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ABSTRACT Machine learning has been increasingly applied in identification of fraudulent transactions.
However, most application systems detect duplicitous activities after they have already occurred, not at
or near real time. Since spurious transactions are far fewer than the normal ones, the highly imbalanced
data makes fraud detection very challenging and calls for ways to address it beyond the traditional
machine learning approach. This study has proposed a detection framework, and implemented it using
quantum machine learning (QML) approach by applying Support Vector Machine (SVM) enhanced with
quantum annealing solvers. To evaluate its detection performance, we have further implemented twelve
machine learning methods, and compared the performance of QML application with these machine learning
implementations on two datasets: Israel credit card transactions (non-time series) which is moderately
imbalanced, and a bank loan dataset (time series) that is highly imbalanced. The result shows that, the
quantum enhanced SVM has categorically outperformed the rest in both speed and accuracy with the bank
loan dataset. However, its detection accuracy is similar to others with Israel credit card transactions data.
Furthermore, for both datasets, feature selection has been shown to significantly improve the detection
speed, although the improvement on accuracy is marginal. These findings have demonstrated the potential
of QML applications on time series based, highly imbalanced data, and the merit of traditional machine
learning approaches in non-time series data. This study provides insight on selecting appropriate approach
with different types of datasets while taking into consideration the tradeoffs of speed, accuracy, and cost.

INDEX TERMS Fraud detection, machine learning, quantum computing.

I. INTRODUCTION
Fraudulent transactions are costly to businesses. According
to [1], every year, businesses in the US lost 4 billion dollars
on average because of fraudulent transactions, and insurance
companies in the UK lost 1.6 billion pounds to the fraudulent
transaction claims [2]. In addition to expense write-offs to
cover shipping, refund, and other managerial expenses, busi-
nesses also lose sale opportunities from trusted customers and
reputational risk [3].

The associate editor coordinating the review of this manuscript and

approving it for publication was Diego Oliva .

Effective detection systems can assist businesses to cut
down the loss due to fraudulent transactions. However, it is
challenging to prevent and detect these incidents for three
main reasons. First, the development and wide adoption of
mobile technologies has brought a tremendous increase of
online transactions. In early 2020, there has been a 110%
increase in e-commerce transactions in the US alone than pre-
vious year [4], and subsequently, web attacks to e-commerce
retailers and associated fraudulent activities are also on the
rise [5], [6]. Secondly, in spite of the need for real time or near
real time fraud detection for online e-commerce transactions,
the effectiveness of many existing systems is compromised
sincemost detect only after the fraud activities have happened
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FIGURE 1. Distribution of amount ($ per transaction) on Normal (0) and
Fraudulent (1).

when the loss has already occurred. Thirdly, since the major-
ity of the transactions are normal and fraudulent ones are
rare, the datasets are highly imbalanced with the anomalous
transactions treated as outliers (anomaly data point). Figure 1
shows the box plot distribution of European cardholders’
normal and fraudulent credit card transactions that occurred
within two days in September 2013 [7]. Fromfigure 1, we can
see that it is not always easy to distinguish normal transac-
tions from the fraudulent ones since the prior can have many
‘‘outliers’’ with extreme values, whereas spurious ones tend
to have ‘‘normal’’ observations in terms of monetary amount
per transaction, so fraudulent transactions have an either
‘‘too weak’’ or ‘‘too diffuse’’ pattern compared to the normal
ones, often laborious to detect. Since the first challenge of
fraud detection is the consequence of technological advance-
ment, beyond the scope of this study, we aim to address
the second and the third challenges by integrating quantum
annealing solvers and machine learning algorithms to deliver
quality real time/near real time fraud detection.

Online transactions produce time series data that can be
classified as stationary and non-stationary. Stationary time
series data remain constant over time whereas non-stationary
data change over time and can behave as trends and cycles [8].
Non-stationary data tends to be unpredictable and needs to
convert into stationary data for data modeling and forecast.
Since non-stationary data is sensitive to the time variable,
‘‘time’’ must be included into the analytic model as an impor-
tant variable. Autoregressive models are common approaches
for analyzing non-stationary data: a traditional linear autore-
gression for the linear autocorrelation, and a deep autoregres-
sive network with quadratic formulation. Besides the models
designed for directly analyzing non-stationary data with the
‘‘time’’ variable, there are existing approaches to transform
non-stationary to stationary data by detrending methods such
as power transform, square root, and log transform [9].

To address the issue of response delay in fraud detection
systems and imbalanced datasets, in this study, we are inter-
ested in exploring answers to the following questions:

1) How does application of quantum machine learn-
ing (QML) in fraud detection compare with traditional
machine learning algorithms?

2) What is the impact of feature/variable selection on
detection performance?

3) How does QML perform differently with traditional
machine learning algorithms on datasets that have var-
ious characteristics, e.g., time series based verse non
time series based datasets, imbalanced verse highly
imbalanced datasets?

E-commerce has been consistently on the rise. According
to cardrates.com, in 2021, the world wide retail e-commerce
sales was approximately 4.9 trillion U.S. dollars, with
108.6 million of daily credit card transactions in the U.S..
Because of quantum computing’s powerful modelling abili-
ties to solve some complex problems that existing computing
cannot, we consider QML a promising approach to tackle the
huge volume of online fraud data. Details on why QML are
used in this study are discussed in section II.

This study contributes to the literature on fraud detec-
tion by proposing and implementing a solution framework
with QML to analyze online transaction data. Furthermore,
it demonstrates the potential of QML’s capability in critical
business applications.

The rest of the paper is organized as follows: section II
overviews the extant fraud detection literature of machine
learning algorithms. It explains how Support Vector
Machine (SVM) uses hyperplanes for classification, Kernel
Trick - the process of converting the nonlinear support vector
classifier to a linear one, and the role of quantum computing
that can be applied to speed up the identification of the more
complex kernel functions. Section III shows the proposed
fraud detection framework and its components. Section IV
describes the characteristics of the datasets used and the
algorithms evaluated in this study. Section V reports the
fraud detection performance comparison of SVM QUBO
and other machine learning algorithms. Section VI analyzes
and discusses the insight from the findings. Section VII
summarizes this study and the future work.

II. LITERATURE REVIEW ON FRAUD DETECTION AND
MACHINE LEARNING ALGORITHMS
Machine learning approaches have been increasingly applied
in fraud detection [20], [21]. Since the highly imbal-
anced data and diffused pattern affect the prediction accu-
racy of traditional machine learning algorithms [22], and
some non-stationary data violate the assumptions of tradi-
tional clustering and classification methods, there have been
increased research interests in using novice methods to tackle
this problem in recent years. Althoughmachine learning algo-
rithms have been proposed, they are still under the assump-
tion of stationary or non-time series data.

Table 1 summarized the typical machine learning algo-
rithms that have been applied for fraud detection.

This study has implemented a QML system applying Sup-
port Vector Machine (SVM), a popular traditional machine
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TABLE 1. Machine learning algorithms for fraud detection.

FIGURE 2. Example of a two-group classification problem with support
vectors highlighted.

learning method, and enhanced with quantum capabilities,
it then compares the performance of the system and twelve
other traditional machine learning algorithms. Support Vec-
tor Machine (SVM), is a high performance, widely adopted
predictive analytics method developed by Vapnik and his
colleagues at AT&T Bell laboratories [23], [24]. It is a super-
vised machine learning method for two-group classification
problems. Using linear decision functions for linear hyper-
planes, SVM separates the observations into two groups by
mapping the input vector into high dimensional feature space.
SVM has been applied in various data analytic applications
including fraud detection [12], [25]. The objective of SVM
is to find a decision function that constructs the hyperplane
between two groups to maximize the margin. The hyperplane
that can create the maximum separating margin between the
two groups is known as the optimal hyperplane, as shown in
Figure 2. The training data to construct the optimal hyper-
plane and determine the maximum separating margin are
called support vectors. Four support vectors are needed to
construct the hyperplane in Figure 2.

Like other supervised learning methods, the dependent
variable (classifier) must be labeled. For example, in fraud
detection, the ‘‘fraudulent status’’ will be the classifier, and
the transactions’ characteristics the independent variables
(attributes). Once the optimal hyperplane is constructed, it is
then used to separate the transactions into normal and fraud-
ulent groups. There are two types of hyperplanes: the hard
margin hyperplane separates support vectors into two groups

FIGURE 3. Example of nonlinear support vector classifier.

without error, and the soft one allows the minimum number
of errors [26].

In SVM, there are linear and nonlinear support vector clas-
sifiers. To facilitate the identification of the optimal hyper-
plane, it is necessary to transform the nonlinear support vector
classifier to a linear one. Such a process is called ‘‘Kernel
Trick’’ which is described below:

A linear support vector classifier has separable linear vari-
ables in the decision function (1).

zl = a1x1 + a2x2 + · · · + anxn (1)

Nonlinear support vector classifier has separable nonlinear
variables in the decision function (2).

znl = a1x0.51 + a2x
3
2 + · · · + anx

ν
n (2)

Because each term in decision function is separable, the
nonlinear variables can be replaced by new linear variables:

y1 = x0.51 , y2 = x32 , . . . , yn = xνn (3)

then the kernel trick ends with the linear classifier zl which
is equivalent to

znl : zl = a1y1 + a2y2 + · · · + anyn (4)

Figures 3 and 4 come from one of the authors’ teaching
materials to illustrate how SVM can be applied in predicting
consumer life value. In Figure 3, X2 and X3 are independent
variables (X1 is a demographic variable thus excluded from
the figure) and Consumer Life Value (CLV) a dependent vari-
able (classifier). The support vector classifier in this example
is nonlinear, and figure 4 shows how the ‘‘kernel trick’’
helps transform it into a linear one by replacing independent
variablesX2 andX3with a new equation Y = (a1×2+b1)2+
(a2 × 3 +b2)2, where a1 = 4.74365, b1 = −71.0975, a2 =
1.20935, b2 = −30.3605.
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FIGURE 4. Example of kernel trick for nonlinear support vector classifier.

Even with moderate size of data on nonlinear classifiers,
the process of constructing kernel functions in SVM is time
consuming. More complex kernel functions can be obtained
by solving quadratic constrained binary optimization prob-
lem [27], and that require very high computing capability.
One solution is to develop a general quadratic constrained
model for SVM, and recast it explicitly as a quadratic
unconstrained binary optimization problem (QUBO) using
quadratic infeasibility penalties as constraints [28]. Since the
problems need to be converted into a QUBO format,
the difficulty of this conversion process has made it one of the
bottlenecks for the wide applications of quantum computing.
Quantum computing has experienced some level of success in
solving the specific application in QUBO formulation [29].
The successful implementation experiments of such a solu-
tion [30], [31] are very encouraging, motivating us to explore
its applications in fraud detection.

There are technological difficulties as well as practical
issues for transforming quadratic constrained binary opti-
mization problems into QUBO. In addition, there is a lack
of benchmarks to compare the performance of quantum
computing and traditional computing.Without demonstrating
superlative results, given how costly quantum computing
is, it is challenging to promote it to a broader user base.
Thus, technology acceleration on quantum computing itself
might not mean wide application and adoption if there are no
economies of scale and network effect due to limited users.

Another bottle neck for quantum computing is the tremen-
dous effort required to redesign the existing algorithms and
data structures built on traditional computing platforms.
Because of the cost and effort of using quantum computing,
it is crucial to apply it only on important applications. Fraud
detection for online transactions is a perfect one for such
purpose.

III. EMPIRICAL FRAMEWORK AND METHODOLOGIES
We propose a fraud detection framework as shown in
Figure 5. The framework first verifies whether the input

FIGURE 5. Fraud detection framework.

data is time series-based vs static, followed by a stationary
test to determine whether the time series data are stationary
or non-stationary. Since Augmented Dickey Fuller (ADF)
and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) are two of
the most commonly used statistical test to analyze whether
the series of data are the stationary, this study uses both
tests [32], [33] to evaluate whether the time series data is
stationary as shown in Figure 5 via the unit root test. For non-
stationary data, several common detrending methods such
as power transform, square root, and log transform, will be
applied to convert them into stationary. Then the dimension
reduction technique is used to reduce the ‘‘noise’’ attributes
of the data.

To eliminate variables that do not contribute to the predic-
tion accuracy or are ‘‘noises’’ that reduce it, we use Least
Absolute Shrinkage and Selection Operator (LASSO) [34]
to construct better prediction models. Given a set of linear
independent variables (features or attributes), the estimator
for the predictor (linear classifier) y is:

ŷ = β0 + β1x1 + · · · + βnxn (5)

LASSO function is defined as:

min6(y− ŷ)2

st.6|βi| ≤ s,where i = 1, . . . , n (6)

To remove inconsequential features (vectors) from the
model, we can decrease the value of s to force some βi
to be 0, thus drop some non contributing independent vari-
ables (attributes) to improve fraud detection.

The machine learning approach of obtaining kernel func-
tions of SVM will be formulated as QUBO, and then the
kernel functions identified by quantum annealing solvers will
be applied on predictive analysis of fraud detection. The
performance of this QML fraud detection system will then be
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TABLE 2. Imbalanced data with fraudulent transactions.

TABLE 3. Machine learning algorithms used.

compared to the system built with other traditional machine
learning algorithms. In this study, the benchmarks we use
are the speed and prediction accuracy of twelve traditional
machine learning methods (see Table 4), and ROC curve to
measure false positive. The next session will provide more
details.

IV. RESEARCH DESIGN
The rise of fraud incidents makes it important to learn more
about characteristics of datasets associated with different
types of frauds. Such understanding will help to implement
and better identify system for fraud detection. For this pur-
pose, this study has selected two datasets: Israeli cardhold-
ers’ credit cards transactions (ICCT) [35] and bank loans
application data [36] (see Table 2). The ICCT dataset is non-
time-series based, contains 14,999 transactions with 23.8%
fraudulent cases (3,571 in total) and 29 independent variables.
For every 100 transactions in this dataset, there are more
than 23 fraud cases. The LOAN dataset is time-series based,
having 33,320 transactions with 0.798% fraudulent transac-
tions (265 cases) and 122 independent variables. Compared
to ICCT dataset, in additional to being highly dimensional,
the LOAN data is also highly imbalanced with only less
than 1 fraud case for every 1000 cases.

SVM-QUBO and twelve traditional machine learning
algorithms are applied to both datasets to predict whether a
transaction is a fraud (1) or not (0), and then their perfor-
mances in speed and prediction accuracy are compared.

Table 3 lists the twelve traditional machine learning algo-
rithms. Three are unsupervised learning methods and the
rest are supervised ones. The difference between Logistic
Regression and Logistic Regression - balanced is the setting
of the class_weight while using the Scikit Learn library [44]:
the former sets the class_weight to be ‘‘none’’ and the latter
sets it to ‘‘balanced’’. The difference between Random Forest
and Random Forest - balanced is similar.

In each dataset, 67% of data is used as the training
set and the remaining as the testing set. The data processing
and solution framework including ADF/KPSS test, LASSO,
and the machine learning methods are coded in Python 3.8.
The execution environment for the traditional machine
learning methods is a PC with Microsoft Windows 10,
AMD Dual-Core Gold 3150U 2.4GHz with 16GB RAM.
Since D-Wave is open source, powerful, and a leader in
quantum computing with a fast growing user base, we choose
D-Wave quantum annealing solvers such as dwave-
hybrid [49] to solve the QUBO model of SVM in this study.

V. RESULTS
Both speed and accuracy comparisons of SVM-QUBO and
the twelve machine learning algorithms are conducted on
each dataset (Table 4, 5, 6, 7). In terms of speed, the entire
execution time for SVM-QUBO includes time for (1) I/O to
create the training and testing files and folders, and (2) train-
ing and testing the model. Since other traditional methods
do not need to create folders, for direct comparison of speed
performance, only training and testing time are used. Overall,
the evaluation results show that the SVM-QUBO delivers the
fastest speed in detection, outperforming traditional machine
learning algorithms in speed and accuracy with loan dataset
which is time-series based, highly dimensional, and highly
imbalanced; whereas traditional machine learning algorithms
is a better choice for ICCT data which is non time-series
based andmoderately imbalanced. Although feature selection
significantly shortens the speed for majority of the algo-
rithms, its contribution to improve detection accuracy is not
obvious. Details are provided next.

False positive refers to incorrectly identified the normal
transactions as fraudulent ones. In business, the cost of a false
positive often out weights a false negative. When a legitimate
customer is misidentified as a fraud, the negative experience
could lead to the loss of that customer [50]. To further evalu-
ate and compare the performance of QML and other machine
learning algorithms, in this study, we examine the false posi-
tive rate using AUC(Area Under Curve) ROC(Receiver opti-
mization Characteristics) Curve. The evaluation results will
be elaborated in the next two sections.

A. EVALUATION RESULTS: ICCT DATASET
Tables 4 and 5 report the comparison results of SVM-QUBO
versus the twelve machine learning algorithms on the testing
set of ICCT dataset, with and without feature selection.

As shown in Table 4, when no feature selection method is
applied, SVM-QUBO is 4.4 times faster than the fastest tra-
ditional algorithm (Linear Discriminant Analysis), 34 times
faster than the median, and 3,554 times faster than the one
taking the longest time (Restricted Boltzmann Machine).
In terms of overall accuracy, 8 out of 12 traditional algorithms
have better overall accuracy than SVM-QUBO, although the
lead is marginal with SVM-QUBO performing just 1.41%
lower than the most accurate one - Random Forest(balanced).
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TABLE 4. SVM-QUBO verse machine learning algorithms on ICCT dataset
with no feature selection.

TABLE 5. SVM-QUBO verse machine learning algorithms on ICCT dataset
with LASSO for feature selection.

When LASSO is applied for feature selection, it further
shortens the execution time for SVM-QUBO. As shown in
Table 5, SVM-QUBO is 8 times faster than the fastest tra-
ditional algorithm (Linear Discriminant Analysis), 57 times
faster than the median, and 6173 times faster than the one
taking the longest time (Restricted Boltzmann Machine).
However, there is no obvious performance gain in accuracy
by applying LASSO for feature selection than without. Sim-
ilar to results without feature selection, 7 out of 12 tradi-
tional algorithms have slightly better overall accuracy than
SVM-QUBO, whereas SVM-QUBO is 0.728% lower than
the highest accurate one - Random Forest(balanced).

The comparison of the speed performance shows that
applying LASSO significantly reduces the execution time,
with saving 27% for the lowest and 82% the highest
(LR-balanced). One exception is the Ensemble RT-LR,
which takes 2.2% longer with LASSO than without feature
selection.

TheAUROC curve shown in Figure 6 plots the true positive
rate against the false positive rate [51], showing that for
ICCT dataset, SVM-QUBO performs the best with the value

TABLE 6. SVM-QUBO verse machine learning algorithms on LOAN dataset
with no feature selection.

TABLE 7. SVM-QUBO verse machine learning algorithms on LOAN dataset
with LASSO for feature selection.

of 0.99, closely followed by supervised machine learning
methods. The unsupervised learning such as COPOD, KNN,
and RBM do not perform as well, among which RBM per-
forms the best with the value of 0.78 when feature selection
is applied.

B. EVALUATION RESULTS: LOAN DATASET
Tables 6 and 7 report the comparisons of applying
SVM-QUBO versus the twelve machine learning algorithms
on the testing set of LOAN dataset, with no feature selection
and LASSO applied. SVM-QUBO significantly outperforms
all the machine learning algorithms both in speed and overall
accuracy regardless whether feature selection is applied.

In terms of speed, when no feature selection method
is applied, SVM-QUBO is 5 times faster than the fastest
machine learning (Logistic Regression - balanced), 32 times
faster than the median, and 2813 times faster than Restricted
Boltzmann Machine, the one takes the longest time. When
LASSO is applied, SVM-QUBO is 3.8 times faster than
the fastest machine learning (Linear Discriminant Analysis),
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FIGURE 6. AUROC curves of SVM-QUBO verses machine learning algorithms on ICCT dataset with no feature selection.

FIGURE 7. AUROC curves of SVM-QUBO verses machine learning algorithms on ICCT dataset with LASSO.

16 times faster than themedian, and 2788 times faster than the
one taking the longest time (Restricted Boltzmann Machine).

SVM-QUBO has 5.3% higher overall accuracy than the
best performed traditional machine learning algorithm (Ran-
dom Forest-balanced) without feature selection, and 6.2%
higher with feature selection than the best performed tradi-
tional ones, including Linear Discriminant Analysis, Logistic
Regression, Random Forest-balanced and Restricted Boltz-
mann Machine, with LASSO.

TheAUROC curves of SVM-QUBO and the othermachine
learning algorithms with and without LASSO are shown in
Figure 8 and 9. The AUROC curve shows that overall, none
of these algorithms perform well. Algorithm that performs
the best is Balanced Random Forest with an area of 0.61 for
LOAN dataset without LASSO feature selection, and logistic
Regression with area of 0.57 with LASSO feature selection.
SVM-QUBO performs slightly better than most, yet it is still

as low as 0.57 with no feature selection, and 0.51 with feature
selection.

All machine learning algorithms gain significantly in speed
performance with LASSO than without, reducing 21% exe-
cution time as the lowest (Logistic Regression - balanced) and
83% as the highest (COPOD).

VI. DISCUSSION
Findings of this study show that, QML is the fastest than
all other algorithms. In terms of accuracy, for ICCT dataset
which is moderately imbalanced with 23.8% fraudulent
rate, QML is not an optimal option both economically
and performance wise. The accuracy of QML without fea-
ture selection is worse than 9 out of 12 of the machine
learning but is improved significantly with feature selection
(better than 9 out of 12). The accuracy differences in
performance with and without feature selection are mostly
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FIGURE 8. AUROC curves of SVM-QUBO verses machine learning algorithms on LOAN dataset without feature selection.

FIGURE 9. AUROC curves of SVM-QUBO verses machine learning algorithms on LOAN dataset with LASSO.

around 0.01%. Unsupervised machine learning algorithms do
not compare well with the supervised ones, the inclusion of
feature selection makes a big difference to improve the accu-
racy of certain unsupervised learning algorithm, for example,
RBM increases 2.8 times with LASSO than without, making
its performance in accuracy comparable to those of super-
vised machine learning algorithms.

Comparing to ICCT, for LOAN dataset that is time-series
based, non-stationary, and highly imbalanced, QMLperforms
categorically better than the other machine learning algo-
rithms in terms of speed and overall accuracy, regardless of
whether feature selection is included. We also notice that
unsupervised learning RBMperforms better than other super-
vised learning for the LOAN dataset.

In terms of using AUROC curve to compare the false
positive of these algorithms, QML and machine learning
algorithms perform well with ICCT dataset. SVM QUBO

has AUROC score as high as 0.99, and the 9 supervised
machine learning algorithms have AUROC scores as high
as 0.98. However, the AUROC score for LOAN data shows
a different picture: all algorithms including QML hovering
around 0.5 values, only one with 0.60. This suggest how
difficulties it is to process highly imbalanced and high dimen-
sional dataset.

Based on evaluation results from this study, to summa-
rize, we find that given how the costly quantum computing
is, before quantum hardware has major improvement, tradi-
tional machine learning methods might be a good solution to
deliver satisfactory results for moderately imbalanced, non-
time-series data, whereas as for highly imbalanced, high
dimensional, time-series based data, it would be worthwhile
to consider QML. Of course such recommendations warrant
more tests on different types of data prior making it general-
ized recommendation.
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This study is one of the few QML applications in fraud
detection, a worthwhile endeavor to expand the problems
that can take advantage of quantum computing’s capabilities.
Also, its performance comparison with as many as twelve
other machine learning algorithms with different characteris-
tics (supervised and unsupervised) make this study compre-
hensive and unique.

VII. CONCLUSION
QML has drawn an increasing interest for its potential of
solving critical problems because of its computing capabil-
ity [9], [20]. Due to the challenges of formulating problems
into the QUBO format that quantum computing requires,
and how costly such a process is, identification of the most
critical areas for QML application is important to justify
the expense for potential gain in performance. The preva-
lence of e-business, online transactions, and huge loss over
spurious activities, make timely and accurate fraud detec-
tion a great choice for QML solution. We propose a fraud
detection framework for this purpose. This framework will
first determine whether the data is time-series based, and
then whether the data is stationary or non-stationary, next it
will apply feature selection to eliminate the ‘‘noises’’ from
the data prior fraud detection. To evaluate the effectiveness
of the proposed framework, we implement a QML system
using SVM enhanced with quantum annealing solver, and
compare its performance in detection speed, accuracy, and
false positive rate with 12 other traditional machine learn-
ing algorithms on both datasets (time-series based, highly
imbalanced, high dimensional verse non-time-series-based,
moderate imbalanced).

This study compares the performance of a QML system
with those built on 12 machine learning algorithms on fraud
detection. The findings show the effectiveness of our pro-
posed fraud detection framework, and the outstanding perfor-
mance of QML, specifically with a time-series based, highly
imbalanced, high dimensional dataset. Our study contributes
to the detection literature by serving as a road map for the
further research in QML. Despite the growing interest in
applying quantum to solve real-world problems, our results
caution that, to provide the most optimum business solution,
the practitioners need to take the tradeoffs of accuracy, speed,
and the cost of computing into consideration, as well as the
kind of data the system works with. Quantum computing
applications can have great potential in processing datasets
characterized with time-series, high dimensional and highly
imbalanced, which are challenging for traditional machine
learning algorithms. As for the non time-series data, before
quantum computing makes significant breakthrough, the tra-
ditional machine learning still plays an important role for
being the more economic and effective solution.

Given the extremely fast detection speed, the QML system
in this study delivers near real time results, which is a very
important step towards the direction of real time fraud detec-
tion. As a continuous study, we are developing a simulator to
generate datasets with different numbers of transactions and

different ratios between normal and fraudulent transactions.
The synthesized datasets use the similar settings from the
benchmark instances used in this study. Unlike the studies in
the literature that conduct analysis of the transaction data after
the transactions occurred, it will create unique experiments
to generate live transaction data and real time fraud detection
through this simulator.
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