
Received 22 June 2022, accepted 11 July 2022, date of publication 14 July 2022, date of current version 20 July 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3190958

A Density Peaks Clustering Algorithm
With Sparse Search and K-d Tree
YUNXIAO SHAN 1, SHU LI 1,2, FUXIANG LI 1, YUXIN CUI 1, SHUAI LI 3,
MING ZHOU 1, AND XIANG LI 1
1School of Science, Harbin University of Science and Technology, Harbin 150080, China
2Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), School of Electrical and Electronic Engineering, Harbin University of
Science and Technology, Harbin 150080, China
3School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150080, China

Corresponding authors: Shu Li (lishu@hrbust.edu.cn) and Fuxiang Li (lifx2013@163.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 51671075 and Grant 51971086, in part
by the State Key Laboratory of Solidification Processing in Northwestern Polytechnical University (NWPU) under Grant SKLSP201606,
in part by the Heilongjiang Postdoctoral Fund for Scientific Research Initiation under Grant LBHQ16118, and in part by the Fundamental
Research Foundation for Universities of Heilongjiang Province under Grant LGYC2018JC004.

ABSTRACT Density peaks clustering has become a nova of clustering algorithm because of its simplicity
and practicality. However, there is one main drawback: it is time-consuming due to its high computational
complexity. Herein, a density peaks clustering algorithm with sparse search and K-d tree is developed to
solve this problem. Firstly, a sparse distance matrix is calculated by using K-d tree to replace the original
full rank distance matrix, so as to accelerate the calculation of local density. Secondly, a sparse search
strategy is proposed to accelerate the computation of relative-separation with the intersection between the
set of k nearest neighbors and the set consisting of the data points with larger local density for any data
point. Furthermore, a second-order difference method for decision values is adopted to determine the cluster
centers adaptively. Finally, experiments are carried out on datasets with different distribution characteristics,
by comparing with other six state-of-the-art clustering algorithms. It is proved that the algorithm can
effectively reduce the computational complexity of the original DPC from O(n2K) to O(n(n1−1/K + k)).
Especially for larger datasets, the efficiency is elevated more remarkably. Moreover, the clustering accuracy
is also improved to a certain extent. Therefore, it can be concluded that the overall performance of the newly
proposed algorithm is excellent.

INDEX TERMS Density peaks clustering, sparse search strategy, K-d tree, computational complexity,
second-order difference method.

I. INTRODUCTION
Cluster analysis as an important exploration technology of
data mining, is committed to reveal the inherent attributes
and laws hidden behind the seemingly disorganized unknown
data [1]–[3]. It provides support for decision-making and
has been successfully applied in many fields such as image
pattern recognition, social network mining, market statis-
tical analysis, medical research and engineering systems
[4]–[13]. With the extremely strong penetration and rapid
development of the Internet, many professional fields are

The associate editor coordinating the review of this manuscript and

approving it for publication was Juan Wang .

faced with explosive growth of data storage. This leads to
high computational complexity and difficulty in mining valu-
able information. In 2014, Science published clustering by
fast search and find of density peaks (DPC) [14]. Due to
its novel design idea and robust performance, DPC instantly
became the topic center of scholars in related fields. Com-
pared with classical clustering algorithms [15], [16], DPC
possesses several advantages. Firstly, the cluster centers can
be identified directly through the decision graph, which con-
sists of local density and relative-separation for all data. Sec-
ondly, it can handle non-convex datasets well and no iterative
process is required. Furthermore, it is insensitive to outliers.
However, there are still some shortages for DPC to be further

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 74883

https://orcid.org/0000-0001-8395-0121
https://orcid.org/0000-0003-1742-2480
https://orcid.org/0000-0003-0569-7655
https://orcid.org/0000-0002-9046-1868
https://orcid.org/0000-0002-7094-9612
https://orcid.org/0000-0002-3002-4746
https://orcid.org/0000-0002-2037-6633
https://orcid.org/0000-0003-3124-9901

Y. Shan et al.: Density Peaks Clustering Algorithm With Sparse Search and K-d Tree

improved, including the sensitivity to cut-off distance, the
high computational complexity as well as the determination
of cluster centers manually.

For the original DPC algorithm published by Science [14],
the local structure of data [17] is not considered and it is
sensitive to the cut-off distance. Some scholars try to solve
this problem by integrating the k nearest neighbors with
DPC in various ways. Du et al. [18] introduced the idea
of k nearest neighbors into DPC and redefined the calcu-
lation method of local density. Thus, the so-called DPC-
KNN algorithm was successfully established. Xie et al. [19]
also gave another measure of local density using k nearest
neighbors and designed a new allocation strategy for non-
center points. In order to elevate the possibility of select-
ing the correct cluster centers, Liu et al. [20] modified the
distance calculation method by considering the distance fac-
tors and neighbor information simultaneously. In addition,
a two-step allocation strategy was also adopted to allocate
non-center points. Recently, Liu et al. [21] have suggested a
mixed density clustering method by defining two types of
local density. One is based on k nearest neighbors, while
the other is determined by local spatial position deviation.
Local density description derived from k nearest neighbors
supplies a novel way for DPC algorithm. Under this condi-
tion, the sensitivity to the hyper-parameter k , i.e. the number
of nearest neighbors, is obviously depressed, compared with
the sensitivity to cut-off distance used in the original DPC
algorithm [14]. However, for these DPC algorithms based on
k nearest neighbors, mentioned-above, searching neighbors
mainly resorts to violent means. Therefore, these algorithms
still have the same high computational complexity as original
DPC.

For DPC algorithms, the high computational complexity
commonly comes from the distance calculation, which is
related with any two points among all data points. With
the increase of dataset size, as groundwork, calculating dis-
tance between any two points is time-consuming and even
impossible for DPC to be implemented. In order to reduce
the computational complexity and lift the clustering effi-
ciency, some improvement strategies have been proposed.
Gong et al. developed the efficient distributed density peaks
clustering algorithm (EDDPC) [22], which eliminates unnec-
essary distance calculation and data shuffling by Voronoi dia-
gram, data replication and data filtering. Bai et al. [23] tried to
save a part of the computational effort required for distance
by combining DPC and K-means. Xu et al. introduced the
idea of replacing all data points with non-empty grid into
DPC [24], [25]. Two prescreening strategies were proposed
to determine cluster centers by screening points with the
feature of higher local density. Xu et al. [26] also proposed
a fast density peaks clustering algorithm with sparse search
(FSDPC), which introduced the idea of third-party random
points tomeasure the distance. These optimization algorithms
have shown good ability in reducing complexity and improve
clustering efficiency. However, they either sacrifice accuracy,

resulting in poor clustering effect, or decrease the clustering
stability, making the clustering result for each run vary obvi-
ously. Therefore, it is not satisfying for these algorithms to
get reliable and reasonable clustering results.

As for determining cluster centers, it is difficult for the
original DPC algorithm to identify the correct cluster cen-
ters manually, if the dividing line between the center points
and the non-center points on the decision graph is not
very clear. Tong et al. [27] obtained the initial clusters by
a designed pre-clustering method, and then gave the final
clusters according to the Scale Space Theory. Lv et al. [28]
proposed a method to determine the cluster centers automat-
ically according to the decision value defined by the prod-
uct of local density and relative-separation. Flores et al. [29]
proposed a strategy to find cluster centers adaptively by
searching the gaps among data points on the one-dimensional
decision graph mapped. Lin et al. [30] introduced a hyper-
parameter, neighbor radius, to select a group of possible
density peaks, as preliminary clustering results. Then the
final clustering results were formed by merging the clus-
ters with single-bond clustering method. However, some of
these algorithms reached the goal of adaptive determina-
tion of cluster centers, at the cost of introducing an addi-
tional hyper-parameter. Meanwhile, some algorithms became
more time-consuming and inefficient, especially for large or
complex dataset.

To sum up, various DPC algorithms have been proposed,
but very few of these algorithms could achieve satisfactory
clustering accuracy, computational complexity as well as
the adaptive determination of cluster centers simultaneously.
Therefore, the main purpose of the present work is to develop
an improved DPC algorithm, in which the computational
complexity is reduced significantly and determining cluster
centers could be carried out automatically, under the condi-
tion that the clustering accuracy is guaranteed without any
additional hyper-parameter introduced. As a result, a den-
sity peaks clustering algorithm with sparse search and K-d
tree (SKTDPC) was proposed. As a type of data structure,
K-d tree [31] was adopted to find k nearest neighbors and thus
the computational complexity of local density could be firstly
reduced remarkably. Secondly, a strategy of sparse searchwas
proposed to accelerate the calculation of relative-separation
significantly. Furthermore, themethod for automatic determi-
nation of cluster centers was described based on second-order
difference of the decision value. Besides the main work, the
applicability of SKTDPC algorithm is analyzed briefly on
higher dimensional datasets.

The rest of this paper is organized as follows. Section II
reviews the works related with DPC algorithms. Section III
depicts the SKTDPC algorithm newly developed, including
fast search for k nearest neighbors, dual acceleration for
local density and relative-separation, and determining cluster
centers adaptively etc. Section IV verifies the validity of
the SKTDPC algorithm and makes a comparison with other
state-of-the-art clustering algorithms thoroughly on various

74884 VOLUME 10, 2022

Y. Shan et al.: Density Peaks Clustering Algorithm With Sparse Search and K-d Tree

datasets. Finally, Section V is the concluding remarks of the
paper.

II. RELATED WORKS
Due to the simple and clear principle of DPC algorithm,
it shows great performance on dataset with any shape or
dimension. DPC has become a new favorite in the field of
clustering algorithm research. The currently proposed SKT-
DPC algorithm is designed on the basis of the original DPC,
the idea of k nearest neighbors and sparse search. Therefore,
this section briefly reviews the original DPC algorithm. The
role of the idea for k nearest neighbors and sparse search in
DPC are also analyzed.

A. THE ORIGINAL DPC ALGORITHM
In original DPC algorithm [14], there are two important
variables, the local density ρi and the relative-separation δi
for any data point xi in dataset labeled by S = {x1, x2, . . . , xn}
with n data.

One of the important variables, the local density ρi,
is defined as follows:

ρi =
∑
j6=i

X (di,j − dc), X (a) =

{
1, a < 0
0, a ≥ 0

(1)

where dc is the cut-off distance, which is regarded as a
hyper-parameter for the algorithm, and di,j is the Euclidean
distance between data points xi and xj.

Another important variable, the relative-separation δi,
could be determined by searching for the nearest data
point xj, which has a relatively larger local density compared
with xi:

δi = min
j:ρj>ρi

(di,j) (2)

This is the condition that the point xi is a non-maximum
local density point. Especially, for the data point with the
maximum local density, the relative-separation δi is marked
specifically by δmax and is given as:

δmax = max
j
(di,j) (3)

DPC selects cluster centers based on the core idea, that the
cluster centers are surrounded by these data points with rela-
tively lower ρi as well as the cluster centers possess relatively
larger distance from points with local density higher than the
cluster centers. That is, the data points xi with relatively large
ρi and δi have a higher probability of being identified as clus-
ter centers. This is the main characteristic of the original DPC
algorithm different from other density clustering algorithms.

Based on the density ρi and distance δi, two critical tasks
are performed by the DPC. Firstly, cluster centers are deter-
mined. By drawing decision graph in the two-dimensional
coordinate system with ρi and δi as the abscissa and ordinate,
respectively, each data point corresponds to a position in the
graph and these points in the upper right corner of the decision

graph are selected as cluster centers [32]–[34]. Secondly, non-
cluster center points are assigned [35], [36]. The allocation
principle is that each non-center point and its nearest point
with a higher local density have the same cluster. For the
determination of cluster centers, if the boundary between the
center points and the non-center points on the decision graph
is obvious, the cluster centers could be identified quickly.
Otherwise, it is not easy to distinguish the ideal cluster centers
manually. This is the problem for determining cluster centers
adaptively, which will be solved in the Section III.D.

For the computational complexity of the original DPC,
it depends on the Euclidean distance calculation between any
two data points in dataset S [37]. These distances construct
the symmetric full-rank matrix D:

D =
[
di,j

]
n×n

(4)

This is groundwork for further determine both the local den-
sity ρi and the relative-separation δi of each data point xi.
For the dataset S = {x1, x2, . . . , xn} with n data, the com-
putational complexity of DPC is mainly determined by two
parts together. One is the computational complexity required
to compute the distance matrix, which isO(n2), while another
is the complexity required to allocate the remaining points,
which approximately isO(n). Then, the overall computational
complexity of DPC is O(n2).

B. THE IDEA OF K NEAREST NEIGHBORS AND SPARSE
SEARCH
From Equation (1), we can see that for the data point xi
the local density ρi is defined by the number of the nearest
neighbors which are located in the circular area with the
cut-off distance dc as the radius. Thus, Equation (1) can
also be reformulated by searching for the set NN(xi) which
consists of the nearest neighbors of the data point xi:

NN(xi) = {xj|di,j < dc, j 6= i}

ρi = |NN(xi)| (5)

where |NN(xi)| indicates the number of elements in the set
NN(xi).

In order to achieve better clustering results, for the original
DPC algorithm to be implemented, the cut-off distance dc
should be adjusted as a hyper-parameter. This method defin-
ing the local density ρi ignores the local distance information
of data points and makes the algorithm more sensitive to
hyper-parameter. For solving this problem, inspired by the
idea of k nearest neighbors, the hyper-parameter dc could be
replaced by the hyper-parameter k , the number of the nearest
neighbors. Some scholars have proposed various forms to
define the local density ρi with k nearest neighbors. In this
way, not only the algorithmic sensitivity to hyper-parameter
can be depressed, but also the local distance information can
be integrated into the local density definition to describe the
data densitymore reasonably.More specifically, dc has awide

VOLUME 10, 2022 74885

Y. Shan et al.: Density Peaks Clustering Algorithm With Sparse Search and K-d Tree

range of adjustment and has a great impact on algorithm per-
formance. On the contrary, the value of k increases with a step
size of 1, and the algorithm can achieve a satisfactory state
relatively when k does not exceed 20 generally. Therefore,
this strategy to define the local density is still maintained by
the present work, but a type of data structure, the K-d tree is
adopted to accelerate search for the k nearest neighbors. This
will be depicted in Sections III.A and III.B.

It can be found that the calculation of the distance between
any two points among all data points is time-consuming
at the beginning for DPC algorithms to be implemented.
Thus, DPC algorithms have high computational complexity,
no matter how to define ρi, with the hyper-parameter dc or
the hyper-parameter k , discussed in previous section. In view
of this, some scholars have introduced the idea of sparse
search into DPC algorithm to reduce the complexity. As the
name implies, sparse search refers to a class of methods that
can reduce internal friction effectively by replacing a large
number of calculations with as little computation as possi-
ble. [22]–[26] proposed different sparse methods to speed
up the calculation process of DPC. Inspired by this idea,
we design a new and effective sparse search strategy to reduce
the complexity of DPC.

It should be stressed that the present analysis on compu-
tational complexity does not take into account the influence
of feature dimension of data, which will be discussed in
the Section III.F. In the next section, an algorithm called
SKTDPC will be developed, which can significantly reduce
the computational complexity by the important strategies of
sparse search and K-d tree.

III. THE DENSITY PEAKS CLUSTERING ALGORITHM WITH
SPARSE SEARCH AND K-D TREE
In this section, the density peaks clustering algorithm with
sparse search and K-d tree (SKTDPC) is proposed. Aiming to
reduce the computational complexity, the present algorithm
adopts K-d tree to find k nearest neighbors quickly and
uses a strategy of sparse search to accelerate the calcula-
tion of relative-separation significantly. Moreover, a method
for automatic determination of cluster centers is developed.
Finally, the process of the algorithm and the complexity are
depicted and discussed, respectively.

A. FAST SEARCH OF K NEAREST NEIGHBORS BASED ON
K-D TREE
As discussed above, introducing the hyper-parameter k , the
number of the nearest neighbors, to replace the hyper-
parameter dc, the cut-off distance, could reduce the algo-
rithmic sensitivity to hyper-parameter obviously. However,
for the k nearest neighbors of each data point to be found
out, the distance between any two points in dataset S should
also be calculated. Therefore, there is still the problem of
high computational complexity. To accelerate the search for k
nearest neighbors and save a large part of the computational

effort required for distance, as a type of data structure, the
classical K-d tree is adopted in the present work.

K-d tree is a typical binary tree, which stores data points
in K dimensional space for quick retrieval. It represents the
division of K dimensional space and constitutes a series of
K dimensional hyperrectangular regions. The fast determi-
nation of k nearest neighbors based on K-d tree is divided
into two steps. The first part is the K-d tree construction
process, the second part is the process of search for k nearest
neighbors with K-d tree, the specific process described by
Algorithm 1 is as follows.

Note that in order to reduce the cost of backtracking and
achieve the best balance of data segmentation, this algorithm
selects the dimensionwith the largest variance and themedian
in this dimension as dividing criterion each time. The larger
the variance is, the more scattered the data points are in this
dimension. In the whole paper, the dataset S takes the form of
S = {x1, x2, . . . , xn} ∈ Rn×K , where n and K are the number
and spatial dimension of data points respectively. In addition,
k represents the number of the nearest neighbors for any data
point xi.

The computational complexity of K-d tree construction is
O(nK logn), and the computational complexity of searching
k nearest neighbors of n data points is O(n(n1−1/K + k))
in Algorithm 1. Therefore, the overall computational com-
plexity of searching k nearest neighbors by K-d tree is the
larger one from O(nK logn) and O(n(n1−1/K + k)), that is,
O(n(n1−1/K + k)), K � n. Based on K-d tree, the original
computational complexity of searching k nearest neighbors is
significantly reduced from O(n2) to O(n(n1−1/K + k)). Thus,
a lot of unnecessary calculations for distance are saved. This
will further result in the acceleration for calculation of the
local density ρi (Section III.B).

B. THE ACCELERATION FOR CALCULATION OF THE LOCAL
DENSITY BY K-D TREE
Searching for k nearest neighbors is the groundwork for
DPC algorithms to be implemented. By using the K-d tree
method proposed in Section III.A, the computational com-
plexity could be reduced essentially. As a result, the dis-
tance matrix D used in the original DPC (Section II.A),
a symmetric full-rank matrix, is changed to the symmetric
sparse matrix D̃. For example, assuming there is a dataset
S = {x1, x2, . . . , x12} containing 12 elements, the form of
the sparse matrix D̃ may be as follows:

D̃ =

0 d1,2 [] [] d1,5 d1,6 [] [] [] d1,10 [] []
d1,2 0 [] [] [] d2,6 [] d2,8, [] [] [] []
[] [] 0 d3,4 [] [] d3,7 [] [] [] d3,11 []
[] [] d3,4 0 d4,5 [] [] [] d4,9 [] [] d4,12

d1,5 [] [] d4,5 0 [] [] [] d5,9 [] [] []
d1,6 d2,6 [] [] [] 0 [] d6,8 [] [] d6,11 []
[] [] d3,7 [] [] [] 0 [] [] d7,10 [] d7,12
[] d2,8 [] [] [] d6,8 [] 0 [] d8,10 [] []
[] [] [] d4,9 d5,9 [] [] [] 0 [] d9,11 []

d1,10 [] [] [] [] [] d7,10 d8,10 [] 0 [] d10,12
[] [] d3,11 [] [] d6,11 [] [] d9,11 [] 0 []
[] [] [] d4,12 [] [] d7,12 [] [] d10,12 [] 0

where di,j represents the Euclidean distance between the
i-th data point and the j-th data point calculated byK-d tree in

74886 VOLUME 10, 2022

Y. Shan et al.: Density Peaks Clustering Algorithm With Sparse Search and K-d Tree

Algorithm 1: The K-d Tree Determines for k Nearest Neighbors

Input: The dataset S = {x1, x2, . . . , xn}, where xi = (x(1)i , x(2)i , . . . , x(K)
i)T , i = 1, 2, . . . , n; The number of the nearest

neighbors k
Output: K-d tree; The set Q of k nearest neighbors of xtarget(here xtarget is any point xi in dataset S)
build the K-d tree;
while any leaf node has non-unique data do

for each dimension h(h = 1, 2, . . . ,K) get its variance;
choose h according to the maximum variance;
sort the data values in dimension h and get its median m as the segmentation point;
store the data point of segmentation on the corresponding node;
other data are divided by m into two subsets (The left sub-node corresponds to the subset of the coordinates x(h) which
is equal to or less than the segmentation point. The right sub-node corresponds to the subset of coordinates x(h)

greater than the segmentation point);

Search k nearest neighbors based on constructed K-d tree;
Build an empty set Q;
Recursive visit down K-d tree until leaf node is reached. At this point, the leaf node is the current node (xcurrent) and it is
marked as visited;
loop

calculate the distance d(xtarget, xcurrent);
add the xcurrent to Q;
if |Q| < k, |Q| indicates the number of elements in the set Q then

if there is another child node in the current node then
recursive visit down K-d tree until leaf node is reached and marked it as visited;
update the leaf node to the current node;

else
find a parent node which has not been visited and mark it as visited;
update the parent node to the current node;

else
break loop;

end;
if the current node is leaf node then

while the current node has parent node do
do Block A:;
find a parent node which has not been visited and mark it as visited;
update the parent node to the current node;
calculate the distance d(xtarget, xcurrent);
if d(xtarget , xcurrent) < Qmax , Qmax is the farthest distance from xtarget in Q then

replace the point farthest from xtarget in Q with the current node;

do Block B:;
if there is another child node in the current node then

calculate the distance d(xtarget, lcur-tan), lcur-tan is the tangent line of the current node;
if d(xtarget , xcurrent) < Qmax then

recursive visit down K-d tree until leaf node is reached and marked it as visited;
update the leaf node to the current node;
calculate the distance d(xtarget, xcurrent);
if d(xtarget , xcurrent) < Qmax then

replace the point farthest from xtarget in Q with the current node;

else
while any leaf node has non-unique data do

do block B;
do block A;

VOLUME 10, 2022 74887

Y. Shan et al.: Density Peaks Clustering Algorithm With Sparse Search and K-d Tree

the process of searching the k nearest neighbors; ‘‘[]’’ denotes
the distance that does not need to be calculated in this process
(also known as invalid distance). In this matrix, the first row
implies that the algorithm can find out the k nearest neighbors
of the data point x1 only by calculating the distance between
x1 and x2, x5, x6, x10, instead of calculating all the distances.
Taking the number k of the nearest neighbors for any data

point xi as a hyper-parameter, the set of the k nearest neigh-
bors for xi, calculated by K-d tree, is marked by NNk (xi),
which could be described as:

NNk (xi) = {xj ∈ S|d(xi, xj) ≤ d(xi,Nk (xi)), j 6= i} (6)

where d(xi, xj) is the distance between xi and xj, which is
equivalent to dij, and Nk (xi) is the k-th nearest neighbor for
point xi.
Thus, the following formula is proposed to describe the

local density ρi more reasonably:

ρi =
1∑

xj∈NNk (xi) d(xi, xj)
(7)

It is indicated that the local density ρi is not required to calcu-
late on the basis of the symmetric full-rank matrix D, which
includes all distances between any two data in dataset S.
Therefore, by introducing K-d tree method, the calculation
of the local density ρi is accelerated significantly with the
sparse matrix D̃. This is the first acceleration for SKTDPC
algorithm.

C. THE ACCELERATION FOR CALCULATION OF THE
RELATIVE-SEPARATION BY SPARSE SEARCH
In Section III.B, ρi is obtained based on the symmetric sparse
matrix D̃. According to the definition of relative-separation,
Equation (2), δi of the non-maximum density point is deter-
mined by searching for the nearest data point xj, which
possesses relatively larger local density ρj compared with
xi(ρj > ρi). In other words, the distance information in D̃
is not enough to support the acquisition of all δi, and it is
necessary to complete the rest of the distance calculation.
At this point, the computational complexity of getting δi will
reach O(n2) in the worst case. Thus, it would be insignificant
to save a large part of the distance calculation for ρi by
K-d tree in Section III.B, if all of distance calculations were
carried out between any two points in dataset S. For dealing
with this problem, a sparse search strategy is proposed to
accelerate the calculation of the relative-separation δi.
For expressing more clearly, the local density ρi for all of

data points obtained in Section III.B are sorted in descend-
ing order to generate a new sequence ρi∗(i = 1, 2, . . . , n).
For any point xi, set B(xi) is introduced to represent the set
including all points xj with greater local density ρj compared
with xi(ρj > ρi). That is to say, consists of these data points
corresponding to ρ1∗ to ρi−1∗. Thus, the set B(xi) is explicit.
In addition, for any point xi, the set of k nearest neigh-
bors, NNk (xi), has also been determined in Section III.B.
Then, for xi with non-maximum density, based on NNk (xi)

and B(xi), if ∃j s.t. ρj > ρi, the sparse search strategy
for δi is defined as:

δi=

 min
xj∈NNk (xi)∩B(xi)

d(xi, xj), when NNk (xi)∩B(xi)6=φ

min d(xi, xj), otherwise

(8)

When xi is the point with maximum density, δmax has
the same expression as that defined by the original DPC,
Equation (3).

Equation (8) indicates that both the sets NNk (xi) and B(xi)
are important for determining δi quickly. One is the set of k
nearest neighbors, while the other is the set of these points
with greater local density than ρi. When the two sets have
an intersection, it means that δi must be the minimum of
distances of xi from the point xj in the intersection. All these
distance values are known information determined by looking
for k nearest neighbors with K-d tree. They are stored in the
sparse matrix D̃. In this case, δi can be obtained directly,
without any additional calculation for distance. Under the
condition that there is no intersection, the unknown distances
between xi and points with local density greater than ρi
need to be calculated to find the nearest distance. Therefore,
whether the intersection is non-empty or not plays an impor-
tant role in determining the computational complexity.

Normally, most of δi could be obtained by the non-empty
intersection directly. This can be explained as follows. Here
all data points in dataset S are divided into four parts: points
with large ρi and large δi (part 1), points with large ρi and
small δi(part 2), points with small ρi and small δi (part 3) as
well as points with small ρi and large δi (part 4). Firstly, there
are very few data points with large ρi and large δi, compared
with total data. These points are potential cluster centers.
Secondly, for points with large ρi, including part 1 and part 2,
the total amount of elements in the set B(xi) is relatively very
small, since B(xi) is defined by these points with local density
greater than ρi and ρi itself is also large. In addition, for
the small amount of distance calculation, some of the known
distances have already been stored in the symmetric sparse
matrix D̃, except for the distances between xi and the k nearest
neighbors. Thus, even though the intersection is empty, the
distance calculation, which needs to be supplemented, is not
time-consuming at all. Thirdly, the points in part 3 take a vast
proportion of total data. They are non-center points with low
local density ρi. Small ρi implies that the averaged distance
between xi and the k nearest neighbors is obviously large,
i.e. the k nearest neighbors are not concentrated around xi,
but are decentralized. Further, the k-th nearest neighbor of xi
is relatively far away from xi. Meanwhile, small δi indicates
that the shortest distance from xi is small for the points xj with
larger local density ρj. Thus, for any point xi, there is a high
possibility that the point xj, which determines the value of δi,
(with larger local density ρj andminimumof distance from xi)
is located in the nearest neighbors set NNk (xi). That is to
say the intersection of NNk (xi) and B(xi) is non-empty very

74888 VOLUME 10, 2022

Y. Shan et al.: Density Peaks Clustering Algorithm With Sparse Search and K-d Tree

likely. Finally, the points in part 4 are commonly regarded as
outliers, which are also very few. Corresponding calculation
required for distance are even negligible actually.

In order to show the process of obtaining δi more clearly
and intuitively by the proposed sparse search strategy,
an example is used to confirm the fact that the intersection
of NNk (xi) and B(xi) is not empty in most cases, as shown
in Fig. 1. There is a dataset with 16 data points that can be
seen in Fig. 1. Firstly, the 3 nearest neighbors set NN3(xi) of
any sample point xi and the distance d(xi, xj), xj ∈ NN3(xi)
are obtained by the sparse calculation method of K-d tree in
Section III.A. Then, the ρi is obtained by using (7), and the
larger density set B(xi) of the sample point xi can be obtained.
Finally, the δi is obtained from the NN3(xi) ∩ B(xi) shown in
the last column in Fig. 1. From Fig. 1, we can clearly see that
the NN3(xi)∩B(xi) of sample points 0, 1, 2, 4, 5, 6, 8, 10, 11,
12, 13, 14 and 15 is not empty. This means that the δi of these
data points can be obtained directly from the NN3(xi)∩B(xi).
That is, the nearest distance from xi in the NN3(xi)∩B(xi) is δi,
without any additional calculation. Only the NN3(xi) ∩ B(xi)
of 3, 7 and 9 three points is empty, so we need to add
a little bit of calculation. It is worth noting that although
these three points require supplementary calculation, 3 and
9 only needs to be calculated with a very small number of
points in the set {7}, {3, 7} respectively. Only point 7 with
maximum density needs to calculate the distance from the
remaining points. It can be seen that the proposed sparse
search strategy effectively avoids the distance calculation
of low-density points, which account for most of the data
volume. For a very small proportion of high-density points,
even if a little additional calculation is needed, the amount of
calculation is very small. For the whole algorithm, it is almost
negligible.

On the whole, a very small amount of extra distance
needs to be calculated to obtain δi of all data points. The
sparse search strategy captures the crux of these low density
points which occupy the main amount of computation, and
obtains δi through ingenious intersection strategy directly,
so that a lot of distance calculation is saved. At this point,
we have succeeded in reducing the computational complexity
of this step to much less than O(n(n1−1/K + k)). The second
acceleration of the SKTDPC algorithm has been achieved.
Therefore, the problem of high computational complexity is
solved fundamentally, for the original DPC algorithm as well
as a series of extended DPC algorithms based on k nearest
neighbors, by a simpler and more efficient strategy.

D. ADAPTIVE DETERMINATION OF CLUSTER CENTERS
For the determination of cluster centers, it is difficult for
the original DPC algorithm to distinguish center points and
non-center points on the decision graph manually, if the
boundary is not very clear. A reasonable adaptive way can
deal with this problem. In this section, a simple and efficient
method is proposed.

As an important judgment basis, the variable, called deci-
sion value γ , is also introduced, which is defined by the

product of ρi and δi:

γi = ρi × δi (9)

By re-arrangement in descending order of γ value, the newly
generated sequence of decision value is marked by γ ∗.
As analyzed above, the data points with both large ρi and
large δi are potential to become cluster centers. Under this
condition, the decision value is also large. Thus, it is crucial to
determine adaptively the boundary between the center points
and the non-center points in γ ∗.
Due to the essential distinction between the center points

and the non-center points in the degree of change of decision
value, the location of the mutation-point is determined adap-
tively according to this key feature to lock the cluster centers.
For γ ∗ sequence, there is the relatively large fluctuation,
for the center points with relatively large decision value.
In contrast, the fluctuation of γ ∗ value is not obvious for the
non-center points with relatively small decision value. The
second-order difference for γ ∗ value is used to describe this
fluctuation.

When searching the cluster centers, it is necessary to nar-
row the search appropriately. That is to say, the points in the
front position of γ ∗ with relatively large γ value that may
become the cluster centers needs to be focused on. Because
the points with small γ value does not have the characteristics
of becoming the cluster centers, either ρi or δi is small, or both
are small. Here, the search range is locked in [1, b

√
nc]

preliminarily, where n is the number of data. Previous studies
have shown that this search range [1, b

√
nc] is appropriate.

In this way, not only the search efficiency can be improved,
but also the removal of irrelevant data points will play a pos-
itive role in reducing disruption for determining the cluster
centers.

Through the analysis of γ ∗ value of a large number of
datasets with different distributions, it is found that there is a
general rule that the γ value of the point with the most poten-
tial to be the cluster centers, γ ∗1 , is much larger than γ ∗2 and
the value behind it generally. If the γ ∗1 value is placed within
the search range to determine the location of the mutation-
point, the difference value of γ ∗1 will be very large, which
may lead to the wrong mutation-point being found, thereby
affecting the determination of the cluster centers. Thus, the
search range [2, b

√
nc] is finally adopted in the present work.

This treatment does not affect becoming a cluster center for
the data point corresponding γ ∗1 . Furthermore, it could avoid
possible mistake to distinguish the center points and the non-
center points.

Based on the second-order difference of γ ∗, the
mutation-point is described as:

Mp=max
{
l|l=argmax

i

[
(
i+ 1
i

)2
ξi

γ ∗max − γ
∗

min
,

i=2, 3, . . . , b
√
nc−2

]}
(10)

where the function arg max is used to determine the set of
variable points i which maximizes (i+1i)2 ξi

γ ∗max−γ
∗

min
,Mp is the

VOLUME 10, 2022 74889

Y. Shan et al.: Density Peaks Clustering Algorithm With Sparse Search and K-d Tree

FIGURE 1. Example demonstration of sparse search strategy for obtaining δi .

FIGURE 2. Simple two-dimensional synthetic dataset as the example.

mutation-point that takes the largest i value when arg max
returns multiple i value, ξi is the second-order difference for
γ ∗i , which is defined by Equation (11), γ ∗min and γ

∗
max repre-

sent the minimum and maximum values of γ ∗i in [2, b
√
nc],

ξi = µi − µi+1, i = 2, 3, . . . , b
√
nc − 2 (11)

µi = γ
∗
i − γ

∗

i+1, i = 2, 3, . . . , b
√
nc − 1 (12)

where µi is the first-order difference between two adja-
cent terms γ ∗i . The adjustment coefficient (i+1i)2 is to make
(i+1i)2 ξi

γ ∗max−γ
∗

min
bigger when γ ∗i is larger, and smaller when

γ ∗i is smaller. The distinction between the center points
and the non-center points is more prominent through the
adjustment coefficient. Mp is the mutation-point with the
largest ordering value when the second-order difference of
γ ∗ is mutated. Then all data points with γ ∗i larger than γ ∗Mp

,
including γ ∗Mp

, are the candidate cluster centers of searching,
namely the corresponding points from γ ∗1 to γ ∗Mp

. Finally, the
pseudo-center points with large ρi small δi or small ρi large
δi were removed from these candidate centers as the final
cluster centers. Although the γi values of these pseudo-center
points are large, they do not possess the characteristics of the
center points, that is, ρi and δi are both large. Specifically,

the points xi(i ∈ [1,Mp]) satisfying both ρi >
∑b√nc

t=1 ρt

b
√
nc and

δi >

∑b√nc
t=1 δt

b
√
nc in the candidate center points are retained, and

the remaining pseudo-center points are removed to get the
final cluster centers.

Next, a two-dimensional synthetic dataset SS2 is adopted
as an example to clearly demonstrate the process of determin-
ingMp. This dataset has a total of 300 data points (n = 300).
In other words, the subsequent calculation of second-order
difference only needs to focus on the 16 largest γ ∗ in the
range of [2, 17], where b

√
nc = 17. Based on this infor-

mation, 15 µi from the 16 largest γ ∗ are firstly calculated
according to Equation (12); Then, 14 ξi are calculated from
15 µi by Equation (11); Finally, the mutation-point Mp is
determined by Equation (10), which isMp = 2. Here, the two
candidate center points meet the above conditions. Therefore,
the final cluster centers are the two data points corresponding
to γ ∗1 and γ ∗2 .

The distribution of data points in dataset SS2 is shown
in Fig. 2(a), and the yellow points indicated by arrows
in Fig. 2(b) are mutation-point determined by the pro-
posed second-order difference method. In other words, the

74890 VOLUME 10, 2022

Y. Shan et al.: Density Peaks Clustering Algorithm With Sparse Search and K-d Tree

mutation-point and the blue point (center 1 and center 2) were
identified as the cluster centers of dataset SS2, and the black
dots below were the ordinary non-center points.

E. PROCESS OF SKTDPC
The overall process of SKTDPC algorithm includes three
main parts: calculation of dual acceleration for ρi and δi based
onK-d tree and sparse search strategy, adaptive determination
of cluster centers by second-order difference method for γ ,
and allocation of non-cluster center points. The implemen-
tation of the first part has been described in Sections III.B
and III.C. The second part has been described in Section III.D
thoroughly. The third part for allocating non-center points
follows the original DPC depicted in Section II.A. Therefore,
the specific process of SKTDPC algorithm is summarized as
following Algorithm 2.

Algorithm 2: SKTDPC Algorithm

Input: The dataset S = {x1, x2, . . . , xn} ∈ Rn×K ; The
number of the nearest neighbors k

Output: The clustering result Y
1: Construct a K-d tree for dataset S, by Algorithm 1.
2: Search the k nearest neighbors of the point xi based on

the constructed K-d tree, by Algorithm 1. Meanwhile,
the symmetric sparse distance matrix D̃ is obtained.

3: According to Equation (7) by the k nearest neighbors,
the first acceleration calculation is carried out to
obtain ρi, and the descending order processing is made
for ρi to generate ρ∗i (i = 1, 2, . . . , n).

4: According to Equations.(3) and (8) by the sparse search
method, the second acceleration calculation is carried
out to obtain δi.

5: According to Equation (9), calculate γi and further
obtain γ ∗i by descending order processing.

6: According to Equation (10), calculate the mutation
point Mp to determine the candidate cluster centers as
the data points with decision value
γ ∗i (i = 1, 2, . . . ,Mp). The candidate centers

xi(i ∈ [1,Mp]), which satisfies both ρi >
∑b√nc

t=1 ρt

b
√
nc and

δi >

∑b√nc
t=1 δt

b
√
nc conditions, is the final cluster centers.

7: Assign the non-center points, according to the allocation
principle, that each non-center point and its nearest
point with a higher local density have the same cluster.

8: Return the clustering result Y .

Algorithm 2 summarizes the entire process of SKTDPC.
On the one hand, SKTDPC replaces the calculation of dis-
tance for symmetric full-rank distance matrix D with the
symmetric sparse distance matrix D̃. The K-d tree method
and the sparse search strategy by the intersection between
sets NNk (xi) and B(xi) are developed to accelerate the calcu-
lation of both ρi and δi. On the other hand, the second-order
difference method is used to find the boundary between the

center points and the non-center points. Therefore, adap-
tively determining the cluster centers is achieved quickly and
successfully. Finally, the present algorithm can effectively
reduce the computational complexity while maintaining or
even improving the clustering accuracy.

F. ANALYSIS OF COMPLEXITY
It should be stressed that the analysis of computational com-
plexity of DPC in some literature only focus on the variable,
data number n, then the complexity is O(n2) [18]–[30]. Dif-
ferent from these literature, the present work considers the
influence of the two variables, n andK , simultaneously. Thus,
the computational complexity of the original DPC can be
regarded as O(n2K).

The computational complexity of SKTDPC algorithm is
mainly determined by the four parts: (1) Calculation process
of local density ρi based on K-d tree. The computational
complexity of this part mainly depends on the process of
searching k nearest neighbors of data points. The process
includes construction of the tree and the search of k nearest
neighbors. The complexity of these two parts is O(nK logn)
and O(n(n1−1/K + k)) respectively. Thus, the complexity of
the calculation process of local density ρi based on K-d tree
is O(nK logn) + O(n(n1−1/K + k)). (2) Acquisition process
of relative-separation δi based on the sparse search strategy
with intersection between NNk (xi) and B(xi). The complexity
of this part is far less than O(n(n1−1/K + k)), as analyzed in
Section III.C in detail. (3) Adaptive determination of clus-
ter centers. The complexity of this part is determined by
descending order, second-order difference, and determining
the center points that satisfy the mean value condition. The
complexity of the three steps is O(nlogn), O(b

√
nc − 2) and

O(Mp), respectively. Thus, the computational complexity of
the whole part isO(nlogn)+O(b

√
nc−2)+O(Mp). (4) Allo-

cation of non-center points. The computational complexity
of this part is O(n). The total computational complexity of
SKTDPC algorithm is O(nK logn) + O(n(n1−1/K + k)) +
O(nlogn) + O(b

√
nc − 2) + O(Mp) + O(n). Normally, the

dimension K is much smaller than the data number n. There-
fore, the overall computational complexity of the SKTDPC
algorithm is the largest one among the four parts. That is, the
complexity is O(n(n1−1/K + k)). In order to make it easier to
analyze and compare with the complexity O(n2K) of DPC,
O(n(n1−1/K + k)) could be transformed into O(n2(1/ K

√
n +

k/n)), where 1/ K
√
n, k/n take values in range (0, 1). In other

words, the computational complexity of SKTDPC algorithm
is much lower than the complexity O(n2K) of DPC.

IV. EXPERIMENTS AND RESULTS
In this section, the present SKTDPC algorithm is compared
with the six state-of-the-art and typical clustering algorithms,
including FSDPC [26], the original DPC [14], DGDPC [38],
DPC-KNN [18], DBSCAN [16] and the K-means algo-
rithm [15]. For the seven algorithms, the first five algorithms
belong to the DPC series. FSDPC, the original DPC and
DGDPC are the algorithms taking cut-off distance dc as a

VOLUME 10, 2022 74891

Y. Shan et al.: Density Peaks Clustering Algorithm With Sparse Search and K-d Tree

TABLE 1. Characteristics of synthetic datasets.

TABLE 2. Characteristics of UCI real datasets.

hyper-parameter, and DGDPC has an extra merging threshold
l hyper-parameter. However, SKTDPC and DPC-KNN adopt
the hyper-parameter k , the number of nearest neighbors.
DBSCAN is another kind of density-based clustering algo-
rithm, for which two hyper-parameters, are used. In contrast,
the K-means algorithm is a fast clustering algorithm, in which
the allocation of non-centers points is determined by the
nearest distance from cluster centers.

A. INTRODUCTION TO DATASETS AND METRICS
To verify the clustering effect and efficiency of the SKT-
DPC algorithm, 15 commonly used clustering datasets
[38]–[45] are adopted in the present work. These include the
eight synthetic datasets (http://cs.joensuu.fi/sipu/data-sets/)
shown in Table 1 and the seven UCI real datasets [46]
(http://archive.ics.uci.edu/ml) which are shown in Table 2.
In the two tables, the basic information such as number
of data, number of class clusters, and data dimension is
listed. Here, in order to visualize the clustering effect clearly
and intuitively, in Table 1 all the eight synthetic datasets
are two-dimensional. In contrast, the UCI real datasets are
high-dimensional. They are discussed in Sections IV.B, IV.C
and IV.D, respectively.

The algorithmic clustering performance could be effec-
tively evaluated by using running time and five well-
known indexes, including accuracy (Acc) [47], adjusted
mutual information (AMI) [48], adjusted rand index
(ARI) [48], normalized mutual information (NMI) [49] and
Fowlers-Mallows index (FMI) [50]. The five indexes are
powerful tools to measure the clustering results, and the
maximum values are 1 for all the indexes. The closer to 1 they
are, the better the clustering effect is. In addition, running
time is an important performance indicator used to measure
the clustering efficiency. The smaller the value is, the higher
the clustering efficiency is, vice versa.

Among the other six clustering algorithms compared with
SKTDPC, the code for original DPC and DPC-KNN are
obtained by retranslating the MATLAB source code, pro-
vided by the authors of original DPC and DPC-KNN, into
Python language form. The FSDPC and DGDPC codes
are written in accordance with the original reference. The
algorithms for DBSCAN and K-means are programmed by
the sklearn.cluster library in Python. In order to make a
fair comparison, for each algorithm experiments are con-
ducted with its optimal hyper-parameters. At the same time,
the values of all the indicators below are average by the
20 times independently repeated experiments for each algo-
rithm, to avoid the occurrence of contingency. In addition,
all algorithms are implemented by Python 3.8.0. The experi-
ments are carried out in a computer environment with a core
i7 2.3 GHz processor, Windows 10 operating system and
16GB RAM. The relevant code for this article is published
in https://github.com/Nutshe/code.

B. EXPERIMENTS ON SYNTHETIC DATASETS
Among the eight synthetic datasets with different distribu-
tions, the four classic datasets Flame, Spiral, Aggregation and
S3 were used in the reference on original DPC [14]. The
15 class clusters of dataset R15 are distributed in the ring
and have similar Gaussian distribution. The datasets S1, A1
and A3 are the three commonly used clustering datasets with
different characteristics of overlapping, complexity and num-
ber of class clusters. Applying to the eight two-dimensional
synthetic datasets, the clustering results for the seven algo-
rithms are shown in Figs. 3-10, visually. Meanwhile, the
five clustering evaluation indexes are shown in Tables 3-5,
in which DPC refers to the original DPC [14]. In addition,
the values of optimal hyper-parameter, abbreviated by Par,
suitable for each algorithm are also given in Table 3.

For the Acc, AMI, ARI, NMI and FMI index values of
the seven algorithms shown in Tables 3-5 and the clustering
effect shown in Figs. 3-10, we can see that the SKTDPC
algorithm shows the best performance on all of the eight
synthetic datasets. This is because SKTDPC introduces the
idea of k nearest neighbors to define the local density and
obtains the correct cluster centers adaptively by second-order
difference method. Through these two methods, SKTDPC
can capture more comprehensive information for data distri-
bution and avoid the wrong selection of cluster centers, which
also plays an important role in improving the cluster effect.
By further comparing SKTDPC with other algorithms, it is
demonstrated that there are relative weaknesses with different
degree for these six algorithms. Firstly, FSDPC, the original
DPC and DGDPC are slightly inferior to SKTDPC, even
though they perform well on most datasets. This is because
these two algorithms only consider the global structure of
data, resulting in partial information loss. By contrast, the
local density of SKTDPC is calculated based on the dis-
tances from k nearest neighbors, which can deal with local
data information well. In addition, FSDPC and the original
DPC need to determine the clustering center manually. Thus

74892 VOLUME 10, 2022

Y. Shan et al.: Density Peaks Clustering Algorithm With Sparse Search and K-d Tree

TABLE 3. ACC of algorithms on synthetic datasets.

TABLE 4. AMI, ARI of algorithms on synthetic datasets.

TABLE 5. NMI, FMI of algorithms on synthetic datasets.

TABLE 6. Clustering efficiency of algorithms on synthetic datasets.

TABLE 7. ACC of algorithms on different UCI datasets.

the possible wrong selection of cluster centers would also
lead to poor clustering effect. Secondly, for DPC-KNN and

DBSCAN, both of them show obviously poor clustering
effect on S3, A1 and A3 datasets, as shown in Figs. 8-10.

VOLUME 10, 2022 74893

Y. Shan et al.: Density Peaks Clustering Algorithm With Sparse Search and K-d Tree

FIGURE 3. Clustering results of the seven algorithms on Flame dataset.

FIGURE 4. Clustering results of the seven algorithms on Spiral dataset.

TABLE 8. AMI, ARI of algorithms on different UCI datasets.

TABLE 9. NMI, FMI of algorithms on different UCI datasets.

This implies that the processing ability of the two algorithms
is obviously weak for datasets with a high degree of overlap
relatively. Moreover, the accuracy of DBSCAN is slightly

lower than that of other algorithms on Flame, Aggregation,
R15 and S1 datasets. This is caused by its recognition of noise
points, as shown in related figures. Finally, the clustering

74894 VOLUME 10, 2022

Y. Shan et al.: Density Peaks Clustering Algorithm With Sparse Search and K-d Tree

FIGURE 5. Clustering results of the seven algorithms on Aggregation dataset.

FIGURE 6. Clustering results of the seven algorithms on R15 dataset.

effect of K-means algorithm is very poor on Flame, Spiral
and Aggregation datasets, as shown in Figs. 3-5. This is
attributed to the defects of K-means itself, which cannot
capture the structural characteristics of non-convex dataset.
In contrast, the other six density-based algorithms show good
performance on these datasets.

The running time of SKTDPC algorithm and the other
six algorithms is shown in Table 6 to evaluate the algo-
rithmic clustering efficiency. It can be found that among
the five algorithms belonging to the DPC series, including
SKTDPC, FSDPC, the original DPC, DGDPC and DPC-
KNN, the clustering efficiency of SKTDPC algorithm newly
proposed is much higher than that for the other four algo-
rithms. Especially when the dataset size is large enough, the
acceleration effect is relatively more obvious. This is pre-
cisely because SKTDPC accelerates the calculation of local
density and relative-separation by K-d tree and the sparse
search strategy, and further requires less distance calculation
and storage space compared with the other four algorithms.
It can also be found that the running speed of K-means and
DBSCAN is relatively faster compared with the DPC series.
As discussed above, however, K-means is only applicable

to globular clusters. For non-convex clusters, the cluster-
ing effect is very poor, even though the efficiency is very
high. As for DBSCAN, it is sensitive to the setting of two
hyper-parameters and is difficult to use when the data density
is not evenly distributed. In addition, as shown above, the
processing ability of this algorithm is weak obviously for
datasets with a high degree of overlap, such as S3, A1 and A3.

C. EXPERIMENTS ON REAL-WORLD DATASETS
In order to further verify the clustering effect and efficiency
of SKTDPC algorithm, a comparative analysis is made on
six UCI real datasets (Seeds, Iris, Banknote, Wine, Ecoli,
Parking Birmingham) with different dataset size, number
of class clusters and data dimension. In contrast with the
eight synthetic datasets, which are two-dimensional, the UCI
real datasets are relatively high-dimensional and complex.
The performance of SKTDPC and other six algorithms is
compared. The index values and parameter values of all
algorithms are shown in Tables 7-10, in which ‘‘-’’ indicates
that the value for running time at this position is very large or
even cannot be obtained.

VOLUME 10, 2022 74895

Y. Shan et al.: Density Peaks Clustering Algorithm With Sparse Search and K-d Tree

FIGURE 7. Clustering results of the seven algorithms on S1 dataset.

FIGURE 8. Clustering results of the seven algorithms on S3 dataset.

TABLE 10. Clustering efficiency of algorithms on different UCI datasets.

From the Acc, AMI, ARI, NMI and FMI values shown
in Tables 7-9 it can be found that: (1) SKTDPC algorithm
achieves the best clustering results compared with the DPC
series and K-means algorithm in all real datasets, and the
clustering accuracy is improved to a certain degree. For
DBSCAN algorithm, it gives the best clustering accuracy
on Banknote authentication, better than SKTDPC slightly.
However, DBSCAN shows much lower accuracy than that
given by SKTDPC on other types of datasets. (2) The over-
all clustering effect of DPC series algorithm is better than
K-means and DBSCAN algorithm, indicating that the general

applicability of DPC series algorithm is stronger relatively.
(3) FSDPC and DGDPC algorithms can maintain similar
clustering accuracy as the original DPC, but there is still
distinction in some extent for these two algorithms compared
with SKTDPC algorithm. This is because FSDPC, DPC and
DGDPC ignore local data information. In addition, SKTDPC
can obtain the location of mutation-point adaptively in the
clustering process to determine the cluster centers without
interrupting the algorithm. Furthermore, due to the complex-
ity and sparsity of the Banknote and Parking datasets, the
clustering results of the seven algorithms is not satisfactory.

74896 VOLUME 10, 2022

Y. Shan et al.: Density Peaks Clustering Algorithm With Sparse Search and K-d Tree

FIGURE 9. Clustering results of the seven algorithms on A1 dataset.

FIGURE 10. Clustering results of the seven algorithms on A3 dataset.

For this kind of dataset, it is necessary to further study its
inherent data structure characteristics, to find amore effective
clustering method.

By analyzing Table 10, it can be found that the proposed
SKTDPC algorithm obviously improves the clustering effi-
ciency. In small datasets, the clustering efficiencies of
the seven algorithms are roughly the same, but the dis-
tinction becomes more obvious with the increase of data
volume. For the dataset Parking Birmingham with the
largest data volume, the clustering efficiency of SKTDPC
is 1.92 times and more times higher than that of FSDPC,
DPC, DGDPC and DPC-KNN, respectively. At this time,
DPC, DGDPC and DPC-KNN are on the verge of collapse
and almost lost their execution ability because they require
huge amount of computation and storage space. In addi-
tion, the running time of these two algorithms is seriously
time-consuming, which is already meaningless. The high
efficiency for SKTDPC is mainly attributed to the dual accel-
eration strategies to deal with large datasets, as analyzed in
Section III.F. One is the acceleration for calculation of the
local density by K-d tree. Thus a sparse distance matrix D̃
is calculated instead of a full-rank matrix D to find the k

nearest neighbors. Another is the acceleration for calculation
of the relative-separation by the sparse search strategy with
intersection between NNk (xi) and B(xi). Therefore, the dual
accelerations strategies play an important role in reducing
the algorithmic complexity, which makes SKTDPC algo-
rithm show more prominent on large datasets. It should also
be noted that although the running speed of DBSCAN and
K-means algorithms is fast, due to their own limitations, the
universality of the algorithms are tooweak to produce an ideal
clustering results.

D. ROBUSTNESS TO NUMBER OF NEAREST NEIGHBORS K
In this section, this paper will analyze and discuss the
influence of the proposed algorithm SKTDPC on the Acc
under different parameter k settings. The number of near-
est neighbors k is the only hyper-parameter of SKTDPC,
so it is crucial to analyze the change of clustering effect
under different settings. The adjustment of parameters is to
accommodate datasets with different distribution character-
istics. At the same time, within the scope of the regula-
tion of as small as possible to avoid algorithm into local

VOLUME 10, 2022 74897

Y. Shan et al.: Density Peaks Clustering Algorithm With Sparse Search and K-d Tree

FIGURE 11. Acc of SKTDPC under different parameters k .

FIGURE 12. Results of six indexes obtained by SKTDPC algorithm for Pendigits dataset under different parameter combinations.

TABLE 11. Experimental results of PCA+SKTDPC and SKTDPC under
optimal parameters.

optimum and can achieve ideal clustering result is what
we are after. If the parameters of the algorithm need to
be optimized in a wide range, it will not only affect the
search efficiency of the optimal parameters, but also make
the robustness and stability of the algorithm worse and it
is difficult to achieve the ideal clustering effect. Therefore,
we focus on analyzing the change of Acc within a reasonable
range of k = [2, 10] for the SKTDPC algorithm, as shown
in Fig. 11.

We can clearly see that most of the datasets of SKT-
DPC show stable and ideal clustering effect relatively in

a small range of parameters, which shows the excellent
robustness of the algorithm. On Spiral, Iris, Wine and Ecoli
datasets, although Acc shows relatively large fluctuations,
the algorithm can also quickly achieve ideal clustering effect
in a small range of parameter adjustment, which is not
easy. According to our analysis, the reason for this large
fluctuation may be that the algorithm automatically iden-
tifies incorrect cluster centers under the parameter k with
low Acc value. Therefore, the proposed SKTDPC algorithm
can achieve the ideal clustering effect and robustness suit-
able for most datasets within a small range of parameter
adjustment.

E. ADDITIONAL DISCUSSION
The focus of the present work is on dealing with datasets
with arbitrary shape and large size. As for higher dimen-
sional datasets, the improvement for clustering efficiency
of SKTDPC is not obvious. However, it is not a vexing

74898 VOLUME 10, 2022

Y. Shan et al.: Density Peaks Clustering Algorithm With Sparse Search and K-d Tree

problem. In this section, the applicability of SKTDPC on
higher dimensional dataset is briefly discussed and some
reasonable suggestions are given. Many effective dimension
reduction methods can be used to handle this case, such as
principal component analysis (PCA), locally linear embed-
ding (LLE), laplacian eigenmaps (LE), etc.

The following is a simple example of processing
16-dimensional dataset Pendigits using PCA as a dimen-
sion reduction method. Fig. 12 shows the heat map of
Acc, AMI, ARI, NMI, FMI and running time obtained by
PCA+SKTDPC algorithm by different combinations of k
and d , where d is the dimension after dimension reduction.
The darker the color of the rectangular block is, the better the
indicator value is. We can see that Acc, AMI, ARI, NMI and
FMI are all optimal with the set of parameters k = 7 and
d = 4. However, the corresponding running time of 39.51s
is not the minimum in the range considered. Meanwhile,
there are non-unique parameter combinations with values of
running time less than 39.51s. In this case, for determining
parameter combination the principle should be satisfied, that
is the highest efficiency is achieved on the premise of guar-
anteeing the ideal clustering effect, instead of pursuing speed
blindly. In accord with this principle, the final parameter
combination, k = 7 and d = 4, is adopted. Under this
parameters, the running time results of PCA+SKTDPC and
SKTDPC are shown in Table 11.

V. CONCLUSION
An extended DPC algorithm, called SKTDPC, is successfully
proposed by K-d tree, sparse search and second-order dif-
ference methods. Applying to eight synthetic datasets with
two dimensions and six real datasets, comparisons have been
carried out between SKTDPC and the six typical clustering
algorithms, including FSDPC, the original DPC, DGDPC,
DPC-KNN, DBSCAN and K-means algorithms. The main
conclusions can be summarized as follows.

Firstly, the algorithmic complexity is obviously reduced
by dual accelerations. One is the acceleration for calcu-
lation of the local density with a sparse distance matrix,
which is attributed to fast search of k nearest neighbors
by K-d tree. Another is the acceleration for calculation of
the relative-separation by a sparse search strategy with the
intersection between the set of k nearest neighbors and the
set consisting of the data points with larger local density
for any data point. Experimental validation demonstrates
that compared with the DPC series algorithms, SKTDPC
algorithm can achieve higher clustering efficiency on all
datasets. The larger the dataset, the greater the advantage
of SKTDPC.

Secondly, experiments indicate that SKTDPC algorithm
can realize the best clustering effect in general, com-
pared with the other algorithms. Furthermore, it is indi-
cated that compared with K-means and DBSCAN algorithm,
SKTDPC algorithm has a relatively stronger general applica-
bility for datasets with arbitrary distribution characteristics,

even though they have better clustering efficiency in some
cases.

Finally, the second-order difference method for decision
values is adopted to determine the location of the mutation-
point adaptively, which avoids the trouble of selecting the
cluster centers manually. It is also verified by experiments
that the present method can produce the correct number of
cluster centers automatically.

For future work, datasets with insufficient target data,
high complexity or high sparsity will be further explored
and studied to enhance the application ability of clustering
algorithm.

REFERENCES
[1] Q. Zhang, C. Zhu, L. T. Yang, Z. Chen, L. Zhao, and P. Li, ‘‘An incremental

CFS algorithm for clustering large data in industrial Internet of Things,’’
IEEE Trans. Ind. Informat., vol. 13, no. 3, pp. 1193–1201, Jun. 2017, doi:
10.1109/TII.2017.2684807.

[2] A. Fahad, N. Alshatri, Z. Tari, and A. Alamri, ‘‘A survey of cluster-
ing algorithms for big data: Taxonomy and empirical analysis,’’ IEEE
Trans. Emerg. Topics Comput., vol. 2, no. 3, pp. 267–279, Sep. 2014, doi:
10.1109/TETC.2014.2330519.

[3] B. J. Jain, ‘‘Consistency of mean partitions in consensus
clustering,’’ Pattern Recognit., vol. 71, pp. 26–35, Nov. 2017, doi:
10.1016/j.patcog.2017.04.021.

[4] M. G. Omran, A. P. Engelbrecht, and A. Salman, ‘‘An overview of clus-
tering methods,’’ Intell. Data Anal., vol. 11, no. 6, pp. 583–605, 2007, doi:
10.1016/j.patcog.2017.04.021.

[5] J. Liu and C. Zhao, ‘‘Density gain-rate peaks for spectral
clustering,’’ IEEE Access, vol. 9, pp. 46000–46010, 2021, doi:
10.1109/ACCESS.2021.3066498.

[6] Y.-W. Chen, D.-H. Lai, H. Qi, J.-L. Wang, and J.-X. Du, ‘‘A new
method to estimate ages of facial image for large database,’’ Multimed.
Tools Appl., vol. 75, no. 5, pp. 2877–2895, Feb. 2016, doi: 10.1007/
s11042-015-2485-9.

[7] Y. Wang, Z. Wei, and J. Yang, ‘‘Feature trend extraction and adap-
tive density peaks search for intelligent fault diagnosis of machines,’’
IEEE Trans. Ind. Informat., vol. 15, no. 1, pp. 105–115, Jan. 2019, doi:
10.1109/TII.2018.2810226.

[8] M. Xu, Y. Li, R. Li, F. Zou, and X. Gu, ‘‘EADP: An extended adap-
tive density peaks clustering for overlapping community detection in
social networks,’’ Neurocomputing, vol. 337, pp. 287–302, Apr. 2019, doi:
10.1016/j.neucom.2019.01.074.

[9] J. Chen and P. S. Yu, ‘‘A domain adaptive density clustering
algorithm for data with varying density distribution,’’ IEEE Trans.
Knowl. Data Eng., vol. 33, no. 6, pp. 2310–2321, Jun. 2021, doi:
10.1109/TKDE.2019.2954133.

[10] H. Yu, L. Chen, and J. Yao, ‘‘A three-way density peak clustering method
based on evidence theory,’’ Knowl.-Based Syst., vol. 211, Jan. 2021,
Art. no. 106532, doi: 10.1016/j.knosys.2020.106532.

[11] X. Yang, Z. Cai, R. Li, and W. Zhu, ‘‘GDPC: Generalized density
peaks clustering algorithm based on order similarity,’’ Int. J. Mach.
Learn. Cybern., vol. 12, no. 3, pp. 719–731, Mar. 2021, doi: 10.1007/
s13042-020-01198-0.

[12] X. Li and K.-C. Wong, ‘‘Evolutionary multiobjective clustering and its
applications to patient stratification,’’ IEEE Trans. Cybern., vol. 49, no. 5,
pp. 1680–1693, May 2019, doi: 10.1109/TCYB.2018.2817480.

[13] M. d’Errico, E. Facco, A. Laio, and A. Rodriguez, ‘‘Automatic topography
of high-dimensional data sets by non-parametric density peak clustering,’’
Inf. Sci., vol. 560, pp. 476–492, Jun. 2021, doi: 10.1016/j.ins.2021.01.010.

[14] A. Rodriguez and A. Laio, ‘‘Clustering by fast search and find of den-
sity peaks,’’ Science, vol. 344, no. 6191, pp. 1492–1496, Jun. 2014, doi:
10.1126/science.1242072.

[15] J. A. Hartigan and M. A. Wong, ‘‘Algorithm AS 136: A K-means clus-
tering algorithm,’’ J. Appl. Stat., vol. 28, no. 1, pp. 100–108, 1979, doi:
10.2307/2346830.

VOLUME 10, 2022 74899

http://dx.doi.org/10.1109/TII.2017.2684807
http://dx.doi.org/10.1109/TETC.2014.2330519
http://dx.doi.org/10.1016/j.patcog.2017.04.021
http://dx.doi.org/10.1016/j.patcog.2017.04.021
http://dx.doi.org/10.1109/ACCESS.2021.3066498
http://dx.doi.org/10.1007/s11042-015-2485-9
http://dx.doi.org/10.1007/s11042-015-2485-9
http://dx.doi.org/10.1109/TII.2018.2810226
http://dx.doi.org/10.1016/j.neucom.2019.01.074
http://dx.doi.org/10.1109/TKDE.2019.2954133
http://dx.doi.org/10.1016/j.knosys.2020.106532
http://dx.doi.org/10.1007/s13042-020-01198-0
http://dx.doi.org/10.1007/s13042-020-01198-0
http://dx.doi.org/10.1109/TCYB.2018.2817480
http://dx.doi.org/10.1016/j.ins.2021.01.010
http://dx.doi.org/10.1126/science.1242072
http://dx.doi.org/10.2307/2346830

Y. Shan et al.: Density Peaks Clustering Algorithm With Sparse Search and K-d Tree

[16] M. Ester, H. P. Kriegel, J. Sander, and X. Xu, ‘‘A density-based algorithm
for discovering clusters in large spatial databases with noise,’’ in Proc.
KDD, 1996, pp. 226–231.

[17] J. Hou and H. Cui, ‘‘Experimental evaluation of a density kernel in
clustering,’’ in Proc. 7th Int. Conf. Intell. Control Inf. Process. (ICICIP),
Siem Reap, Cambodia, Dec. 2016, pp. 55–59.

[18] M. Du, S. Ding, and H. Jia, ‘‘Study on density peaks clustering based on K-
nearest neighbors and principal component analysis,’’ Knowl.-Based Syst.,
vol. 99, pp. 135–145, May 2016, doi: 10.1016/j.knosys.2016.02.001.

[19] J. Xie, H. Gao, W. Xie, X. Liu, and P. W. Grant, ‘‘Robust clustering by
detecting density peaks and assigning points based on fuzzy weighted
K-nearest neighbors,’’ Inf. Sci., vol. 354, pp. 19–40, Aug. 2016, doi:
10.1016/j.ins.2016.03.011.

[20] R. Liu, H. Wang, and X. Yu, ‘‘Shared-nearest-neighbor-based clustering
by fast search and find of density peaks,’’ Inf. Sci., vol. 450, pp. 200–226,
Jun. 2018, doi: 10.1016/j.ins.2018.03.031.

[21] Y. Liu, D. Liu, F. Yu, and Z. Ma, ‘‘A double-density clustering method
based on ‘nearest to first in’ strategy,’’ Symmetry, vol. 12, no. 5, p. 747,
May 2020, doi: 10.3390/sym12050747.

[22] S. Gong and Y. Zhang, ‘‘EDDPC: An efficient distributed density peaks
clustering algorithm,’’ J. Comput. Res. Dev., vol. 53, no. 6, pp. 1400–1409,
2016, doi: 10.7544/issn1000-1239.2016.20150616.

[23] L. Bai, X. Cheng, J. Liang, H. Shen, and Y. Guo, ‘‘Fast density clustering
strategies based on the K-means algorithm,’’ Pattern Recognit., vol. 71,
pp. 375–386, Nov. 2017, doi: 10.1016/j.patcog.2017.06.023.

[24] X. Xu, S. Ding, M. Du, and Y. Xue, ‘‘DPCG: An efficient density peaks
clustering algorithm based on grid,’’ Int. J. Mach. Learn. Cybern., vol. 9,
no. 5, pp. 743–754, 2018, doi: 10.1007/s13042-016-0603-2.

[25] X. Xu, S. Ding, and Z. Shi, ‘‘An improved density peaks clustering
algorithm with fast finding cluster centers,’’ Knowl.-Based Syst., vol. 158,
pp. 65–74, Oct. 2018, doi: 10.1016/j.knosys.2018.05.034.

[26] X. Xu, S. Ding, Y. Wang, L. Wang, and W. Jia, ‘‘A fast density peaks
clustering algorithm with sparse search,’’ Inf. Sci., vol. 554, pp. 61–83,
Apr. 2021, doi: 10.1016/j.ins.2020.11.050.

[27] W. Tong, S. Liu, and X.-Z. Gao, ‘‘A density-peak-based clustering algo-
rithm of automatically determining the number of clusters,’’Neurocomput-
ing, vol. 458, pp. 655–666, Oct. 2021, doi: 10.1016/j.neucom.2020.03.125.

[28] Y. Lv, M. Liu, and Y. Xiang, ‘‘Fast searching density peak clustering algo-
rithm based on shared nearest neighbor and adaptive clustering center,’’
Symmetry, vol. 12, no. 12, p. 2014, Dec. 2020, doi: 10.3390/sym12122014.

[29] K. G. Flores and S. E. Garza, ‘‘Density peaks clustering with gap-based
automatic center detection,’’ Knowl.-Based Syst., vol. 206, Oct. 2020,
Art. no. 106350, doi: 10.1016/j.knosys.2020.106350.

[30] J.-L. Lin, J.-C. Kuo, and H.-W. Chuang, ‘‘Improving density peak cluster-
ing by automatic peak selection and single linkage clustering,’’ Symmetry,
vol. 12, no. 7, p. 1168, Jul. 2020, doi: 10.3390/sym12071168.

[31] J. L. Bentley, ‘‘Multidimensional binary search trees used for associa-
tive searching,’’ Commun. ACM, vol. 18, no. 9, pp. 509–517, 1975, doi:
10.1145/361002.361007.

[32] J.-Y. Chen and H.-H. He, ‘‘A fast density-based data stream clustering
algorithm with cluster centers self-determined for mixed data,’’ Inf. Sci.,
vol. 345, pp. 271–293, Jun. 2016, doi: 10.1016/j.ins.2016.01.071.

[33] M. Wang, F. Min, Y.-X. Wu, and Z.-H. Zhang, ‘‘Active learning through
density clustering,’’ Expert Syst. Appl., vol. 85, pp. 305–317, Nov. 2017,
doi: 10.1016/j.eswa.2017.05.046.

[34] J. Xu, G. Wang, and W. Deng, ‘‘DenPEHC: Density peak based efficient
hierarchical clustering,’’ Inf. Sci., vol. 373, pp. 200–218, Dec. 2016, doi:
10.1016/j.ins.2016.08.086.

[35] S. Ding, X. Xu, and Y. Wang, ‘‘Optimized density peaks clustering algo-
rithm based on dissimilarity measure,’’ J. Softw., vol. 31, no. 12, pp. 1–13,
Nov. 2020, doi: 10.13328/j.cnki.jos.005813.

[36] J. Xu, G. Wang, T. Li, W. Deng, and G. Gou, ‘‘Fat node leading tree for
data stream clustering with density peaks,’’ Knowl.-Based Syst., vol. 120,
pp. 99–117, Mar. 2017, doi: 10.1016/j.knosys.2016.12.025.

[37] X. Xu, Y. Ju, Y. Liang, and P. He, ‘‘Manifold density peaks clustering
algorithm,’’ in Proc. 3rd Int. Conf. Adv. Cloud Big Data, Yangzhou, China,
Oct. 2015, pp. 311–318.

[38] Z. Zhang, Q. Zhu, F. Zhu, J. Li, D. Cheng, Y. Liu, and J. Luo,
‘‘Density decay graph-based density peak clustering,’’ Knowl.-Based
Syst., vol. 224, Jul. 2021, Art. no. 107075, doi: 10.1016/j.knosys.2021.
107075.

[39] C. Ren, L. Sun, Y. Yu, and Q. Wu, ‘‘Effective density peaks clus-
tering algorithm based on the layered K-nearest neighbors and sub-
cluster merging,’’ IEEE Access, vol. 8, pp. 123449–123468, 2020, doi:
10.1109/ACCESS.2020.3006069.

[40] Z. Bian, F.-L. Chung, and S. Wang, ‘‘Fuzzy density peaks clustering,’’
IEEE Trans. Fuzzy Syst., vol. 29, no. 7, pp. 1725–1738, Jul. 2021, doi:
10.1109/TFUZZ.2020.2985004.

[41] A. Gionis, H. Mannila, and P. Tsaparas, ‘‘Clustering aggregation,’’ ACM
Trans. Knowl. Discovery Data, vol. 1, no. 1, p. 4, Mar. 2007, doi:
10.1145/1217299.1217303.

[42] L. Fu, J. Qu, and H. Chen, ‘‘Mechanical drilling of printed circuit boards:
The state-of-the-art,’’Circuit World, vol. 33, no. 4, pp. 3–8, Nov. 2007, doi:
10.1108/03056120710836882.

[43] H. Chang and D.-Y. Yeung, ‘‘Robust path-based spectral cluster-
ing,’’ Pattern Recognit., vol. 41, no. 1, pp. 191–203, Jan. 2008, doi:
10.1016/j.patcog.2007.04.010.

[44] C. J. Veenman, M. J. T. Reinders, and E. Backer, ‘‘A maximum variance
cluster algorithm,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 9,
pp. 1273–1280, Sep. 2002, doi: 10.1109/TPAMI.2002.1033218.

[45] Y. Xia, G. Wang, and S. Gao, ‘‘An efficient clustering algorithm for 2D
multi-density dataset in large database,’’ in Proc. Int. Conf. Multimedia
Ubiquitous Eng. (MUE), Seoul, South Korea, 2007, pp. 78–82.

[46] A. Asuncion and D. Newman, ‘‘UCI machine learning repository,’’ School
Inf. Comput. Sci., Univ. California, Irvine, CA, USA, Tech. Rep., 2007.

[47] S. Ding, H. Jia, and Z. Shi, ‘‘Spectral clustering algorithm based on
adaptive Nystrom sampling for big data analysis,’’ J. Softw., vol. 25, no. 9,
pp. 2037–2049, 2014, doi: 10.13328/j.cnki.jos.004643.

[48] N. X. Vinh, J. Epps, and J. Bailey, ‘‘Information theoretic measures for
clusterings comparison: Variants, properties, normalization and correction
for chance,’’ J. Mach. Learn. Res., vol. 11, pp. 2837–2854, Jan. 2010.

[49] A. Lancichinetti, S. Fortunato, and J. Kertész, ‘‘Detecting the over-
lapping and hierarchical community structure in complex networks,’’
New J. Phys., vol. 11, no. 3, 2009, Art. no. 033015, doi: 10.1088/1367-
2630/11/3/033015.

[50] E. B. Fowlkes and C. L. Mallows, ‘‘A method for comparing two hierar-
chical clusterings,’’ J. Amer. Stat. Assoc., vol. 78, no. 383, pp. 553–569,
Sep. 1983, doi: 10.1080/01621459.1983.10478008.

YUNXIAO SHAN was born in 1995. She is cur-
rently pursuing the Ph.D. degreewith the School of
Science, Harbin University of Science and Tech-
nology, Harbin, China. Her current research inter-
ests include machine learning, data mining, and
fuzzy logic.

SHU LI was born in 1980. He received the Ph.D.
degree from Tianjin University, Tianjin, China.
He is currently a Professor with the School of Elec-
trical and Electronic Engineering, Harbin Univer-
sity of Science and Technology, China. As the first
author or corresponding author, he has published
over 20 SCI indexed articles in the internation-
ally renowned journals. He also has obtained six
software copyrights. His research interests include
machine learning, data mining, and modeling and
calculation for phase transition theory.

74900 VOLUME 10, 2022

http://dx.doi.org/10.1016/j.knosys.2016.02.001
http://dx.doi.org/10.1016/j.ins.2016.03.011
http://dx.doi.org/10.1016/j.ins.2018.03.031
http://dx.doi.org/10.3390/sym12050747
http://dx.doi.org/10.7544/issn1000-1239.2016.20150616
http://dx.doi.org/10.1016/j.patcog.2017.06.023
http://dx.doi.org/10.1007/s13042-016-0603-2
http://dx.doi.org/10.1016/j.knosys.2018.05.034
http://dx.doi.org/10.1016/j.ins.2020.11.050
http://dx.doi.org/10.1016/j.neucom.2020.03.125
http://dx.doi.org/10.3390/sym12122014
http://dx.doi.org/10.1016/j.knosys.2020.106350
http://dx.doi.org/10.3390/sym12071168
http://dx.doi.org/10.1145/361002.361007
http://dx.doi.org/10.1016/j.ins.2016.01.071
http://dx.doi.org/10.1016/j.eswa.2017.05.046
http://dx.doi.org/10.1016/j.ins.2016.08.086
http://dx.doi.org/10.13328/j.cnki.jos.005813
http://dx.doi.org/10.1016/j.knosys.2016.12.025
http://dx.doi.org/10.1016/j.knosys.2021.107075
http://dx.doi.org/10.1016/j.knosys.2021.107075
http://dx.doi.org/10.1109/ACCESS.2020.3006069
http://dx.doi.org/10.1109/TFUZZ.2020.2985004
http://dx.doi.org/10.1145/1217299.1217303
http://dx.doi.org/10.1108/03056120710836882
http://dx.doi.org/10.1016/j.patcog.2007.04.010
http://dx.doi.org/10.1109/TPAMI.2002.1033218
http://dx.doi.org/10.13328/j.cnki.jos.004643
http://dx.doi.org/10.1088/1367-2630/11/3/033015
http://dx.doi.org/10.1088/1367-2630/11/3/033015
http://dx.doi.org/10.1080/01621459.1983.10478008

Y. Shan et al.: Density Peaks Clustering Algorithm With Sparse Search and K-d Tree

FUXIANG LI was born in 1972. He received the
Ph.D. degree from the Harbin Institute of Tech-
nology, Harbin, China. He is currently a Profes-
sor with the School of Science, Harbin University
of Science and Technology, Harbin. He has pub-
lished more than 20 papers. His research interests
include nonlinear numerical analysis, computa-
tional mathematics, and machine learning.

YUXIN CUI was born in 1995. She is currently
pursuing the Ph.D. degree with the School of Sci-
ence, Harbin University of Science and Technol-
ogy, Harbin, China. Her current research interests
include machine learning and stochastic logic sys-
tem analysis.

SHUAI LI was born in 1998. He is currently pursu-
ing the Ph.D. degree with the School of Materials
Science and Chemical Engineering, Harbin Uni-
versity of Science and Technology, Harbin, China.
His current research interests include machine
learning, material research, and high entropy alloy.

MING ZHOU was born in 1997. She is currently
pursuing the M.S. degree with the School of Sci-
ence, Harbin University of Science and Technol-
ogy, Harbin, China. Her current research interests
include machine learning, mathematics of compu-
tation, and nonlinear numerical analysis.

XIANG LI was born in 1997. He is currently
pursuing the M.S. degree with the School of Sci-
ence, Harbin University of Science and Technol-
ogy, Harbin, China. His current research interests
include machine learning and data mining.

VOLUME 10, 2022 74901

