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ABSTRACT This article presents a new image denoising algorithm that uses Gaussian Symmetric Markov
random fields based on maximum a posteriori estimation. First, an image denoising model based on
Gaussian Symmetric Markov random fields is built, and the image denoising problem was converted to
a maximum a posteriori estimation problem. The prior probability of an image can be estimated using
the Gibbs distribution, which is equivalent to Markov random fields. Second, the maximum a posteriori
estimation is calculated using the expectation-maximization algorithm and conjugate gradient method,
where the expectation-maximization algorithm is used to estimate Gaussian Symmetric Markov random
field hyper-parameters and the conjugate gradient method is used to calculate the criterion function. The
experimental results for the synthetic images and the standard Berkeley segmentation datasets demonstrate
the success of the proposed Gaussian denoising filter, as compared with the state-of-the-art methods such as
BM3D, WNNM, SGWD-HMMs, SSLBD, DnCNN and BUIFD.

INDEX TERMS Gaussian Markov random fields, expectation-maximization, conjugate gradient, denoising
filter.

I. INTRODUCTION

In the process of image acquisition, encoding, storage and
transmission, all the images are ““dirtied”” by visible or invisi-
ble noise that may degrade the image [1], [2]. The image noise
mostly includes impulse (salt and pepper) noise, Gaussian
noise and mixed Noise etc. [2], [3]. Noise not only affects
the visual comprehension of the image but also hinders the
normal recognition. Therefore, the image denoising filter is
an important task in image processing.

An image containing Gaussian noise actually contains
uncertain gray values that vary within a certain range based
on the gray value of each pixel of the original image [4],
[5]. The essential problem of image denoising is to make the
noisy image as close as possible to the original image after
denoising. Gaussian noise, represented by a Gaussian distri-
bution function, is additive and independent, and is caused by

The associate editor coordinating the review of this manuscript and

approving it for publication was Gerardo Di Martino

74590

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

three common factors: amplifier noise, shot noise, and grain
noise of film [6], [7]. Accordingly, the noisy image can be
expressed as:

Yy (i,)) =X (i,)) +n(i.)) ey

where X is the original image, n is the additive noise on the
pixel basis, and Y represents the noisy image of X.

In the past few decades, a variety of models have been
successfully used for image denoising, including sparse
model [8], [9], gradient model [10], [11], Markov ran-
dom fields (MRF) model [12], [13] and Hidden Markov
Model (HMM) model [14], [15], non-local self-similarity
model [16], [17], convolutional neural network based models
[18], [19] and deep learning based model [20]. In addition,
some filter-based image denoising methods [21]-[23] have
also been successfully proposed. Semi-supervised [24] and
self-supervised [25] denoising algorithms are the other two
effective denoising algorithms.
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Among the above methods, there are many very popular
ones. Such as, BM3D [16] and WNNM [17], which are
nonlearning-based and use local or non-local structures of
an input noisy image. Recently, convolutional neural net-
work (CNN) based methods are proved to be effective denois-
ing algorithms, such as IRCNN [18], DnCNN [19]. BUIFD
[20] is another deep learning based image denoiser, and it
claims to be better than the DnCNN. Yin et al. [25] proposed
a new image reconstruction model for the impulse noise
removal problem.

The existing denoising filters mostly focus on edge and
structure preservation [7]. Although their high denoising
quality, these methods usually involve high complexity of
computation, manually chosen parameters, and large amounts
of training data, etc.

Markov Random Field (MRF) was introduced into the
image field by Besag in 1974, and has been widely used
in image segmentation, classification, and restoration [26].
MREF is essentially a conditional probability model [27],
combined with the Bayesian criterion, the problem can
be reduced to solve the model’s maximum a posterior
probability problem. In this paper, Gaussian Symmetric
Markov random field (GSMREF) is applied to the Gaussian
denoising. The image noise degradation model based on
GSMREF is first established, and then the hyper-parameters
estimation of a prior probability model of the image
is performed using the Expectation-Maximization (EM)
algorithm. Finally, the conjugate gradient method is used
to minimize the criterion function to obtain the denoised
image. Comparing with the state-of-the-art methods such
as BM3D [16], WNNM [17], SGWD-HMMs [14], SSLBD
[25], DnCNN [19], and BUIFD [20], the performance of
our Gaussian denoiser, as indicated by the experimen-
tal results, is particularly attractive in Gaussian denoising
quality.

The contributions of this paper are:

(1) We propose a novel noise degradation model
based on Gaussian Symmetric Markov random field,
which can convert the problem to maximum a posteriori
estimation.

(2) We use EM algorithm to estimate the hyper-parameters
automatically, not manually chosen parameters, the conju-
gate gradient algorithm to optimize the criterion function.
The convergence performance of the two algorithms can be
guaranteed theoretically.

(3) Our method outperforms the state-of-the-art denois-
ing methods both on synthetic datasets and real-world
datasets, which shows its potential applications in real-world
scenarios.

The remainder of this paper is organized as follows.
In Section 2, the image degradation (noise) model based on
GMREF is established. In Section 3, we give the method of
hyper-parameter estimation. In Section 4, the image denois-
ing algorithm is proposed. In Section 5, the experimental
results are presented and discussed. The final section con-
cludes the paper.
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Il. IMAGE DEGRADATION MODEL BASED ON GAUSSIAN
SYMMETRIC MARKOV FIELD

Assume an image is defined in a two-dimensional space
L={Gpnlief{l,2,...,m},je{l,2,...,n}},N=mxn
is the number of pixels. The status of each pixel can be
represented by the random variables X; (i € L). All the m x n
random variables constitute a discrete random field X =
X1,X>...,XN), N = m x n. A digital image can be seen
as an implementation of the random field X. In other words,
an image is a configuration of X, which represent as: x =
(x1,x2...,xn). All the possible configurations make up a
space 2. Assume 7; be the set of neighbors located at the point
x;. n; consisted of the nearest 4 or 8 pixels, which means first
order neighborhood system or second order neighborhood
system (as shown in Fig. 1(a) and (b)), respectively.

1 1 1 1
1 Xi 1 1 Xi 1
1 1 1 1

(a) (b)

FIGURE 1. (a) First order neighborhood system, (b) Second order
neighborhood system.

If the following conditions are satisfied:

PX=x)>0, VreQ )
PXi=x|X; =x;,1 €{1,2,... N}, | #1i)
=PXi=x1X; =x,1 €ny) 3)

Then, the X is called a Markov random field (MRF) with n =
{ni,ie{l1,2,...,N}} as the neighborhood system. It means
that the characteristic of a pixel is completely determined by
its neighborhood system 7;. From the equation (3), it can be
seen that MRF can be described by a conditional distribution,
and this distribution is a local characteristic of a random field.
The Hammersley-Clifford theorem [28] points out that each
MREF corresponds with a Gibbs random field (GRF). The
GRF describes the global characteristics of the random field.
The MRF can be determined if the energy function of the GRF
is given.

Image restoration methods based on the MRF are usually
based on Bayes’ theorem. Assume X is the original image,
and Y is the degraded image of X, we have:

P (Y|X) P (X)
P(Y)
where the P (X|Y) and P (X) are the a posteriori and a
priori probability density function of the unknown, respec-

tively, and P(Y) is a constant. The image restoration
can be attributed to solving the problem of maximum

PX|Y) = o P(Y]X) P (X) “
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a posterior probability (MAP), as follows:
Xyap = argmax P (Y|X) P (X) )
X

From the Hammersley - Clifford theorem, it is easy to
know that the joint probability density function of MRF can
describe by Gibbs distribution, and its expression is shown as
follows:

1
Z(w)

where Z is the normalized constant (also called the parti-
tion function) which normalizes integral of P (X; w) to 1,
€ (-) denotes MRF’s energy function, and w is called hyper-
parameter.

In order to find the solution, we select a Gaussian Sym-
metric Markov random field [29], [30], because it can fuse
the contextual information of the image very well [31]. In this
paper, the following energy function for ¢ (-) is taken:

1

N
8(x;a))=ZZ|: z(xi—xj)2:|,a)
i=1 jen; 2(‘00)
={wjief{l,2,....N}}, jen (D

where 7; represents the second order neighborhood system
of the ith pixel in the image (as shown in Fig. 1(b)), N is
1

. . . 2.
the number of pixels in the image, and s (xi — Xj) is the

clique potential, which model the strengthuof the interaction
between ith and jth pixels. w;; usually depends on the direc-
tion between ith and jzh pixels. We select a symmetric markov
random field, where w;; = wj;.

A common reason for image degradation is due to Gaussian
noise (the problem we focus on in this article). We assume
that the image is noised by Gaussian noise constituted by
i.i.d. random zero-mean Gaussian variables with variance o,2.
In such case, P (Y |X) can be described approximately with a
Gaussian distribution:

2
P(Y|X) xexp (—u) (®)

PX;w) = exp {—¢ (x; )} (6)

207
By substituting (6), (7) and (8) into (5), we have:
ly — x|?
207

Xyap = arg min |: + e (x; a)):| &)
X

Now, the denoising problem becomes to find the solution
of equation (9). However, w and x are unknown. In order to
implement (9), we must to estimate the values of the hyper-
parameters  and the image x. The image x is available
data sets, referred as the incomplete and complete date corre-
sponding to the real and synthetic images, respectively.

Ill. HYPER-PARAMETER ESTIMATION

For the hyper-parameters w, can be estimated through the
noisy image Y. We consider a Symmetric MRF (w; = wj;),
it needs to estimate 4N hyper-parameters (each pixel has
four parameters). Therefore, it’s very difficult to estimate all
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the hyper-parameters in equation (7) at the same time. Thus,
some methods have to be found to overcome this difficult.
Here we divide the image X in G domains, so that all parts
Gi,i = 1,2,..., G cover the entire image without overlap-
ping each other. For example, divide the image into 4 x 4 parts
as shown in Fig. 2. Assuming that the statistical properties of
each part are described by one hyper-parameter and each part
is independent of each other parts. In this case:

G
P(X;w) = ]_[ P (Xg; )
g=1

— ]g[ Ziexp {— U ) } (10)

2 (wg)2

2
Zieglhpart Z (wi - on) > Xg =
JENi
-,Xg,Ng], Ny is the total pixels of the gth par-

where U (¢) =

[-xg,l ’ -xg,2a .
tition image, and N = Zgz 1 Ng, @ is tl;e accordingly
hyper-parameter, and @ = [w;, w2, ..., w,| is the hyper-
parameter vector. It shows from [31] that Z, = (a)g)Ng z, and
z is a constant factors independent on w.

FIGURE 2. 4 x 4 image partition, 16 hyper-parameters.

Through the above analysis and process, the hyper-
parameters @ = [wi,ws,...,wi6]’, only 16 hyper-
parameters need to be estimated. Here we choose the iterative
algorithm EM (expectation—maximization), which for solve
the maximum likelihood estimation of the hyper-parameters
from incomplete data, and its convergence performance has
been guaranteed [32], [33]. The EM algorithm repeats two
steps (Step E and Step M) until convergence, as follows:

STEP E:

Mo, o] =E[InPX;0)|Y =y, 0 ()] an
STEP M:

w(t+1)=argmaxM [w, w (1)] (12)
w
By referring to equation (10), we have:
w(t+1)
- 1 U (x;)
= argminE { —In 1_[ ey ———5¢ | 1Y
¢ o=t (0g) 2 2 (wy)
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=y, o) (13)

It’s solved as in [33]:

(wg)2 _ E[U (x) |; =y, ()] 14
8

According to the [31], the expected value of Step E should
be sampled from a posterior distribution Py |y (x|y) as follow:

Pxjy (x|y)

= ] e_xp _M
2ro2)"" 7fy (v) 207
G
s _U( () (15)

g=1 2 wg)

Equation (15) is actually an expression of Gibbs distribu-
tion, which its energy function is the exponential. Therefore,
a Gibbs-Sampler can be used to generate samples X. The
Monte Carlo techniques [28] method for generating samples
from a Gibbs distribution is given by [26]. However, The
Monte Carlo techniques are complicated which has heavily
computational task. Here, we refer to the method of [30],
which is based on the assumption that the local a posterior
probability distribution function is Gaussian:

1 P — wi)?
P (it € moy) = ———ew [—(XZ(T")Z)} (16)

where:

Xj N i
Zjem 2(w;)* + 2=t 402

Wi = i N an
Z/GI],‘ gﬁ + Zh:l LFHZ
—1
5 2 A
i =Xt a8)
jeni (a’u) h=1 "

Consequently, we can generate samples of X by using a
Gaussian sampler instead of Gibbs Sampler.

IV. DENOISING ALGORITHM

The denoising algorithm is to find the minimum value of
the criterion function (9). In this paper, we use the con-
jugate gradient method [34] to achieve minimization. This
minimization process needs to estimate the gradient of the
criterion function ¢pap (x), which is decomposed into two
parts ¢p and Ppar .

Xpap = arg min gpap (x) (19)
X
where,
ly — x|
Syap (¥) = =5
20,
~——
oML (x)
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Ng 2
G it Zjeng,i(xg,i — Xg,j)

20
+ Zg:l 20)52, 20

PMAF (x)

N2
Vegur () = -2 1)

n

1
Vedmrr (x) = {2 Z — (% —x),

J€nk (wkj

k=1,2,...,N (22)

The gradient of ¢pzap (x) is given by:
Vedmap (x) = Vepur (x) + Vedurr (x) (23)

It becomes easy to minimize the criterion function (9) by
using the conjugate gradient method after we obtained the
gradient V.¢pap (x). A description of the denoising algo-
rithm (we call it as a GSMREF) as follows:

V. EXPERIMENTAL RESULTS

In this section, we report the experimental results obtained
using the proposed method. In order to assess the effective-
ness of the proposed GSMREF filter, we qualitatively and
quantitatively assessed on lots of grayscale and color images.
These experimental images include two synthetic images and
the standard Berkeley segmentation datasets (BSD68 and
CBSD68) [35], which were widely used for the evaluation
of denoising methods.

The results provided by the proposed method were com-
pared with those yielded by six state-of-the-art denois-
ing algorithms which widely used in the literature, i.e.,
BM3D [16], WNNM [17], SGWD-HMMs [14], SSLBD [25],
DnCNN [19] and BUIFD [20]. As the comparison methods,
all the parameter values of BM3D, WNNM, SGWD-HMMs,
SSLBD, DnCNN and BUIFD were set to the same as default
values according to [14], [16], [17], [19], [20], and [25]. The
testing codes of DnCNN and BUIFD methods are download
from the author’s websites!,2. At present, there are several
measures that may be used in the evaluation of the effective-
ness of image denoising algorithms. The most widely used are
Peak Signal to Noise Ratio (PSNR) and Structural Similarity
(SSIM), which were employed to evaluate the performances
of all the denoising methods. A high PSNR and SSIM values
indicate improved image reconstruction. In addition, in all
the experiments, we choose eight noise levels, i.e., the noise
standard deviation o = 5, 10, 15, 25, 35, 45, 55 and 65.

A. EXPERIMENT ON SYNTHETIC IMAGES

Fig. 3 shows two original images with 256 x 256 pixels, which
named as “Squares” and ‘““Circles” [Fig. 3(a) and 3(b)],
respectively. In Fig. 3(a), we place some squares (their gray

1 https://github.com/cszn/DnCNN
2https:// github.com/majedelhelou/BUIFD
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Procedure 1 Procedures of GSMRF

BEGIN
1 Input an image X of size m x n, add Gaussian noise with zero-mean and variance onz, to make it into a noisy image Y’;
2 Initialization hyper-parameter w (0) and convergence threshold 7 > 0, and i = 0;
3 Calculate M [w, w (i)]; ( Step E)
4 repeat
5 w(+1)=argmax M [w, w (i)]; (Step M)
6  Update M [w, o (i + 1)];
7 i=i+1;
8 until M [w,0o(+ )] —M[w,0()] <T
9 w=w(@+1);
10 Initialize the original image x°, threshold & > 0, right step length p, and k = 0;
11 Calculate the gradient V.¢pap (xo) at x0, initialize the search direction sg = —V.hrpap (xo), and normalize sg: 5o =
*vc(ﬁMAP(xo) .
| =Vepuar ()|
12 repeat
13 Calculate x¥+t1 = xk 4+ p - § .
k+1
14  Calculate VAC¢MAT (xk+1), Vi = %, Ski1 = —Vedpap (xk‘H) + Vg - Sk
15  Normalize Sg41: Sk+1 = Tocntl
16  Update ¢pyap (x*11);
17 k=k+1
18 wuntil |¢MAP (xk+1) — dpmAP (xk)| <eg
19 )A(MAP = )Ck_H
20 Output the denoised image )A(MAP.
END

level is 225) on the darker background (its gray level is 75).
In Fig. 3(b), we place some circles (their gray level is 150)
on the darker background (its gray level is 50). The Gaussian
noise is added to the original image. Fig. 4(b) and Fig. 5(b) are
two examples of the Gaussian noise “Squares” image with
zero-mean and the corresponding noise standard deviation
o = 15,35, respectively. Fig. 6(b) and Fig. 7(b) are two
examples of the Gaussian noise “Circles” image with zero-
mean and the corresponding noise standard deviation ¢ =
15, 35, respectively. Figs. 4-7 provide the visual comparison
between the denoising results obtained by BM3D, WNNM,
SGWD-HMMs, SSLBD, DnCNN, BUIFD and the proposed
GSMRF.

As can be seen from Figs. 4-7, there are obvious noises
in the results obtained by WNNM and SSBND no matter
whether the noise level o is 15 or 35 [see (d) and (f) of
Figs. 4-7]. Although the BM3D, SGWD-HMMSs, DnCNN,
BUIFD, and GSMREF can all remove most of the noise from
the image, the results obtained by the BM3D, SGWD-HMMs,
and BUIFD usually obtain some artifacts, which cause the
denoising images to look blurred [see (c), (f), and (h) of
Figs. 4-7]. In contrast, DnCNN and GSMRE can obtain visu-
ally satisfactory results, especially our proposed method can
yield best denoising images in all eight test cases. Reference
[36] concludes that “The denoising methods based on dis-
criminant training usually yield better results for images with
irregular textures, while denoising methods based on non-
local similarity usually yield better results for images with
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() (b
FIGURE 3. Two synthetic test images. (a) Squares. (b) Circles.

regular and repetitive structures. Our results on two synthetic
images are consistent with the conclusion in [36], because the
“Squares” and ‘“Circles” are just images with regular and
repetitive structures. In fact, it’s a reasonable result in intu-
itively due to the image with regular and repetitive structures
can well satisfy non-local similarity priors, which leading to
better results.

Table 1 and 2 list the results in terms of PSNR and SSIM
obtained by applying each denoising method under different
noise levels (5, 10, 15, 25, 35, 45, 55 and 65). The average
values of Peak Signal to Noise Ratio (¢psyr) and Structural
Similarity (@gsy) for all the eight test cases are also reported
in Table 1 and 2 to evaluate the effectiveness of the seven
denoising methods. The best values of PSNR and SSIM with
different noise levels, of ¢psyg and of @gsiy for each syn-
thetic image are highlighted in bold.
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(a) (b) © (d) (e) U} @ (h) ()

FIGURE 4. Denoising results of synthetic “Squares” image with noise level ¢ = 15. (a) Original image. (b) Noisy image. (c) BM3D. (d) WNNM.

(e) SGWD-HMM:s. (f) SSLBD. (g) DnCNN. (h) BUIFD. (i) GSMRF.

(a) (b) (c) (@

FIGURE 5. Denoising results of synthetic “Squares” image with noise level ¢ = 35. (a) Original image. (b) Noisy image. (c) BM3D. (d) WNNM.

(€) SGWD-HMM:s. (f) SSLBD. (g) DnCNN. (h) BUIFD. (i) GSMRF.

(a) ) © @

®) @ (h) 0]

FIGURE 6. Denoising results of synthetic “Circles” image with noise level ¢ = 15. (a) Original image. (b) Noisy image. (c) BM3D. (d) WNNM.

(e) SGWD-HMM:s. (f) SSLBD. (g) DnCNN. (h) BUIFD. (i) GSMRF.

(a) (b) (c) (d)

® (@ (h) 0}

FIGURE 7. Denoising results of synthetic “Circles” image with noise level ¢ = 35. (a) Original image. (b) Noisy image. (c) BM3D. (d) WNNM.

() SGWD-HMMs. (f) SSLBD. (g) DnCNN. (h) BUIFD. (i) GSMRF.

As shown in Table 1 and 2, in all the test cases, the
PSNR and SSIM obtained by GSMREF are the highest ones.
For the “Squares”, the ¢@psyg value obtain by GSMRF
outperforms the BM3D, WNNM, SGWD-HMMs, SSLBD,
DnCNN and BUIFD methods by 0.32dB, 0.33dB, 0.34dB,
1.73dB, 0.17dB and 0.21dB respectively, and the @ssps
value obtain by GSMRF outperforms the BM3D, WNNM,
SGWD-HMMs, SSLBD, DnCNN and BUIFD methods by
0.29%, 0.46%, 0.42%, 2.09%, 0.08% and 0.07%, respec-
tively. For the ““Circles”, the gpsygr value obtain by GSMRF
outperforms the BM3D, WNNM, SGWD-HMMs, SSLBD,
DnCNN and BUIFD methods by 0.28dB, 0.36dB, 0.72dB,
1.37dB, 0.20dB and 0.10dB respectively, and the @ssps
value obtain by GSMRF outperforms the BM3D, WNNM,
SGWD-HMMs, SSLBD, DnCNN and BUIFD methods by
0.27%, 0.36%, 0.89%, 1.69%, 0.16%, 0.06% respectively.
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B. EXPERIMENTS ON BSD IMAGES
1) EXPERIMENTS ON GRAY-SCALE IMAGES
For the grayscale images, 68 grayscale images from the
standard Berkeley test dataset BSD68 were used, as shown
in Fig. 8, to quantitatively and qualitatively measure the
performance of each comparison method. The average PSNR
and SSIM results of different methods on the standard BSD68
dataset under different noise levels (5, 10, 15, 25, 35, 45,
55 and 65) are shown in Table 3 and 4. The highest values
of PSNR and SSIM are highlighted in bold. As shown in
Table 3 and 4, the average values of PSNR and SSIM obtained
by GSMREF are highest or one of highest results with different
noise levels.

As can be seen from Table 3, our proposed method
outperforms the state-of-art denoising methods at different
noise levels. Specifically, the average PSNR of GSMRF
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TABLE 1. PSNR(dB) and SSIM results of different denoising methods on the synthetic “Squares” image with different noise level.

Test case | Standard deviation BM3D WNNM SGWD-HMMs SSLBD DnCNN BUIFD GSMRF
| 5 39.76 39.62 39.87 37.68 39.94 39.82 40.34
o= 0.9562 0.9572 0.9580 0.9408 0.9578 0.9590 0.9592

2 - 10 38.86 38.69 39.02 37.01 38.86 38.82 39.26
o= 0.9125 0.9122 0.9163 0.9019 0.9156 0.9165 0.9186

3 — 15 37.75 37.78 37.78 37.46 37.82 37.80 37.86
7= 0.8825 0.8782 0.8826 0.8698 0.8826 0.8824 0.8829

4 — 5 34.26 34.55 34.28 33.01 34.56 34.50 34.75
7= 0.8249 0.8251 0.8233 0.8127 0.8285 0.8285 0.8290

5 —35 31.49 31.50 31.55 30.21 31.62 31.60 31.88
7= 0.7828 0.7759 0.7780 0.7602 0.7842 0.7830 0.7845

6 — 45 28.32 28.26 28.01 26.34 28.60 28.58 28.62
7= 0.7495 0.7466 0.7425 0.7109 0.7498 0.7502 0.7506

7 — 55 27.10 27.06 27.05 25.78 27.28 27.20 27.28
7= 0.7189 0.7182 0.7210 0.7002 0.7225 0.7222 0.7225

3 — 65 26.02 26.05 25.88 24.79 26.08 26.12 26.15
7= 0.6976 0.6978 0.6927 0.6846 0.7002 0.7006 0.7006

Ppsnr 32.95 32.94 32.93 31.54 33.10 33.06 33.27

Pssim 0.8156 0.8139 0.8143 0.7976 0.8177 0.8178 0.8185

TABLE 2. PSNR(dB) and SSIM results of different denoising methods on the synthetic “Circles” image with different noise level.

Test case Standard deviation BM3D WNNM SGWD-HMMs SSLBD DnCNN BUIFD GSMRF
1 5 39.65 39.42 39.30 38.76 39.64 39.85 39.88
o= 0.9522 0.9520 0.9502 0.9486 0.9536 0.9560 0.9560

5 - 10 38.46 38.28 38.22 37.72 38.45 38.62 38.75
7= 0.9112 0.9108 0.9101 0.9002 0.9116 0.9120 0.9125

3 — 15 36.25 36.29 35.87 35.27 36.22 36.38 36.55
7= 0.8746 0.8738 0.8676 0.8583 0.8766 0.8774 0.8786

4 — 5 32.36 32.25 32.15 31.33 32.56 32.65 32.75
7= 0.8202 0.8191 0.8167 0.8112 0.8205 0.8205 0.8213

5 —35 28.79 28.58 28.07 27.20 28.82 28.90 29.12
7= 0.7725 0.7718 0.7688 0.7503 0.7742 0.7750 0.7756

6 — 45 27.02 27.06 26.68 25.96 27.24 27.28 27.34
7= 0.7412 0.7406 0.7319 0.7278 0.7417 0.7432 0.7436

7 — 55 25.92 25.96 25.20 24.88 26.06 26.08 26.12
7= 0.7141 0.7122 0.7002 0.6921 0.7155 0.7162 0.7174

3 — 65 25.05 25.08 24.56 23.67 25.16 25.22 25.26
7= 0.6902 0.6886 0.6813 0.6735 0.6915 0.6922 0.6926

PpsNr 31.69 31.62 31.26 30.60 31.77 31.87 31.97

Pssim 0.8095 0.8086 0.8034 0.7953 0.8107 0.8116 0.8122

outperforms BM3D by the range 0.25 — 0.64, WNNM by
the range 0.61 — 0.99, SGWD-HMMs by the range 0.64
— 1.56, SSLBD by the range 1.66 — 3.17, DnCNN by the
range 0 — 1.05, BUIFD by the range 0.03 — 1.10.

The BM3D method is often used as a baseline for com-
parison. According to the conclusions of [37] and [38], few
methods can obtain PSNR values that are more than 0.3dB
higher on average than BM3D, and the upper limit is 0.7dB.
Specifically, the average PSNR of our proposed method out-
performs BM3D by 0.46dB, 0.37dB, 0.25dB, 0.64dB, 0.4dB,
0.35dB, 0.44dB and 0.60dB at noise levels 5, 10, 15, 25, 35,
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45, 55 and 65, respectively. It should be noted that when noise
level is 25, our average PSNR is 0.64dB higher than BM3D.
It is very close to 0.7.

The similar results also appear for the average values
of SSIM at different noise levels, which are shown in
Table 4. Specifically, the average SSIM of our method out-
performs BM3D by the range 0.25% - 2.70%, WNNM
by the range 0.50% — 3.55%, SGWD-HMMs by the range
0.68% — 3.68%, SSLBD by the range 0.97% — 4.42%,
DnCNN by the range 0.38% — 1.94%, BUIFD by the
range 0% — 1.68%.

VOLUME 10, 2022



F. Xiong et al.: Efficient Gaussian Filter Based on Gaussian Symmetric Markov Random Field

IEEE Access

FIGURE 8. Standard test dataset BSD68 with 68 grayscale images.

TABLE 3. Average PSNR(dB) results of different denoising methods on the BSD68 dataset with different noise level.

Dataset Standard deviation BM3D WNNM SGWD-HMMs SSLBD DnCNN [ BUIFD | GSMRF
c=5 38.12 37.68 37.21 36.92 38.49 38.32 38.58
o=10 34.89 34.27 33.76 33.10 35.01 34.82 35.26
oc=15 31.67 31.02 31.28 30.13 31.73 31.75 31.92
N o=25 28.71 28.74 27.79 27.25 29.23 29.32 29.35
o=35 27.26 27.05 26.63 25.69 27.55 27.30 27.66
o =45 26.26 25.71 25.28 24.07 26.60 26.58 26.61
0=55 25.31 24.87 24.92 23.46 25.75 25.43 25.75
0 =65 24.62 24.23 23.78 22.05 24.17 24.12 25.22
v —e—BM3D mD o
—e—WNNM ¢ SGWDHMMS

37 8%

PSMR{dB)
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FIGURE 9. Average PSNRs (dB) of different methods for BSD68.

Figs. 9 and 10 depict the average values of PSNR and SSIM
for BSD68 dataset at the different noise level. It is clear shown
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FIGURE 10. Average SSIMs of different methods for BSD68.

in Figs. 9 and 10, our method has improved in varying degrees
on average PSNR and SSIM compared with other state-of-art

methods in both low and high noise levels.
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TABLE 4. Average SSIM results of different denoising methods on the BSD68 dataset with different noise level.

Dataset Standard deviation BM3D WNNM SGWD-HMMs SSLBD DnCNN [ BUIFD | GSMRF
c=5 0.9687 0.9662 0.9637 0.9598 0.9672 0.9638 0.9712
o=10 0.9620 0.9601 0.9589 0.9527 0.9625 0.9678 0.9678
o=15 0.9547 0.9523 0.9532 0.9503 0.9562 0.9568 0.9600
o=25 0.9462 0.9426 0.9410 0.9388 0.9466 0.9476 0.9532
BSDeS o=35 0.9312 0.9266 0.9228 0.9205 0.9306 0.9332 0.9500
o =45 0.8860 0.8710 0.8729 0.8732 0.8960 0.8960 0.9065
o=55 0.8322 0.8336 0.8256 0.8314 0.8532 0.8540 0.8592
0 =65 0.7650 0.7655 0.7530 0.7456 0.7774 0.7775 0.7898

FIGURE 11. Denoising results of one grayscale image from BSD68 with noise level ¢ = 15. (a) Original image. (b) Noisy image. (c) BM3D. (d) WNNM.

(€) SGWD-HMM:s. (f) SSLBD. (g) DnCNN. (h) BUIFD. (i) GSMRF.

FIGURE 12. Denoising results of one grayscale image from BSD68 with noise level o = 35. (a) Original image. (b) Noisy image. (c) BM3D. (d) WNNM.

(€) SGWD-HMM:s. (f) SSLBD. (g) DnCNN. (h) BUIFD. (i) GSMRF.

FIGURE 13. Denoising results of one grayscale image from BSD68 with noise level ¢ = 15. (a) Original image. (b) Noisy image. (c) BM3D. (d) WNNM.

(€) SGWD-HMMs. (f) SSLBD. (g) DnCNN. (h) BUIFD. (i) GSMRF.

Figs. 11-16 show the visual comparison results of three
examples selected from BSD68 dataset. The noise levels of
each image are 15 and 35, respectively.

For the first example, when the noise level is 15, the denois-
ing results of different methods are shown in Fig. 11. There
are obvious noises in the results obtained by WNNM method,
while the BM3D, DnCNN, BUIFD and GSMRF methods can
remove most of the noises. However, the results obtained by
BM3D and DnCNN methods usually yield some artifacts,
which cause the denoising images to look blurred. In contrast,
BUIFD and GSMREF can yield visually pleasing results, espe-
cially our method (if you can zoom in Fig.11 (f) and observe
it carefully). When the noise level is 35, as shown in Fig. 12,
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there are obvious noises and blur in the results obtained by
BM3D, WNNM, DnCNN and BUIFD, while only GSMRF
obtains visually satisfactory results.

For the second example, when the noise level is 15, the
denoising results of different methods are shown in Fig. 13.
There are obvious artifacts in the results obtained by WNNM
method, which lead the denoising image to look blurred in
different degrees, while the result obtained by BM3D has
obvious noises. In contrast, DnCNN, BUIFD and GSMRF
can yield very clear visual results. When the noise level is
35, as shown in Fig. 14, the denoising results are similar
as the noise level equal to 15, which will not be repeated
here.
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(b)

FIGURE 14. Denoising results of one grayscale image from BSD68 with noise level ¢ = 35. (a) Original image. (b) Noisy image. (c) BM3D. (d) WNNM.

(e) SGWD-HMMs. (f) SSLBD. (g) DnCNN. (h) BUIFD. (i) GSMRF.

(@) (b) (© (d)

U] (@) (h) 0}

FIGURE 15. Denoising results of one grayscale image from BSD68 with noise level ¢ = 15. (a) Original image. (b) Noisy image. (c) BM3D. (d) WNNM.

(€) SGWD-HMM:s. (f) SSLBD. (g) DnCNN. (h) BUIFD. (i) GSMRF.

FIGURE 16. Denoising results of one grayscale image from BSD68 with noise level ¢ = 35. (a) Original image. (b) Noisy image. (c) BM3D. (d) WNNM.

() SGWD-HMM:s. (f) SSLBD. (g) DnCNN. (h) BUIFD. (i) GSMRF.

TABLE 5. Average PSNR(dB) results of different denoising methods on the CBSD68 dataset with different noise level.

Dataset Standard deviation BM3D WNNM SGWD-HMMs SSLBD DnCNN | BUIFD | GSMRF
c=5 39.09 38.78 37.87 37.39 39.17 39.13 39.58
=10 35.99 35.57 34.89 34.01 36.01 35.92 36.26
o=15 33.47 33.22 32.84 31.92 33.36 33.45 34.02

CBSD6S o=25 32.41 32.04 32.12 30.03 32.43 32.32 32.75
o=35 29.06 28.85 27.20 26.87 29.55 29.60 29.96
o =45 26.46 26.31 25.61 24.77 26.51 26.68 27.03
o =055 25.41 25.47 24.42 23.83 25.82 25.85 25.93
o =65 24.62 24.33 23.35 22.56 24.26 24.12 25.22

For the third example, when the noise level is 15, the
denoising results of different methods are shown in Fig. 15.
There are serious noises and artifacts in the results obtained
by BM3D and WNNM methods, which lead the denoising
images to look blurred in different degrees, while the results
obtained by DnCNN and BUIFD have obvious noises. In con-
trast, GSMREF obtain visually satisfactory results. When the
noise level is 35, as shown in Fig. 16, There are obvious arti-
facts in the results obtained by BM3D and WNNM methods,
which lead the denoising image to look blurred in different
degrees, while the result obtained by BUIFD have serious
noises. In contrast, DnCNN and GSMRF obtain visually
satisfactory results.

2) EXPERIMENTS ON COLOR IMAGES

For the color images, 68 color images from the standard
Berkeley test dataset CBSD68 were used, as shown in Fig. 17,
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to quantitatively and qualitatively measure the performance
of each comparison method. The average PSNR and SSIM
results of different methods on the standard CBSD68 dataset
under different noise levels (5, 10, 15, 25, 35, 45, 55 and 65)
are shown in Table 5 and 6. The highest values of PSNR and
SSIM are highlighted in bold.

As shown in Table 5, the average PSNR obtained by
GSMREF outperforms the state-of-art denoising methods at
different noise levels. Specifically, the average PSNR of
GSMREF outperforms BM3D by the range 0.27 — 0.90,
WNNM by the range 0.46 — 1.11, SGWD-HMMs by the
range 0.63 —2.76, SSLBD by the range 2.10 — 3.09, DnCNN
by the range 0.11 — 0.96, BUIFD by the range 0.08 — 1.10.

The similar results also appear for SSIM values. Specifi-
cally, the average SSIM of our method outperforms BM3D
by the range 0.47% — 5.64%, WNNM by the range 0.65% —
5.55%, SGWD-HMMs by the range 0.57% — 7.85%, SSLBD
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FIGURE 17. Standard test dataset CBSD68 with 68 color images.

TABLE 6. Average SSIM results of different denoising methods on the CBSD68 dataset with different noise level.

Dataset Standard deviation BM3D WNNM SGWD-HMMs SSLBD DnCNN | BUIFD | GSMRF
o=5 0.9737 0.9702 0.9664 0.9589 0.9712 0.9705 0.9800

o=10 0.9511 0.9458 0.9488 0.9375 0.9535 0.9535 0.9635

o=15 0.9342 0.9363 0.9301 0.9221 0.9382 0.9388 0.9503

CBSD o=25 0.9190 09172 0.9180 0.9068 0.9181 0.9195 0.9237
68 o=35 0.8638 0.8476 0.8500 0.8421 0.8666 0.8628 0.9021
o =45 0.8062 0.8010 0.7913 0.7835 0.8102 0.8216 0.8216

o =55 0.7325 0.7297 0.7139 0.6958 0.7542 0.7561 0.7582

0 =65 0.6944 0.6953 0.6723 0.6500 0.7075 0.7095 0.7508

—e—BM3D 1o —& BM3D

—e— WNNM —e— WNNIM

PSNRIdE)

5+

22

—e— SGWD-HMMs

S5LBD
—e— DnCNN
—e— BUIFD
—e— G3MRF

15 25 35

Noise level &

FIGURE 18. Average PSNRs (dB) of different methods for CBSD68.

by the range 1.69% — 10.08%, DnCNN by the range 0.40% —

4.33%, BUIFD by the range 0% — 4.13%.
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FIGURE 19. FIGURE 19. The average SSIMs of different methods for

CBSD68.

Figs. 18 and 19 show the average values of PSNR and SSIM
for CBSD68 dataset at the different noise level. It is clear
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FIGURE 20. Denoising results of one image from CBSD68 color image with noise level ¢ = 15. (a) Original image. (b) Noisy image. (c) BM3D. (d) WNNM.
(€) SGWD-HMMs. (f) SSLBD. (g) DnCNN. (h) BUIFD. (i) GSMRF.

U]

FIGURE 21. Denoising results of one image from CBSD68 color image with noise level o = 35. (a) Original image. (b) Noisy image. (c) BM3D. (d) WNNM.
(e) SGWD-HMMs. (f) SSLBD. (g) DnCNN. (h) BUIFD. (i) GSMRF.

(a) (b) (© (d) U] (9) (h) 0]

FIGURE 22. Denoising results of one image from CBSD68 color image with noise level o = 15. (a) Original image. (b) Noisy image. (c) BM3D. (d) WNNM.
(e) SGWD-HMMs. (f) SSLBD. (g) DnCNN. (h) BUIFD. (i) GSMRF.

FIGURE 23. Denoising results of one image from CBSD68 color image with noise level o = 35. (a) Original image. (b) Noisy image. (c) BM3D. (d) WNNM.
(e) SGWD-HMMs. (f) SSLBD. (g) DnCNN. (h) BUIFD. (i) GSMRF.

(a) (b) (c) (d) (e) () (@) (h) i)

FIGURE 24. Denoising results of one image from CBSD68 color image with noise level o = 15. (a) Original image. (b) Noisy image. (c) BM3D. (d) WNNM.
(e) SGWD-HMMs. (f) SSLBD. (g) DnCNN. (h) BUIFD. (i) GSMRF.

shown in Figs. 18 and 19, our method has improved in varying Figs. 20-25 show the visual comparison results of three
degrees on average PSNR and SSIM compared with other examples selected from CBSD68 dataset. The noise levels of
state-of-art methods in both low and high noise levels. each image are 15 and 35 respectively.
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FIGURE 25. Denoising results of one image from CBSD68 color image with noise level ¢ = 35. (a) Original image. (b) Noisy image. (c) BM3D. (d) WNNM.

() SGWD-HMMs. (f) SSLBD. (g) DnCNN. (h) BUIFD. (i) GSMRF.

TABLE 7. Average running times (s) of different denosing methods for the 138 test images with noise level 25.

Method BM3D WNNM

SGWD-HMMs

SSLBD | DnCNN BUIFD GSMRF

Average Running Time (s) 3.86 828.5

138.79 58.72 4.72 64.79 23.78

For the first example, when the noise level is 15, the
denoising results of different methods are shown in Fig. 20.
There are obvious noises and artifacts in the results obtained
by BM3D, WNNM, DnCNN and BUIFD methods, which
lead the denoising images to look blurred in different degrees.
In contrast, GSMRF can yield very clear visual results. When
the noise level is 35, as shown in Fig. 21, it has serious arti-
facts in the results obtained by WNNM. The result obtained
by BM3D has obvious noises. In contrast, DnCNN, BUIFD
and GSMREF obtains visually satisfactory results.

For the second example, when the noise level is 15, the
denoising results of different methods are shown in Fig. 22.
There are obvious artifacts in the results obtained by BM3D,
WNNM and DnCNN methods, which lead the denoising
images to look blurred in different degrees. In contrast,
BUIFD and GSMREF can yield very clear visual results, espe-
cially our method. When the noise level is 35, as shown in
Fig. 23, there are obvious artifacts in the results obtained by
WNNM and DnCNN, while the results obtained by BM3D
and BUIFD have obvious noises. In contrast, only GSMRF
obtains visually satisfactory results.

For the third example, when the noise level is 15, the
denoising results of different methods are shown in Fig. 24.
There are obvious artifacts in the results obtained by WNNM
and DnCNN methods, which lead the denoising images to
look blurred in different degrees, while the result obtained by
BM3D has obvious noises. In contrast, BUIFD and GSMRF
obtain visually satisfactory results. When the noise level is
35, as shown in Fig. 25, there are obvious artifacts in the
results obtained by WNNM method, which lead the denoising
image to look blurred, while the results obtained by BM3D
and DnCNN have obvious noises. In contrast, BUIFD and
GSMRF obtain visually satisfactory results.

C. CONVERGENCE AND RUNNING TIME
The division of the image is somehow arbitrary. For example,
by dividing the whole image into the 4 x 4 domains as shown
in Fig. 2, we obtain 16 different subdomains represented by
16 different hyper-parameters.

We have tested lots of experiments, and setting 16 hyper-
parameters was a very satisfactory and effective option.
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FIGURE 26. Convergence of hyper-parameter estimation.

Actually, it is easy to know that more hyper-parameters more
time-consuming, less hyper-parameters less accuracy.

It should be noted that the optimization of crite-
rion function is an iterative solution process due to the
hyper-parameter estimation which uses EM iterative algo-
rithm. The convergence of EM algorithm can be guaranteed
theoretically [32], [33].

Fig. 26 shows the convergence of EM algorithm for the
hyper-parameter estimation of an image. As can be seen from
Fig. 26, the criterion function value can reach convergence
after about 5 steps of iteration. The convergence speed is fast.

Beside the qualitative and quantitative assessment, the
running time of the image denoising method is another
important evaluation. Table 7 reports the average running
time obtained by different denoising methods for the above
138 test images (2 synthetic images, 68 grayscale images of
BSD68 and 68 color images of CBSD68) with noise level
25. All the experiments are running on the DELL note-
book with Intel(R) Core (TM) i5-4300U CPU @ 1.90GHz
2.50GHZ, 16GB memory. The running environment is Mat-
lab (R2015b). As shows in Table 7, the proposed GSMRF
method faster than WNNM, SGWD-HMMs, SSLBD and
BUIFD methods. And it is inferior to BM3D and DnCNN
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methods. Although our method is slower than BM3D and
DnCNN methods, fortunately, the running time is completely
acceptable in many applications. In addition, our GSMRF
method is still very competitive by considering its better
image quality improvement.

VI. CONCLUSION

Markov random field is actually a discrete random process,
and its global characteristics can be described by local charac-
teristics (cluster potential energy). By using a prior probabil-
ity in terms of the noisy image, combined with the Bayesian
criterion, the problem of maximum a posteriori (MAP) esti-
mation can usually be converted into a global optimal value
for solving the energy function. This article chooses Gaussian
Symmetric Markov random field to describe the local char-
acteristics of the image. That is, because of the Gaussian
Symmetric Markov random can fuse the contextual infor-
mation of the image very well. The Gaussian Symmetric
Markov random, whose energy function is quadratic, and the
model has multiple parameters that can be well suitable for
the model of problem. Another important advantage of our
proposed GSMREF filter is that it can theoretically ensure local
a posterior probability follows Gaussian distribution. The
experiment results indicate that the method proposed in this
paper has a good performance to denoising Gaussian noise
by comparing with the six state-of-art denoising methods.
Besides the above advantages, it should be noted the high time
complexity of EM and conjugate gradient algorithms (both
are iterative algorithms), which lead to high computing time.
In the future, as a development of this work, we will optimize
the proposed method here to reduce its time complexity, and
extend it to the problem of other noises.

Finally, the purpose of this paper is not a commentary on
the best Gaussian denoiser. Conversely, if someone decides
to denoising image, then it shows that the proposed method
here can denoising as close to the original image as possible.
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