding, and B. Ray, ‘‘Deep learning based
vulnerability detection: Are we there yet,’’ IEEE Trans. Softw. Eng., early
access, Jun. 8, 2021, doi: 10.1109/TSE.2021.3087402.

[101] Y. Zheng, S. Pujar, B. Lewis, L. Buratti, E. Epstein, B. Yang, J. Laredo,
A. Morari, and Z. Su, ‘‘D2A: A dataset built for AI-based vulnerabil-
ity detection methods using differential analysis,’’ in Proc. IEEE/ACM
43rd Int. Conf. Softw. Eng., Softw. Eng. Pract. (ICSE-SEIP), May 2021,
pp. 111–120.

[102] A Tool to Detect Bugs in Java and C/C++/Objective-C Code Before it
Ships, Facebook, Built With Docusaurus. Accessed: Mar. 18, 2022.

[103] OWASP Foundation. (2022). OWASP Benchmark Project. [Online].
Available: https://owasp.org/www-project-benchmark/

[104] A. C. Andrew and D. Zagieboylo, ‘‘JLang: Developer guide,’’ Tech. Rep.

VOLUME 10, 2022 75655

http://dx.doi.org/10.1109/TSE.2021.3087402


Pooja S et al.: Developer’s Roadmap to Design Software Vulnerability Detection Model Using Different AI Approaches

POOJA S received the master’s degree in cyber
security from the College of Engineering Trivan-
drum, Trivandrum, Kerala, India. She is currently
pursuing the Ph.D. degree in cyber security
with the Manipal Academy of Higher Education,
Manipal, Karnataka, India. She also works as
an Assistant Professor with the Department of
Information Communication Technology,Manipal
Institute Technology (MIT), Manipal Academy of
Higher Education. Her research interests include

blockchain, machine learning, deep learning, and cryptography.

CHANDRAKALA C. B. received the degree in
electronics and communication engineering from
the Sri Jayachamarajendra College of Engineering
(SJCE), Mysore University, Mysore, Karnataka,
India, the master’s degree in technology special-
izing in software engineering from SJCE, and
VTU, Karnataka, and the Ph.D. degree from the
MAHE, Manipal. She has experience of working
both in industry and academia. She is currently
working as an Associate Professor-Senior with the

Department of Information Technology Communication, Manipal Institute
of Technology,MAHE. Her research interests include distributed computing,
speech processing and recognition, blockchain technology, and software
engineering.

LAIJU K. RAJU received the master’s degree
in cyber security from the College of Engineer-
ing Trivandrum, Trivandrum, Kerala. He is a
QA Architect at dltledgers India Private Limited,
Trivandrum, Kerala, India. His research interests
include blockchain, computer vision, and informa-
tion security.

75656 VOLUME 10, 2022


