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ABSTRACT With the gradual diversification of customer demand, to improve the rapid response ability
of enterprises, this paper fully considers uncertain market information under the background of mass
customization and establishes a new process industry multi-product switching production lot sizing and
scheduling model with the goal of minimizing the maximum completion time and total switching cost. Fuzzy
chance-constrained programming is used to explicitly incorporate market demand with uncertain quantities
into the model. Starting from reality, this paper considers the switching cost of equipment when processing
multiple varieties of products and skillfully integrates the conversion rate of materials during processing
into the novel model, making the entire production system closer to the real state. It provides a new concept
to consider cost reduction for actual workshop scheduling management. In addition, this paper proposes
an improved multi-objective genetic particle swarm optimization (SMOPSO-IIs) algorithm, and the basic
parameters are tested by RSM method. The optimal parameters pc = 0.6, pm = 0.06, α = 0.25, β = 4 are
obtained. They are substituted into SMOPSO-IIs to simulate and solve the model. The operation results
show that the Pareto solution obtained by the SMOPSO-IIs algorithm is better overall. Finally, the model is
solved by example simulation, and the operation results are analyzed along with a scheduling Gantt chart to
verify its applicability and effectiveness. The model presented in this paper can be used to further shorten
the gap between production theory and practical application and improve the current workshop scheduling
management system of the process industry.

INDEX TERMS Mass customization, process industry lot sizing and scheduling, uncertain market informa-
tion, product switching.

I. INTRODUCTION
With the wave of the industrial revolution, the demand char-
acteristics of consumers have gradually changed from the
original popularization to new personalization and diversifi-
cation. To actively cater to the market, the production mode
of the process industry began to transform from the original
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small variety and large quantity approach to the current multi-
variety and small quantity approach. However, to meet the
diverse customer needs and follow the existing lot production
model in the process industry, there is a certain contradiction
between the two approaches, and a mass customization back-
ground is arising at this historic moment. Mass customization
is a new production mode that combines the mass produc-
tion mode with customer-personalized customization needs.
In this mode, enterprises need to shift from quality-centered
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FIGURE 1. Process industrial production system operation flow chart.

to personalized demand-centered, with a timely response to
the external dynamic market, by adjusting the lot production
plan in the workshop to ensure the production of corre-
sponding orders within the delivery period [1], [2]. However,
progress has also led to the gradual complexity and diversity
of external market information. Therefore, uncertain market
information is a problem that enterprises encounter in actual
production. Therefore, how to use uncertain market infor-
mation to formulate production plans and respond in time
within the workshop has become a major challenge for the
operation of the process industry in the context of mass cus-
tomization [3], [4]. Consideration of uncertain market infor-
mation in the context of mass customization is a background
environment worthy of study that has practical application
value.

Under this challenging background environment, this
paper starts from the internal enterprise to process the uncer-
tain demand orders from themarket, and uses themanufactur-
ing execution system (MES) to formulate the corresponding
production plan and implement scheduling for the orders [5],
[7]. In contrast to previous studies, the novelty and contribu-
tion of this paper are in the implementation of product lot siz-
ing and scheduling, in addition to consideration of uncertain
demand information, as well as the novel proposition of the
problem of product switching in multi-variety process indus-
tries. When product switching occurs on the same equipment,
workers need to clean and adjust the equipment. Because of
the relationship between product purity labeling and chemical
properties such as the composition, the time and cost of clean-
ing and adjustment differ when switching between different
types of labeling, and the time and cost of product switching
should not be ignored and should be taken into account when
formulating production plans for products. In addition, the
complete transformation of materials is still an ideal research
situation in theory. However, in actual production, 100%
conversion of materials is not necessarily possible; that is,
for a certain equipment, the input and output of materials
can be unequal. Therefore, when multispecies lot sizing and
scheduling occur in the process industry in an MES system,
production switching and material transformation need to be
considered. To reflect the innovation of this paper and the

overall context, Fig. 1 shows a flow chart of the industrial
process production system.

In summary, when the process industry is facing uncertain
market information for mass customization production, how
to take into account the practical problems of both product
switching andmaterial transformation, as well as the dynamic
response of external information, to implement lot scheduling
arrangements is key in this study.

II. LITERATURE REVIEW
With the continuous development of the social economy,
external competition is becoming increasingly fierce, and
the whole market is in a constantly changing environment.
Therefore, it is often unrealistic for a single enterprise to
obtain information on all of the products in the market, and
how to deal with uncertain market demand in the production
of products has gradually become a key link in manufac-
turing research. In the existing research, uncertain market
demand is mainly divided into stochastic uncertain demand
and fuzzy uncertain demand [8], [11]. For the production
problem under stochastic uncertain demand, after consider-
ing the dependence of equipment conditions and production
rate on output, Zhang et al. [12] proposed an integrated
decision-making strategy for single-machine production and
maintenance under uncertain demand and solved it through
a two-stage stochastic programming model. Karakaya and
Köksal [13] studied a multiperiod product line mixing prob-
lem considering the interdependence between products and
the destruction effect of new products in the context of uncer-
tain price, demand and production cost and established a
two-stage stochastic programming model for this purpose.
Delgoshaei and Ali used the normal distribution in stochastic
programming to solve uncertain market demand in dynamic
unit production planning [14]. Delgoshaei et al. considered
the impact of uncertain costs on the unit manufacturing
system and used the normal distribution to deal with mar-
ket demand so that the system could dynamically adjust
the scheduling scheme [15]. Frazzon et al. proposed and
applied a data-driven adaptive planning and control method to
determine the most suitable scheduling rules under different
conditions in real time [16]. Giordani et al. dynamically
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changed the working position of a robot according to the
fluctuations in demand and production cost, thus forming
a flexible layout and solving the corresponding scheduling
problem [17]. For the production problem under fuzzy uncer-
tain demand, Liu et al. [18] used the scenario probability
and triangular fuzzy numbers to describe uncertain demand
and introduced complexity theory to measure and model the
uncertainty of assembly lines. Guo et al. [19] constructed
a total cost model of a remanufacturing closed-loop supply
chain system considering carbon taxes and subsidies under
uncertain market demand. To address the uncertainty of the
model, they used the fuzzy chance constrained program-
ming method. In the above literature, whether considering
the production problem under stochastic uncertain demand
or fuzzy uncertain demand, the existing research is mostly
from the perspective of planning to achieve the allocation of
resources and line planning, and investigation of the produc-
tion scheduling field under uncertain demand remains to be
expanded.

The demand of the market often drives production changes
in the manufacturing industry. Mass customization starts
from the customization and complex demands of customers
in the market and adjusts the original mass production mode
to quickly respond to the change in external demand. The
specific production problems within enterprises under the
background of mass customization are focus areas worthy
of attention [20], [21]. Among them, Modrak et al. [22]
provided an effective solution to optimize batch size to mini-
mize product delivery time and maximize system throughput
in mass customization mode. Khan et al. [23] focused on
generating automated process planning for a single-machine
problem under mass customization and focused on reduc-
ing the time lead time. Two evolutionary algorithms (EAs)
were compared to solve complex process planning problems.
To make scheduling research under the background of mass
customization more practical, He et al. [24] established a
flexiblemanufacturing system of parts input sorting and robot
scheduling, developed amathematical model for a time-based
decision-making problem and proposed a method based on a
segment set to solve the problem. From the above literature on
production research under mass customization, it is apparent
that both planning and scheduling arrangements have been
developed for a certain system and scale, but they are all based
on conditions under demand determination.

Therefore, in view of the current development trend, schol-
ars began to study mass customization production under
uncertain market demand. Among them, Song et al. [25]
developed a product configuration model that fully consid-
ers the uncertainty of delivery time in mass customization.
Wei et al. [26] proposed a flexible design method for product
families based on dynamic demand uncertainty analysis to
improve the dynamic response ability of product families to
market changes. Weskamp et al. [27] proposed a two-stage
stochastic mixed integer linear programming model that
comprehensively considers the delivery time, penalty cost
of shortage and inventory decisions under the condition of

uncertain demand. The above methods focus on product con-
figuration and production planning, while specific scheduling
problems within the workshop are rarely considered.

Since the relationship between market demand and mass
customization is considered in the above analysis, what
is the relationship between mass customization and pro-
duction scheduling? The process industry characterized by
mass production is able to respond in a timely manner
under mass customization [28], [29]. In the existing multi-
species production scheduling model of the process indus-
try, scholars mainly consider a series of objectives, such
as the completion time and inventory cost. For example,
in an intelligent manufacturing environment, Yuan et al. [30]
studied the workshop problem with machines and work-
pieces as the object to minimize the maximum comple-
tion time, lateness, machine load and energy consumption.
Bai et al. [31] achieved feasible scheduling under mass cus-
tomization with the shortest processing time and earliest
due date. Gu et al. [32] simultaneously considered the eco-
nomic and environmental factors, studied the permutation
flow shop scheduling problem (MOPFSP) to minimize the
completion time and carbon emissions, and proposed a hybrid
cuckoo search algorithm (HCSA) to solve this problem.
Hakeem-Ur-Rehman et al. [33] studied multilevel and mul-
tistage batch and scheduling demand information updating
problems with the objective of minimizing the total pro-
duction and inventory costs and established a mixed integer
programming (MIP) model. To solve the problem of flexible
process routes and frequent changes in workshop scheduling
schemes in multiple varieties and small batch production
modes, Sun et al. [34] established a multi-process route
scheduling optimization model with carbon emissions and
cost as multiple objectives.

Several objectives reflected in the above literature are com-
mon in the processing of multi-variety process industries.
However, in actual production, the switching costs between
various products cannot be ignored. Therefore, in recent
years, experts have begun to focus on the switching of prod-
ucts. Among them, Zhou et al. [35] described and abstracted
the dyeing process scheduling problem in a workshop and
constructed a mathematical scheduling optimization model
to minimize the delay cost and switching cost. Wu et al. [36]
focused on the switching product cost generated in the cold
rolling process, the ordering cost when the demand was not
satisfied, and the inventory holding cost when the inventory
was surplus and formulated the production and inventory
plan for cold rolling with the goal of minimizing the above
costs. Although there are few articles on product switching,
it is worth exploring the future directions. In addition, there
are many deficits in the literature on the material conversion
rate in the multi-variety production scheduling model of the
process industry.

In summary, whether focused on uncertain market demand
or today’s mass customization, the production scheduling
problem with time series arrangement is a major issue that
is worthy of study. The analysis of the literature indicates
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that the research of process production scheduling problems
with uncertain demand under the background of mass cus-
tomization is a new field. To resolve the lack of research, this
paper also incorporates the two situations of multi-product
switching and the material conversion rate, which are less
studied at present, into the lot sizing and scheduling of
multi-product process industry. Thus, the production control
system of the process industry can more closely reflect the
actual production situation to adjust the production plan and
scheduling to improve the rapid response ability to external
market changes.

The organization of this article is as follows. Section III
describes the problem. Section IV proposes a multi-objective
and multistage lot sizing and scheduling model and explains
the objectives and constraints. Section V describes in detail
the processes of the coding design stage of the model and the
design stage of the multi-objective hybrid particle swarm
optimization (SMOPSO-IIs) algorithm. Section VI provides
the parameter optimization, performance test of the multi-
objective algorithm, simulation test at different scales, and
simulation test of the process industry with weekly demand
reference value. The conclusion and future research direc-
tions are presented in section VII.

III. PROBLEM DESCRIPTION
The gradual diversification of customer demand in the current
market conflicts with the existing mass production mode in
the process industry. In addition, because of the limits of
their business scope, it is not realistic for enterprises to obtain
all the definite information on the market. To better meet
the customization needs of customers, this paper focuses on
how the process industry responds to the external uncertain
market demand in the context ofmass customization and fully
considers the core issues of product switching and material
conversion generated in themulti-variety lot productionmode
when scheduling.

The market needs p products, and each product must go
through s production stages in the production process. Among
them, P = {1, 2, . . . ,p}, S = {1, 2, . . . ,s}. It is assumed that
the market demand of product i ∈ P during the planning
period is denoted as Dei. Since the material has a certain
conversion rate in the input and output of the process-based
production method, the production of the product at each
stage is not completely equal. Let θij denote the conversion
rate of product i ∈ P at stage j ∈ S. Usually, equipment will
process and produce multiple products, so the production of
the same product i ∈ P at any stage j ∈ S is denoted as Qij.
In the actual production process, the amount of Qij will be
greater than the single production lot of the equipment at this
stage, so the product must be produced in lots at any stage.

In the process of lot production, the size of the lot, the
number of production switches and the actual capacity of the
production container will have different degrees of influence
on the planning of the production lot. Therefore, in actual
production, the lower limit and upper limit of each processing
lot should be stipulated, that is, Bbmaxij and Bbminij represent the

maximum upper and minimum lower limits of the processing
lot in stage j of product i, respectively. Therefore, the first
problem to be solved in multi-variety lot production planning
is to determine the production lots and production lots of
each product at each stage to meet the requirements of the
material dynamic transformation relationship and lot bound-
ary and realize the supply and demand coordination required
for production.

The production time of many products i ∈ P at stage j ∈ S
has a linear relationship with the lot size, and λij is recorded
as the production processing time coefficient related to the
lot size. In addition, at the same stage j ∈ S, if the two lots
are processed separately for different varieties of products,
there is also time required to adjust and clean the equip-
ment qij. For the same product i ∈ P, taking into account the
actual situation of storing semifinished products and buffer
stocks between two adjacent production stages j and j + 1,
the workshop will configure storage devices between the
two production stages, with the maximum inventory capac-
ity of the storage device Emaxij . Thus, the second problem
to be solved in multi-variety lot production planning is to
make the lot scheduling that meets the first problem further
meet the requirements of the equipment production capacity,
intermediate inventory capacity constraints and production
punctuality.

IV. MATHEMATICAL MODEL ESTABLISHMENT
A. NOMENCLATURE
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B. PROBLEM ASSUMPTIONS
1) Each piece of reaction equipment in the production line

can produce a variety of products.
2) The demand for each product varies with time;
3) Due to the limitation of equipment capacity, the lot size

is related to the reactor capacity;
4) Each piece of equipment can produce only one product;
5) When the equipment is switched from the current pro-

duction process to the next production, the equipment
needs to be adjusted. The adjustment time and adjust-
ment cost are related to the product correlation and
processing sequence;

6) Each product can be produced in one or more consecu-
tive lots during the planned outlook period.

C. ANALYSIS OF OBJECTIVE FUNCTIONS
1) CONVERSION OF MATERIALS
In addition to the conversion of products described in the
previous section, the conversion rate of materials is another
key link to be considered. In actual production scheduling,
due to problems with the equipment itself, the material may
have a certain loss in the production process; that is, the
input material received by the equipment does not necessarily
equal the intermediate material output after processing. This
unequal phenomenon of material production is defined as the
conversion of materials [37]. Material conversion is related to
the product variety and processing equipment performance.
Different products with different equipment conversion rates

are not the same, and thus the transformation of materials also
affects the production lot.

For example, when the same lot of product i is processed on
two adjacent stages j and j+ 1, there will be a transformation
relationship between materials. Although they are the same
product, their conversion rates at different stages of equip-
ment are not the same, namely, θij 6= θi,j+1. Then, for stage
j, the material produced can be put into stage j + 1, specific
to (3):

bbi,j+1,k ′ = bbijkθij (1)

With the completion of product i in stage j, stage j+ 1 also
ushers in a new material, and then a new proportion of the
transformation will occur. The transformed material will con-
tinue to be put into the next stage of production. Equation (4)
can be expressed as:

bbi,j+2,k ′′ = bbi,j+1,k ′θi,j+1 (2)

The transformation of materials affects the lot production,
and the lot production further affects the lot completion time
of the product. In this paper, the production time of each lot
is not fixed, and is closely related to the lot and conversion
rate, forming a linear mapping relationship. For example,
when product i is lot-processed at position k of stage j, its
processing time λijθijbbijk can be expressed by (3):

tijk = λijθijbbijk (3)

It can be seen that the conversion of materials also has a
certain impact on the total completion time when the process
industry lots and schedules multiple orders, so the conversion
rate of materials should also be included in the establishment
of the model.

2) PRODUCT SWITCHING
In the production scheduling problem of the process industry,
if it involves multi-product processing, there will inevitably
be product switching problems. For enterprises, although
there are different types of products in the order information
transmitted from the market, there are often certain similar-
ities between multiple products. To facilitate management,
according to the similarity between products, enterprises can
divide the same or similar products into a product family.
In this way, products in the same product family can be
divided into the same production line for mass production.
Since each piece of equipment can only process one lot of
products at the same time, when product switching occurs on
the equipment, workers need to clean and adjust the equip-
ment. Because of the relationship between product purity
labels and chemical properties such as the composition, the
switching requirements between different labels differ. If it
is converted from low-grade to high-grade production, the
cleaning and adjustment requirements of the equipment will
be reduced accordingly, resulting in relatively less more time
and cost consumption; if the equipment is converted from
high-grade to low-grade production, the cleaning and adjust-
ment requirements of the equipment will be significantly
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increased compared with the previous situation. The switch-
ing from high to low requires more procedures and even
the addition of cleaning materials. Therefore, the time and
cost consumption will be significantly increased when the
equipment is converted from high-grade to low-grade.

From the perspective of time, the lot completion time of
each product is composed of three parts, namely, the start
time tstartijk of the lot, the processing time of the material
λijθijbbijk in the lot and the adjustment and cleaning time
qijαijk due to product switching. Among them, the first two
periods are determined by the lot, and the product switching
time qijαijk can be regulated by the scheduling scheme tomin-
imize the impact of the switching time on the total completion
time. Therefore, the lot completion time of each product can
be expressed by (4):

tendijk = tstartijk + λijθijbbijk + qijαijk (4)

From a cost perspective, different products in the same
device will lead to different switching costs due to their differ-
ent purity labels, which can be expressed as qijprij. However,
variety switching does not occur every time for the equip-
ment, and thus αijk must be defined at this time. Therefore,
the switching cost of a certain amount of equipment can be
expressed by (5):

Czh =
∑
i∈P

∑
k∈N

(
qijαijk × prij

)
(5)

Product switching has a significant impact on the total
completion time and total processing cost when the process
industry uses lot sizing and scheduling for multi-product
orders. This factor should be included in the establishment
and consideration of the multi-product lot sizing and schedul-
ing model of the process industry.

3) ESTABLISHMENT OF OBJECTIVE FUNCTIONS
Definition 1: The processing event of a certain lot at a certain
stage of each product is called an event point, which includes
all the information of the product in a corresponding lot, such
as the number of lots, the lot size, and the lot production
time. The lot sizing at different event points is between the
maximum upper limit and the minimum lower limit of the
reaction capacity at this stage, and the intermediate inven-
tory between the event points shall not exceed the specified
maximum intermediate inventory. The sequence of the stages
passed by the event points of each product is prescribed in
advance.
Definition 2: The event points are connected as a series of

lines, and the line connected by each event point is defined as
the associated layer. The correlation layer is divided into two
types: one is the fully correlated layer, where all devices have
event points on the connection, and the other is the incomplete
correlation layer, where all devices have no event points on
the connection. Incompletely related layers are divided into
the front-end and back-end. There is no event point of the first
device on the front-end incompletely correlated layer and no

event point of the last device on the back-end incompletely
correlated layer.

a: MINIMIZING THE MAXIMUM COMPLETION TIME
In the process production control system studied in this
paper, the product processing time is not a fixed value and
is related to the product variety, lot and stage. The production
stage of the product is determined by the process flow of
the product. Differing process complexity leads to different
process time consumption under the same production task.
The lot processing time of the product is determined by the
lot and production coefficient of the product at the current
stage; the lot of products is determined by market demand.
In the actual production process, there is the problem of the
material processing conversion rate; that is, the input material
cannot be completely converted into the required output.
Therefore, when calculating the lot production processing
time, the output material after the conversion of the adja-
cent previous stage is used as the input material in the next
stage, as discussed in Section IV.C.1. In addition, since this
system can produce multiple products, there will be product
switching and cleaning time betweenmany different products
at the same stage. This part of the time is defined as the
variety switching time and is incorporated into the calcu-
lation, as discussed in Section IV.C.2. Based on the above
analysis, the completion time of each lot of each product can
be obtained. By comparing the completion time of different
lots for all products in the whole system, the maximum is
the final production and processing end time in a scheduling
scheme for this system. To identify the optimal scheme, the
shortest total processing time is selected as the criterion to
minimize the maximum completion time, as shown in (6):

F1 = min
{
max

{
tstartijk + λijθijbbijk + qijαijk |i ∈ P

}}
(6)

where tstartijk represents the lot start processing time of
product i at position k of stage j; λijθijbbijk represents the lot
processing time of product i at position k of stage j; and qijαijk
represents the time that product i requires for adjustment and
cleaning of the device during the variety switching at the
location of phase j.

b: MINIMIZING THE TOTAL SWITCHING COSTS
There is no parallel machine in this paper, so when different
product lots are produced at the same stage, it is necessary to
produce multiple varieties in turn. In the actual production
process, when different products are switched at the same
stage, it is necessary to allow for certain equipment switching
and cleaning times rather than a seamless connection, which
has rarely been considered in previous studies. Therefore,
when the process production control system proposed in
this paper is used for lot sizing and scheduling of multiple
products, we give the second objective function of this paper
based on (5) derived in Section IV.C.2, that is, to minimize
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the total switching cost, as shown in (7):

F2 = min
∑
i∈P

∑
j∈S

∑
k∈N

(
qijαijk × prij

)
(7)

qijαijk represents the switching time re quired for variety
switching of a certain number of products in a certain stage,
and the corresponding switching cost can be obtained by
multiplying the unit switching cost in this stage. The total
switching cost generated in the scheme is obtained by accu-
mulating all the switching generated in the whole scheme.
The lower the total switching cost is, the lower the number
of switches needed in the scheme is, and the more reasonable
the scheduling of the scheme is.

D. ANALYSIS OF CONSTRAINT CONDITIONS
In the process of establishing a multi-objective mathematical
model of multi-product switching production in the process
industry, this paper mainly focuses on the clarification of
uncertain demand, the rationalization of intermediate inven-
tory in the production line and the serialization constraints of
each processing task in the production line.

1) THE CLARITY OF UNCERTAIN MARKET DEMAND
There are many levels of uncertain market information, such
as the uncertainty in the demands of variety, quantity and
price. However, this paper mainly focuses on market demand
with an uncertain quantity. the sum of the lot production tasks
of each product on the production line in the last machine
should be consistent with the market demand for the product,
and the uncertain market demand often has certain ambiguity.
Here, the product demand is defined as a fuzzy variable [38].
(8) can be used to represent the equality of supply and demand
in the production process:∑

k∈P
bbijk = D̃ei, ∀i ∈ P, j = jm (8)

After this transformation, (8) becomes a conceptual for-
mula, which can represent fuzzy market demand but cannot
be solved. Therefore, this chapter introduces the concept of
fuzzy chance constrained programming; that is, the decision
can be made before the constraints with random variables are
realized, and the decision results are allowed to fail to meet
the constraints to a certain extent, but the probability of the
establishment of the constraints should not be less than the
confidence level [39]. The specific form and performance are
as follows:

Pos {f (ϕ, ε)} ≥ γ (9)

Pos {f (ϕ, ε)} denotes the possibility of an event in f (ϕ, ε);
ϕ represents clear variables; ε represents fuzzy variables; and
γ represents the confidence level. According to (9), (8) can
be changed to (10).

Pos
{∑

k∈P
bbijk = ˜Deij

}
≥ γ,∀i ∈ P, j = jm (10)

To clarify the fuzzy chance-constrained programming, this
chapter refers to the classic α-cut method in the litera-
ture [40], that is, if ỹ = (y1, y2, y3) is a triangular fuzzy

number, then for any given confidence level α ∈ (0, 1), there
are:

Pos {ỹ ≤ k} ≥ α, if k ≥ (1− α) y1 + αy2

Pos {ỹ = k} ≥ α, if

{
k ≥ (1− α) y1 + αy2
k ≤ (1− α) y3 + αy2

Pos {ỹ ≥ k} ≥ α, if k ≤ (1− α) y3 + αy 2

(11)

Therefore, according to the principle of the α-cut method,
D̃ein = (Dein1,Dein2,Dein3) is a triangular fuzzy number,
and (8) can be transformed into (12) and (13):∑
k∈P

bbijk ≥ (1− γ )Dei1 + γDei2, ∀i ∈ P, j = jm (12)∑
k∈P

bbijk ≤ (1− γ )Dei3 + γDei2, ∀i ∈ P, j = jm (13)

2) RATIONALIZATION OF INTERMEDIATE INVENTORY
Multiple products can be processed on each machine, but
when themachine processes each product, each position point
can only have at most one lot production task, which can be
expressed by (14):∑

i∈P
αijk ≤ 1, ∀j ∈ S, k ∈ N (14)

In addition, each location point does not necessarily have
many production tasks; that is, there may be virtual location
points. If the position point is real, then

∑
i∈P αijk = 1, and∑

i∈P αijk = 0. When the previous position point is real,∑
i∈P αijk =

∑
i∈P αij,k+1. Similarly, when the previous loca-

tion point is virtual,
∑

i∈P αijk >
∑

i∈P αij,k+1. Therefore,
the relationship between position points can be expressed
by (15):∑
i∈P

αijk ≥
∑

i∈P
αij,k+1, ∀j ∈ S, k ∈ N , k 6= km (15)

Since this paper considers that the material of each lot
of the product between adjacent machines is not completely
transformed in the actual situation, the production task lot of
the same lot of the same product in the two adjacent stages is
not necessarily equal; that is, the input material of a certain lot
of the machine should be the intermediate material produced
by the same lot after the conversion rate is calculated by
the machine in the adjacent previous stage, rather than the
input material of the machine in the adjacent previous stage.
Therefore, the relationship between reaction amount and pro-
duction amount in each batch can be expressed by (16):∑

k∈N

bbijkθij =
∑
k∈N

bbi,j+1,k , ∀i ∈ P, j ∈ S, j 6= jm

(16)

Due to the physical limitations of the machines on the
production line, only a limited number of products can be
produced at one time. To rationalize the number of products
in each lot task, this paper makes a quantitative limitation on
the lot; that is, the lot of products should bewithin the range of
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the machine’s processing capacity at the corresponding stage,
which can be expressed by (17):

αijkBbminij ≤ bbijk ≤ αijkBb
max
ij , ∀i ∈ P, j ∈ S, k ∈ N

(17)

In the actual production process, the intermediate products
produced are not necessarily completely consumed by the
next adjacent stage, so there is an intermediate inventory. Due
to the limited space in the production workshop, there is also
a quantitative limit interval in the intermediate inventory. The
intermediate inventory can be expressed by the difference
between the production tasks of the same lot of the same
product in the two adjacent machines, which can be expressed
by (18):

Eijkk ′ =
∑

0≤kk≤k
θijbbi,j,kk −

∑
0≤kk≤k ′

bbi,j+1,kk ,

∀i ∈ P, j ∈ S, j 6= jm, k ∈ N , k ′ ∈ N (18)

However, the intermediate inventory is not necessarily
within a reasonable range, so it needs to be restricted,
as shown in (19) and (20).

Among them, if the intermediate inventory is greater
than 0, then uijkk ′ = 1. (uijkk ′−1)A = 0, uijkk ′A+ (uijkk ′−1)B
are great positive numbers; if the intermediate inventory is
less than 0, then uijkk ′ = 0. Because B is a minimal positive
number and A is a maximal positive number, then (uijkk ′−1)A
is a minimal negative number and (uijkk ′ − 1)B is a maximal
negative number, so uijkk ′A+(uijkk ′−1)Bmust be greater than
(uijkk ′ − 1)A, (uijkk ′ − 1)A ≤ Eijkk ′ ≤ uijkk ′A + (uijkk ′ − 1)B,
and can be expressed as (19):(

uijkk ′ − 1
)
A ≤ Eijkk ′ ≤ uijkk ′A+

(
uijkk ′ − 1

)
B,

∀i ∈ P, j ∈ S, j 6= jm, k ∈ N , k ′ ∈ N (19)

If the intermediate inventory is less than the maximum
capacity limit, then vijkk ′ = 1, (vijkk ′ −1)A = 0. Emaxij −Eijkk ′
is a positive number, and vijkk ′A + (vijkk ′ − 1)B is a great
positive number; if the intermediate inventory is greater than
the maximum capacity limit, then vijkk ′ = 0. Since B is a
minimal positive number andA is amaximal positive number,
then Emaxij − Eijkk ′ is a negative number, (vijkk ′ − 1)A is a
minimal negative number, and (vijkk ′ − 1)B is a maximal
negative number, so vijkk ′A + (vijkk ′ − 1)B must be greater
than (vijkk ′ − 1)A, and can be expressed as (20):(
vijkk ′ − 1

)
A ≤ Emaxij − Eijkk ′ ≤ vijkk ′A+

(
vijkk ′ − 1

)
B,

∀i ∈ P, j ∈ S, j 6= jm, k ∈ N , k ′ ∈ N

(20)

3) SERIALIZATION OF PROCESSING TASKS
Since a single machine on each production line can produce
only one task at the same time, there is a certain time relation-
ship between the lot production tasks corresponding to each
location point.

First, the relationship between the adjacent two position
points of the same product on the same machine is deter-
mined. If there are many production tasks at the two adjacent

position points on a certain machine and the same product
is produced at the two position points, the start time of the
lot production task at the latter position point should not be
less than the end time of the lot production task at the former
position point, which can be expressed by (21):

tstartij,k+1 ≥ tstartijk + qijαijk + λijbbijkθij,

∀i ∈ P, j ∈ S, k ∈ N , k 6= km (21)

Second, the relationship between two adjacent position
points of different products on the same machine is con-
sidered. If there are many production tasks at two adjacent
position points on a certain machine and different products
are produced at two position points, the start time of lot
production tasks at the latter position point should not be less
than the sum of the end time of lot production tasks corre-
sponding to the former position point and the adjustment time
between the two products, which can be expressed by (22):

tstarti′jk + qi′jαi′jk+λi′jbbi′jkθi′j−Z (1− αi′jk )+ Ti′ijαij,k+1
≤ tstartij,k+1, ∀i ∈ P, i′ ∈ P, j ∈ S, k ∈ N

(22)

Third, the relationship between the same lot of the same
product on the adjacent machine is considered: if the same
lot of a product has a lot production task on the adjacent
machine, the start time of the lot production task on the back
machine position point should not be less than the end time
of the lot production task on the front position point adjacent
to the previous machine, as shown in (23) and (24).

Among them, if there is no lot production task at the
position point of the previous machine, the left side of the
inequality is a minimal negative value, the right side is a
positive value, and the inequality is constant. If there is no
lot production task at the position point of the rear machine,
the right side of the inequality is a maximum positive value,
the left side is a normal positive value, and the inequality
is constant; if there are lot production tasks at nonadjacent
positions of the two machines, then Z

(
1− αijk

)
= 0. If the

intermediate inventory from k to k ′ is nonnegative and the
intermediate inventory from k − 1 to k ′ is nonnegative, then
Zuij,k−1,k ′+Z

(
1− uijkk ′

)
→ ∞, and the inequality is con-

stant; if the intermediate inventory from k to k ′ is less than 0
and the intermediate inventory from k − 1 to k ′ is less than 0,
or if the intermediate inventory from k to k ′ is less than 0 and
the intermediate inventory from k−1 to k ′ is nonnegative, or if
the intermediate inventory from k to k ′ is nonnegative and the
intermediate inventory from k−1 to k ′ is less than 0, the above
three situations do not satisfy the assumption that there is a
lot production task at the nonadjacent position points of the
two machines, so the above three situations do not hold. The
above analysis can be expressed by (23):

tstartijk + qijαijk + λijbbijkθij − Z
(
1− αijk

)
≤ tstarti,j+1,k ′ + Z

(
1− αi,j+1,k ′

)
+Zuij,k−1,k ′+Z

(
1− uijkk ′

)
, ∀i ∈ P,

j ∈ S, j 6= jm, k ∈ N , k ′ ∈ N (23)
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If there is no lot production task at the position point
of the previous machine, the left side of the inequal-
ity is a minimal negative value, the right side is a pos-
itive value, and the inequality is constant. If there is
no lot production task at the position point of the rear
machine, the right side of the inequality is a maximum
positive value, the left side is a normal positive value,
and the inequality is constant; if there are lot production
tasks at nonadjacent positions of the two machines, then
Z
(
1− αijk

)
= 0. If the intermediate inventory from k to

k ′ is less than the maximum capacity limit and the inter-
mediate inventory from k − 1 to k ′ is less than the maxi-
mum capacity limit, then Zvijk,k ′−1 + Z

(
1− vijkk ′

)
→ ∞,

and the inequality is constant; if the incoming intermedi-
ate inventory from k to k ′ exceeds the maximum capacity
limit and the incoming intermediate inventory from k − 1 to
k ′exceeds the maximum capacity limit, or if the incoming
intermediate inventory from k to k ′ exceeds the maximum
capacity limit and the incoming intermediate inventory from
k − 1 to k ′ is less than the maximum capacity limit, or if
the incoming intermediate inventory from k to k ′ is less than
the maximum capacity limit and the incoming intermediate
inventory from k − 1 to k ′ exceeds the maximum capacity
limit, the above three situations do not satisfy the assumption
that there are many production tasks at the nonadjacent posi-
tions of the twomachines, so the above three situations do not
hold. The above analysis can be expressed by (24):

tstarti,j+1,k ′ − Z
(
1− αi,j+1,k ′

)
≤ tstartijk

+ qijαijk + λijbbijkθij + Z
(
1− αijk

)
+Zvijk,k ′−1 + Z

(
1− vijkk ′

)
∀i ∈ P, j ∈ S,

j 6= jm, k ∈ N , k ′ ∈ N (24)

In addition to the above constraints, this paper changed
event points when dealing with the number constraints of
event points, and the process has no aftereffect.

Proof: When dealing with the event point, the supply
material constraint is first carried out in order from the begin-
ning to the end; that is, the consumption of the same product
in the same lot at the same stage shall not be greater than
the production of the same lot in the previous stage. If the
supply is insufficient, the corresponding lot of the subsequent
product is moved backward to the nearest event point where
the same equipment does not conflict. This supply material
constraint ensures that the equipment can continuously pro-
duce and that the intermediate inventory of the same product
between the same lot in the adjacent two stages is greater than
or equal to 0. After the supply material constraint is com-
pleted, the intermediate inventory constraint is checked from
back to front, that is, whether the intermediate inventory of
the same product exceeds the maximum intermediate inven-
tory between the same lots in the adjacent two stages. If the
maximum inventory is exceeded, the corresponding lot of
the preorder product is moved backward to the nearest event
point where the same device does not conflict. Additionally,
because the product before moving in the adjacent phase of

the same lot of intermediate inventory exceeds the maximum
limit, that is, Eijkk ′ ≥ Emaxij , and the maximum capacity of
a single device is less than the maximum inventory between
devices, that is, bbmaxij ≤ Emaxij , moving back the event point
will only reduce the number of intermediate inventory, and
it is still positive and will not destroy the completed supply
constraints, so there is no aftereffect. The proof is complete.

V. IMPROVED MULTI-OBJECTIVE GENETIC PARTICLE
SWARM OPTIMIZATION (SMOPSO-IIs) BASED ON
MODEL SOLVING
A. CODING OF PARTICLES
The multi-objective lot sizing and scheduling problem in the
process industry necessitates determination of the lot number,
lot sizing, production sequence and production time at each
stage of each product before formal production. To solve the
problem of lot planning and scheduling, this paper uses pbqlk
to denote the lot of particle q, pXqlk represents the position
vector of particle q, and T = (1, 2, . . . , t) represents the
set of tasks. In this article, the particle has two dimensions
to store information. The first dimension represents the task
information where the particle is located and is composed
of two parts of information, the product i and the stage j;
when it represents the product i information on the stage j,
l = i+p(j−1), where l ∈ T . The second dimension represents
the lot position where the particles are located; because a
position in each stage can only correspond to many products,
the set of variables in the position k of particle q in stage j is
U =

{
pbqlk |l = i+ p(j− 1), . . . , pj

}
.

In the particle encoding process, two main factors are
considered: that is, the production volume is equal to the
demand, and each product is produced in only one lot at
each stage. To solve the above two constraints in a targeted
manner, this paper describes two modified sub-strategies for
the initialized particle swarm.

1) SUPPLY AND DEMAND REVISION SUBSTRATEGIES
Because there is no intermediate inventory problem after
the product has undergone the final lot of the last stage of
processing, the sum of the lots converted in all stages of
the product should be equal to the demand order quantity of
the product. To meet this requirement, this article makes the
following adjustments to the initialized particle population:

Step 1. l represents two kinds of information, including
products and equipment included in particles, Ql represents
the total processing amount of l,Ol represents the total output
of l, and Dei represents the demand for product i. Initial-
ize these variables and let Ol be zero, which is determined
according to the actual order requirements.

Step 2. Let j be the final stage number of the product.
Step 3. When the final stage number of product i is e, the

total output of product i is:

Ol = Oi+p(e−1) =
∑

k=1,...,n

pbq,i+p(e−1),k × θi+p(e−1) (25)
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Step 4. When the total output Ol is greater than the total
demandDei, reduce the lots that are not 0 from n until they are
equal; when the total output Ol is less than the total demand
Dei, increase the lot to 0 from the back to the front until the
total output is equal to the demands. It should be noted that
the new lot cannot exceed the maximum lot limit specified
for each lot.

Step 5. Let j = j − 1, calculate the output and demand in
the phase, and then compare them.

Ol = Oi+p(j−1) =
∑

k=1,...,n

pbq,i+p(j−1),k × θi+p(j−1) (26)

Dei = Qi+pj =
∑

k=1,...,n

pbq,i+pj,k (27)

Step 6. When j> 1, repeat Steps 5 to 6 to complete the lot
repair of all products in each stage; when j = 1, go to Step 7.
Step 7. End.

2) SUBSTRATEGY OF EQUIPMENT PRODUCTION REVISION
Each product is produced in only one lot at each stage; that
is, there can only be one nonzero variable in the set U .
Step1 Randomly generate the selection probability of each

product.
Step2 Compare the probabilities and record the product

number with the highest probability f .
Step3 When f 6= l in the set U , pbqlk = 0.

B. DECODING OF PARTICLES
The lot sizing of each product at each stage can be determined
through the encoding of particles, but the encoded particles
onlymeet the limitations of capacity and demand. In addition,
the particles will be adjusted according to the time correlation
and cohesion before and after the process characteristics to
further determine the working time of each lot of processing.
The particle decoding process is given below:

C. STEPS OF THE IMPROVED MULTI-OBJECTIVE GENETIC
PARTICLE SWARM OPTIMIZATION (SMOPSO-IIs)
ALGORITHM
MOPSO, NSGA-II and SPEA2 are the most common heuris-
tic algorithms for solving multi-objective mathematical mod-
els in the past. Among them, the MOPSO algorithm relies on
the particle speed to complete the search, the search speed
is faster, but the lack of dynamic speed regulation, easy to
fall into local optimum. NSGA-II algorithm avoids falling
into local optimum by introducing crossover and mutation
ideas, but its stability is not high. SPEA2 algorithm can
further improve the overall quality of Pareto front, but it has
the disadvantage of weak local search ability. To sum up,
this paper will improve the MOPSO algorithm, integrate it
with NSGA-II algorithm and SPEA2 algorithm for Pareto
optimization, and propose a new SMOPSO-IIs algorithm.
The specific algorithm steps are as follows:
Step1 Define the population size and iterations and initial-

ize the population.

FIGURE 2. Flowchart of particle decoding.

Step2 Encode and decode particles.
Step3 Calculate the fitness value and determine the individ-

ual optimal particles.
Step4 Replace the initialized population with constraint

conditions to generate a particle population that
meets the requirements of the topic. Initialize the
Pareto optimal solution set and find the nondomi-
nated liberation into the Pareto optimal solution set
in the required particle swarm.

Step5 In the Pareto optimal solution set, according to the
degree of congestion, an adaptive grid method is used
to select a leader asGbest , and the particle population
is updated by using the velocity and position update
formula of the particle swarm. If better particles are
generated, the individual optimal particle pbest is
updated. Continue to update the particle population
into the constraints to be adjusted.

Step6 After updating all particles during this iteration, refer-
ring to the literature [41], [43], this paper divides
the task in each particle into different sets by using
the constraint relationship in the production pro-
cess, where a set represents a stage. Select two par-
ticles as the cross parent and the location of the
task phase where the cross occurs randomly. When
the crossover probability satisfies the condition, the
selected crossover task stage and its subsequent stage
in particle 2 are exchanged with the same position in
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particle 1, that is, the crossover occurs between sets.
After the crossover occurs, themutation probability is
generated randomly. When the mutation probability
meets the conditions, a set and two positions in the
set are randomly selected, and the two positions in
the selected set are exchanged, that is, the mutation
occurs in the set.

Step7 The parent population and the offspring population
are merged, fast nondominated sorting is carried out,
and the crowding degree of the individuals in the non-
dominated solution set is calculated, so the appropri-
ate individuals are selected to form a new population.
Further judge whether the new population is better
than the individual optimal value of each particle;
if better, the update is carried out. If not improved,
go directly to Step 8.

Step8 Continue to adjust the updated particle population
into constraint conditions. Assign the adjusted pop-
ulation to Pt and initial empty external file At , then
calculate the fitness values of Pt and At individuals.

Step9 Copy all the nondominated solutions in Pt and At to
Pt andAt+1; if the number of nondominated solutions
in At+1 is greater than N, then prune. Otherwise, the
dominant solutions in Pt and At are added to At+1
until its size is equal to N.

Step10 For external archives At+1, the binary tournament
method with substitution is used to select individuals
to enter the mating pool. The crossover and muta-
tion operations are performed on the mating pool,
and the population input constraints are adjusted and
assigned to Pt+1.

Step11 The fitness values of Pt+1 and At+1 individuals are
calculated. Copy all nondominated solution sets in
Pt+1 and At+1 to At+2 to further determine whether
the external file At+2 is better than the individual
optimal value of each particle and update if better;
if not improved, then directly go to Step 12.

Step12 Nondominated sorting of adjusted populations; find
the nondominated solution in the new population and
put it into the Pareto optimal solution set; further
filter in the Pareto optimal solution set and delete the
dominant solution.

Step13 Repeat Steps 5-12 until the maximum number of
iterations is reached to stop the algorithm.

Step14 Output all particles in the Pareto optimal solution
set.

VI. EXPERIMENTS AND DIS CUS SION
A. PARAMETER TEST BASED ON RESPONSE SURFACE
METHODOLOGY (RSM)
RSM is a kind of experimental design (DOE) tool that
uses a series of experimental quantitative data to explore
the relationship between different explanatory variables and
one or more response variables, so it is often used in the
parameter tuning process [44]. In this paper, the response

TABLE 1. Random experiment around the initial value in the first-order
model.

surface method (RSM) is used to adjust the proposed algo-
rithm parameters to accelerate the convergence rate of the
algorithm and improve the quality of the solution. The main
idea of RSM is that the software generates a series of exper-
iments through the lower and upper limits of each param-
eter given in the initial step. According to the experimen-
tal data requirements, different results are filled into the
software to obtain the best response and parameter level.
This paper used Design Expert software version 8.0 for the
experiment.

In the SMOPSO-IIs algorithm, there are some parame-
ters that need to be optimized, such as the crossover prob-
ability (pc), mutation probability (pm), grid expansion (α)
and leadership election pressure (β). Suppose the initial val-
ues of pc, pm, α and β are 0.5, 0.06, 0.25 and 3, respec-
tively [45]. The random test table was obtained as shown in
Table 1.
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TABLE 2. Variance analysis results generated by the first-order model.

TABLE 3. Final variance analysis results after parameter adjustment.

In this paper, the ZDT1 multi-objective test function is
used as the objective function. Since there is more than one
objective function and the obtained results are noninferior
solution sets, the expected value of each experiment is set as
the product root of the average value of multiple objective
functions, and the variance analysis results are shown in
Table 2.

Subsequently, the parameter values are continuously
adjusted according to the fluctuation of the final parameter
level, and the expected values under the new parameters
are recalculated. When the computer obtains the analysis
of variance table, which shows that the model is explicit
and the missing items in Table 3 are not explicit, it stops
the experiment and views the corresponding final parame-
ter values, and obtained pc = 0.6, pm = 0.06, α = 0.25,
and β = 4.

1) ZDT1

FIGURE 3. Comparison of ZDT1 functions on a 20× 20 scale.

FIGURE 4. Comparison of ZDT1 functions on a 20× 200 scale.

B. PERFORMANCE TEST OF THE MULTI-OBJECTIVE
ALGORITHM
To verify the effectiveness of the SMOPSO-IIs algorithm,
this paper compared it with other powerful or advanced
algorithms, such as NSGA-II, MOPSO, and SPEA2. NSGA-
II and MOPSO were chosen because they are often used
by many researchers for flow shop scheduling problems
and have proven to be very effective; SPEA2 was selected
because it is often used as a control object when comparing
multi-objective algorithms. Therefore, this paper selected the
NSGA-II, SPEA2, and MOPSO algorithms mentioned above
as the comparison objects. The performance test selected the
most common ZDT series multi-objective test function. The
experimental parameters were selected as in Section 5.1, and
the optimal data were obtained by the RSM method. This
experiment compared the fronts of different algorithms with
the same initial population for 20 iterations in the context of
population sizes of 20 and 200, and the maximum running
time was used as the stop standard. In addition, for each prob-
lem, the computer conducted 10 independent experiments
and chose the best one.
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1) ZDT2

FIGURE 5. Comparison of ZDT2 functions on a 20× 20 scale.

FIGURE 6. Comparison of ZDT2 functions on a 20× 200 scale.

2) ZDT3

FIGURE 7. Comparison of ZDT3 functions on a 20× 20 scale.

From the above figures, it can be seen that for different test
functions with different scales, the Pareto front obtained by

FIGURE 8. Comparison of ZDT3 functions on a 20× 200 scale.

the SMOPSO-IIs algorithm is better than those of the SPEA2,
NSGA-II, and MOPSO functions, and the effect is obvious,
which proves that SMOPSO-IIs has good solution stability
and effectiveness.

C. SIMULATION ANALYSIS OF THE ALGORITHM
In this paper, this algorithm was applied to the lot planning
and scheduling problem of multi-variety continuous produc-
tion in the chemical industry at different scales. The specific
parameters of the experiment were designed as follows:

1) When sizepop=20

FIGURE 9. Pareto front at 20× 50.

The total demand Ds for each product is [260,270,280];
the demand Dei of the product is generated randomly in
[0,Ds]; the number of varieties of products p is 2; the number
of production stages e is 3; the minimum lot production
Bbminij is 100; the maximum production lot Bbmaxij is 150; the
conversion rate of equipment 1 is 1 and the conversion rate
of equipment 2 and equipment 3 is 0.9; the production pro-
cessing time coefficient λij are [0.1,0.15;0.2,0.1;0.1,0.1]; the
time of adjusting and cleaning the equipment, coefficient qij,
is [1,1.2;1.4,1.2;1,1]; the maximum inventory capacity Emaxij
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FIGURE 10. Pareto front at 20× 100.

is 200 and the unit switching cost is 10. The maximum num-
ber of iterations is 50 and 100, and the population is divided
into large-scale GD, medium-scale GZ and small-scale GX,
where GD = 200, GZ = 100, and GX = 20. For particle
swarms with different scales, the algorithm is performed to
observe the number of particles in the Pareto optimal solution
set and the Pareto front trajectory. The algorithm was pro-
grammed in MATLAB 2016a using the Windows 7 operating
system.

2) When sizepop=100

FIGURE 11. Pareto front at 100× 50.

It can be found from the above results that, regardless of
the scale, the Pareto front calculated by the SMOPSO-IIs
algorithm is better than that calculated by the other algo-
rithms, followed by the Pareto front obtained by the SPEA2
algorithm, while the MOPSO algorithm and NSGA-II algo-
rithm are equally prominent in the front. In summary, the
Pareto front calculated by the SMOPSO-IIs algorithm is sig-
nificantly better than that calculated by other algorithms.

To more intuitively compare the different Pareto fronts
obtained by each algorithm, the following table lists the
total number of particles in the Pareto front under different
combinations:

FIGURE 12. Pareto front at 100× 100.

3) When sizepop=200

FIGURE 13. Pareto front at 200× 50.

FIGURE 14. Pareto front at 200× 100.

It can be seen from Table 4 above that when the number
of iterations is 50, the number of noninferior solutions of
the MOPSO algorithm is always optimal in the four algo-
rithms, and the number of noninferior solutions obtained by
the NSGA-II and SMOPSO-IIs algorithms is always stable.
However, with the expansion of population size, the number
of noninferior solutions of the SPEA2 algorithm fluctuates
the most and is in an unstable state. When the number of
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TABLE 4. Number of particles in the total Pareto front under different
combinations (without repeated solutions).

iterations is 100, with the increase in population size, the
number of noninferior solutions obtained by the SMOPSO-
IIs algorithm reaches the optimal value and it performs well
among the four algorithms. The number of noninferior solu-
tions of the MOPSO algorithm decreases. Therefore, the
SMOPSO-IIs algorithm is relatively good considering the
number of particles.

In addition to comparing the total number of particles in
the Pareto front under different combinations, dispersion is
also a major criterion for testing the distribution of the Pareto
front. To better compare the discrete degree of particles in
the Pareto optimal solution set under different algorithms,
this paper introduces the concept of dispersion. When the
dispersion degree of particles in the Pareto optimal solution
set is high, that is, the dispersion degree is large, the algo-
rithm does not fall into the local optimal solution and can
search the pheromone in the global solution to find the global
optimal solution. Based on the above principles and statistical
knowledge, this paper uses the standard deviation formula
to calculate the dispersion of particles in the Pareto optimal
solution set under different algorithms. The specific formula
is as follows:

fs =

√∑n
i=1 (fi − f )

n

2

(28)

where fi represents the fitness value of particle i, f represents
the average fitness of n particles, and n represents the number
of particles in the Pareto optimal solution set. The specific
dispersion results are shown in Table 5.

By observing the dispersion of particle populations at dif-
ferent scales, it can be found that when the population size
is 20, the dispersion of the NSGA-II algorithm fluctuates
greatly while that of theMOPSO algorithm is relatively stable
from fs1. From fs2, the dispersion of the SMOPSO-IIs and
SPEA2 algorithms fluctuate greatly, while the dispersion of
the NSGA-II and MOPSO algorithms are relatively stable.
When the population size is 100, from the perspective of fs1,
the dispersion of the NSGA-II algorithm fluctuates greatly,
while the dispersion of the MOPSO and SMOPSO-IIs algo-
rithms are relatively stable. From fs2, the dispersion of the
NSGA-II and SPEA2 algorithms fluctuate greatly, while the

TABLE 5. Dispersion comparison of algorithms under different
combinations.

FIGURE 15. Dispersion comparison table of the four algorithms when
sizepop = 50 and iteration = 50.

dispersion of the SMOPSO-IIs algorithm is relatively stable.
When the population size is 200, from fs1, the dispersion of
the NSGA-II algorithm fluctuates greatly, and the dispersion
of the other three algorithms are relatively stable. From fs2,
the dispersion of the SMOPSO-IIs and MOPSO algorithms
fluctuate greatly, while the dispersion of the NSGA-II and
SPEA2 algorithms are relatively stable. Based on the above
analysis, the dispersion of the SMOPSO-IIs and MOPSO
algorithms are relatively stable. However, the overall disper-
sion value of the MOPSO algorithm is better than that of the
SMOPSO-II algorithm.

In summary, this paper combines analyses of the Pareto
front graph distribution, the total number of particles in the
Pareto front and the dispersion of particles in the Pareto
front under the above different algorithms. The results show
that the number of noninferior solutions obtained by the
MOPSO and NSGA-II algorithms are good overall, but their
Pareto fronts are behind, indicating that the schemes obtained
by these two algorithms are not the optimal solution set
scheme. The number of noninferior solutions obtained by
the SPEA2 algorithm fluctuates greatly, and the dispersion is
also in a state of fluctuation, but the Pareto front is relatively
good, indicating that although the scheme obtained by the
SPEA2 algorithm is better, it is not necessary to achieve
the best scheme every time, and it has a certain risk. The
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FIGURE 16. A Gantt chart of a nondominated solution in the Pareto optimal solution set.

Pareto front calculated by the SMOPSO-IIs algorithm can
reach the optimal value at different scales, and the number
of noninferior solutions is also good overall. Although the
dispersion is not optimal, it is basically stable. Therefore, the
scheme obtained by the SMOPSO-IIs algorithm is less accu-
rate, which can help workshop production personnel reduce
unnecessary waste in scheduling. For the multi-objective and
multi-variety lot sizing and scheduling model considering
product switching and conversion rate, the SMOPSO-IIs
algorithm is the optimal algorithm regardless of the group
size.

D. CASE SIMULATION ANALYSIS
Based on the data of a mass customization chemical enter-
prise in Shenyang with two production lines of ten thousand
tons per year and one thousand tons per year, this paper
simulates and establishes a set of process enterprise produc-
tion control systems that quickly respond to dynamic market
demand. In the system, there is an annual output of ten
thousand tons of pipeline, and the pipeline includes the first
reaction, the second reaction, and three poly condensation
reaction production stages. There are different reactors on
the pipeline. The capacity of each reactor is limited: the
upper limit is the maximum capacity of the reactor, which
is related to the type and specification of the reactor, and
the lower limit is determined by the reaction conditions and
technical requirements. Due to the different capacities of
different reactors in the pipeline, single production lots are
not equal. In addition, when the product variety is switched,
the reactors at three different production stages need cleaning
and other related work, which increase the production time of
the whole processing process of the product variety. The fol-
lowing table shows the weekly demand for different products
in the chemical enterprise and the related parameter settings.

TABLE 6. Weekly demand for products.

TABLE 7. Model parameter settings.

From the case data, this paper establishes a multi-objective
multi-variety lot sizing and scheduling model based on a
mass customization process with product switching to further
verify the correctness of the algorithm comparison. In this
simulation example, this paper uses SMOPSO-IIs, MOPSO,
SPEA2 and NSGA-II algorithms for calculation. The popu-
lation size and iteration number were set to 100. The other
specific parameters of the learning factor are shown in the
experimental parameter description, the product demand in
Table 6 and themodel parameter setting in Table 7. The Pareto
front is as follows:

In addition, the number and dispersion of noninferior
solutions obtained by the SMOPSO-IIs algorithm are better,
as shown by the data in Tables 8 and 9, and the frontier
obtained by the SMOPSO-IIs algorithm is in the front.
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TABLE 8. Dispersion comparison table of the four algorithms when
sizepop = 100 and iteration = 100.

TABLE 9. Comparison table of the front particle numbers of the four
algorithms when sizepop = 50 and iteration = 50.

To further test whether the entire production scheduling
plan of the nondominated solution is reasonable, this paper
randomly selected a nondominated solution in the Pareto
optimal solution set and generated the Gantt chart from the
perspective of the time sequence. In the Gantt chart, dif-
ferent colors correspond to different varieties of products.
The length represents the production duration of different
products in different lots at different stages. The upper left
represents the start time of each lot, the upper right repre-
sents the end time of each lot, the lower left represents the
reaction amount of each lot, and the lower right represents the
production amount of each lot. Each lot of the nondominated
solutionmeets the requirements of the production process and
the undertaking of each stage. The specific situation is shown
in Fig. 16.

It can be seen from the Fig. 16 that there is no production
conflict in the time scheduling arrangement for each lot of
products, and the conversion ratio between the input and
output of each batch, as well as their respective batch and
intermediate inventory all meet the data in Table 7. In addi-
tion, it can be seen throughout the Gantt chart that the number
of switching between different lots of the same product is
significantly reduced. This shows that the scheduling scheme
solved by this model is effective.

VII. CONCLUSION
This paper analyzes the background of mass customization
resulting from customer demand individuation in the process
industry and analyzes specific lot sizing and scheduling prob-
lems under this background. With the development of the
economy, the number of products required by the market is
often uncertain. Therefore, the quantity of product demand
is defined as a fuzzy variable. To clarify this, this paper uses
the fuzzy chance programming constraint in data processing.
Based on these data, to minimize the maximum completion
time and total switching cost, a multi-objective lot sizing and
scheduling model for multi-product switching production in
the process industry is established.

In the lot scheduling model established in this paper, the
following key findings are noted: 1) The switching cost and
switching time of products in the production process are
considered for the first time; 2) material transformation was
considered in the production process and combined with the
production lot and processing time; 3) The model considers

a series of basic constraints such as inventory and production
constraints in the establishment process to reduce costs and
shorten the processing time to best meet the diversified needs
of customers; 4) An improved multi-objective genetic parti-
cle swarm algorithm (SMOPSO-IIs) is proposed to simulate
and solve the model. Compared with the current common
scheduling methods, the proposed method retains the original
fast convergence ability and guiding iteration mechanism of
the particle swarm algorithm but also introduces NSGA-II to
avoid particles falling into a local optimal solution. In addi-
tion, SPEA2 allows for the existing Pareto front to be further
optimized, which is not considered in the literature.

For the process industry, the establishment of this model is
conducive to dealing with complex uncertainties and environ-
ments and is also conducive to the production and scheduling
of multiple products. In future work, in addition to dealing
with uncertain external information such as market demand,
a series of internal uncertainty problems such as machine
aging, wear and failure that may exist in the workshop could
also be incorporated into the model so that it can carry out
model predictive control before the occurrence of uncertain
events to reduce unnecessary risk losses.
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