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ABSTRACT The arithmetic optimization algorithm (AOA) is based on the distribution character of the
dominant arithmetic operators and imitates addition (A), subtraction (S), multiplication (M ) and division (D)
to find the global optimal solution in the entire search space. However, the basic AOA has some drawbacks
of premature convergence, easily falls into a local optimal value, slow convergence rate, and low calculation
precision. To improve the overall optimization ability and overcome the drawbacks of the basic AOA,
an enhanced AOA (EAOA) based on the Lévy variation and the differential sorting variation is proposed
to solve the function optimization and the project optimization. The Lévy variation increases population
diversity, broadens the optimization space, enhances the global search ability and improves the calculation
precision. The differential sorting variation filters out the optimal search agent, avoids search stagnation,
enhances the local search ability and accelerates the convergence rate. The EAOA realizes complementary
advantages of the Lévy variation and the differential sorting variation to avoid falling into the local
optimum and the premature convergence. The sixteen benchmark functions and five engineering design
projects are applied to verify the effectiveness and feasibility of the EAOA. The EAOA is compared with
other algorithms by minimizing the fitness value, such as artificial bee colony, ant line optimizer, cuckoo
search, dragonfly algorithm, moth-flame optimization, sine cosine algorithm, water wave optimization and
arithmetic optimization algorithm. The experimental results show that the overall optimization ability of
the EAOA is superior to that of other algorithms, the EAOA can effectively balance the exploration and
the exploitation to obtain the best solution. In addition, the EAOA has a faster convergence rate, higher
calculation precision and stronger stability.

INDEX TERMS Arithmetic optimization algorithm, Lévy variation, differential sorting variation, bench-
mark function, engineering design.

I. INTRODUCTION
The optimization technique is used to describe the com-
plex problems in mathematical form, which adopts cer-
tain mathematical logic to abstract the optimization scheme
of the problem and obtain the global optimal solution of
the problem. That is to say, under certain constraints, the
optimization technology finds the best solution from many
candidate solutions or search agents to minimize the qual-
ity cost, efficiency cost, risk cost and profit cost. As the
scale and complexity increase, the traditional optimization
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methods have the limitations of low computational efficiency,
long time consumption, easy to fall into local optimum, and
combinatorial explosion. The essence of the meta-heuristic
optimization algorithms is to simulate the independent search
or complex intelligent behavior of each search agent through
mutual cooperation, the search agent is used to adjust its
position and update the global optimal solution according
to the surrounding iteration information. The meta-heuristic
optimization algorithms have some advantages of high oper-
ation efficiency, good flexibility, strong stability, good self-
organization, easy expansion, simple implementation, strong
parallelism and easy combination with other algorithms. The
algorithm uses the global search ability and the local search
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ability to find the optimal solution. Some optimization algo-
rithms have been explained the optimization problem, such
as the artificial bee colony (ABC) [1], the ant line optimizer
(ALO) [2], the cuckoo search (CS) [3], the dragonfly algo-
rithm (DA) [4], the moth-flame optimization (MFO) [5], the
sine cosine algorithm (SCA) [6] and water wave optimiza-
tion (WWO) [7]. The meta-heuristic optimization algorithms
are divided into several categories, such as biology-based,
social-based, chemical-based, physics-based, music-based,
mathematics-based, sports-based, swarm-based, plant-based
and water-based [8]–[11]. The artificial bee colony, ant line
optimizer, cuckoo search, dragonfly algorithm and moth-
flame optimization are biologically based.

Li et al. designed a chaotic AOA to solve the benchmark
functions and four engineering design issues, the optimiza-
tion results showed that the improved algorithm has better
optimization accuracy and efficiency [12]. Mahajan et al.
combined the AOA with the aquila optimization algorithm
to solve the global optimization problem, which can avoid
falling into the local optimal for efficient optimization. The
results showed that the proposed algorithm had certain advan-
tages to enhance the optimization results [13]. Kaveh and
Hamedani used discrete design variables and designed an
improved AOA to solve the discrete optimization design.
The results showed that the proposed algorithm had a strong
global search ability and local search ability to obtain the
best solution [14]. Hu et al. combined the AOA based on
point set strategy, optimal neighborhood learning strategy
and crisscross strategy to improve the convergence speed
and calculation accuracy. The improved algorithm balanced
the exploitation and exploration to efficiently complete the
function optimization and engineering optimization [15].
Mahajan et al. combined AOA with the hunger games search
algorithm for function optimization problems. Compared
with other algorithms, the proposed algorithm had better
superiority and stronger stability [16]. Zhang et al. pro-
posed a hybrid optimization algorithm of AOA and aquila
optimization algorithm to solve the mathematical optimiza-
tion problems, the hybrid algorithm adopted the explo-
ration and exploitation to obtain the optimal solution [17].
Abualigah et al. designed a hybrid optimization algorithm of
flow direction algorithm and AOA to solve the optimization
problems of data clustering. The improved algorithm can
take advantage of the two algorithms to overcome premature
convergence and fall into the local optimum. The results
showed that the hybrid algorithm has certain effectiveness
and feasibility to complete the optimization problem [18].
Liu et al. proposed AOA with a golden sine algorithm to
solve the engineering design problem, and the optimization
results of the proposed algorithm were better than those
of other algorithms [19]. Pashaei and Pashaei introduced a
hybrid binary AOA with a simulated annealing algorithm
to solve the feature selection problem, the proposed algo-
rithm obtained better classification accuracy and optimiza-
tion results [20]. Liu et al. proposed an improved AOA
based on circle chaotic mapping, elite mutation approach

and Cauchy disturbances to solve the function optimization
and the engineering design problems, the optimization results
of the proposed algorithm were better than those of other
algorithms [21]. Khodadadi et al. designed a dynamic AOA
to solve the truss optimization problems, the proposed algo-
rithm balanced exploration and exploitation to find the global
solution in the search space [22]. Zheng et al. created an
improved AOA based on forced switching mechanism to
solve the function optimization and the engineering design
problems, the results showed that the proposed algorithm
had a strong the global search ability and the local search
ability to avoid premature convergence and find the optimal
solution [23]. To summarize, the research of the AOAmainly
contains two aspects: algorithm improvement and algorithm
application [24], [25]. For algorithm improvement, introduc-
ing effective search strategies, adopting unique coding meth-
ods, or combining with other swarm intelligence algorithms
achieves complementary advantages and improves the over-
all optimization ability. The improved AOA can effectively
balance exploration and exploitation to avoid premature con-
vergence and fall into the local optimum, and then improve
the convergence rate and the calculation precision. For algo-
rithm application, the improved AOA has strong stability and
superiority, and it has a wide range of application prospects
in the artificial intelligence, system control, pattern recog-
nition, resource allocation, engineering technology, network
communication, finance and other fields.

The basic AOA, which is inspired by the distribution char-
acter of the dominant arithmetic operators, obtains the best
solution in the whole search space by imitating addition (A),
subtraction (S), multiplication (M ) and division (D) [26]. The
AOA is mathematics-based. To improve the overall search
ability, the Lévy variation [27] and the differential sorting
variation [28], [29] are introduced into the basic AOA. The
Lévy variation increases population diversity, broadens the
optimization space and enhances the global search ability.
The differential sorting variation filters out the optimal search
agent, avoids the search stagnation and enhances the local
search ability. The EAOA achieves complementary advan-
tages of the Lévy variation and the differential sorting vari-
ation to balance the global search ability and the local search
ability. The EAOA is used to solve the function optimization
and the project optimization. The experimental results show
that the EAOA has a faster convergence rate, higher calcula-
tion precision and stronger stability.

The article is divided into the following sections.
Section II introduces the AOA. Section III depicts the EAOA.
The experimental results and discussion are described in
Section IV. Finally, the conclusions and future research are
provided in Section V.

II. AOA
The AOA is based on the distribution character of the domi-
nant arithmetic operators to find the best solution in the search
space, which contains four operators: addition (A ‘‘+’’),
subtraction (S ‘‘−’’), multiplication (M ‘‘×’’) and division

VOLUME 10, 2022 75041



J. Zhang et al.: Novel Enhanced Arithmetic Optimization Algorithm for Global Optimization

(D ‘‘÷’’). In AOA, each individual represents a search agent.
The corresponding relationship between the problem space
and the population space is as follows: the solution space
corresponds to the search space of the AOA, each solution
corresponds to each search agent, and the fitness value of
each solution corresponds to the fitness value of the AOA.
The AOA adopts exploration or exploitation to solve the
optimization problem.

A. INITIALIZATION
In AOA, candidate solutions are randomly generated during
the initial population phase. When the iteration of the AOA
is continuously updated, the purpose of optimization is to
find an optimal or sub-optimal solution from many candidate
solutions. The matrix is estimated as follows:

X =



x1,1 · · · · · · x1,j x1,n−1 x1,n
x2,1 · · · · · · x2,j · · · x2,n
· · · · · · · · · · · · · · · · · ·

...
...

...
...

...
...

xN−1,1 · · · · · · xN−1,j · · · xN−1,n
xN ,1 · · · · · · xN ,j xN ,n−1 xN ,n


(1)

where N is the population size, n is the dimension of the
search space, xi,j is the position of ith solution in the jth
search space. In AOA, the math optimizer accelerated (MOA)
is regarded as an adaptive coefficient for selecting exploration
or exploitation to find the global optimal solution. The func-
tion is estimated as follows:

MOA(C_Iter) = Min+ C_Iter × (
Max −Min
M_Iter

) (2)

where MOA(C_Iter) is a calculated value, C_Iter is the cur-
rent iteration. Max or Min are the maximum or minimum
values of MOA. In this paper, Max = 1 and Min = 0.2. The
control parameter r1 ∈ [0, 1] is a uniformly distributed ran-
dom number. If r1 > MOA, the AOA performs exploration.
If r1 ≤ MOA, the AOA performs exploitation.

B. EXPLORATION
In exploration, the AOA utilizes multiplication (M ‘‘×’’) and
division (D ‘‘÷’’) to obtain a distribution solution. These
two search mechanisms are difficult to find the objective
solution due to the high degree of discreteness. The AOA
can randomly obtain the global optimal solution according
to multiplication (M ) and division (D). The search process
is obtained by calculating the MOA in the case where r1 >
MOA. If r2 < 0.5, the AOA uses division (D) to complete
the search task. Otherwise, the AOA uses multiplication (M )
to achieve the optimization process. The position update is
estimated as follows:

xi,j(C_Iter + 1)

=


best(xj)÷ (MOP+ ε)
× ((UBj − LBj)× µ+ LBj) if r2 < 0.5

best(xj)×MOP
× ((UBj − LBj)× µ+ LBj) if r2 ≥ 0.5

(3)

where r2 is a random number in [0,1], best(xj) is the optimal
position of the jth search agent, ε is an infinitesimal integer
number. UB or LB are the upper or lower boundary, respec-
tively. µ is an adjusted parameter and the value is 0.5.

MOP(C_Iter) = 1−
C_Iter1/α

M_Iter1/α
(4)

where math optimizer probability (MOP) is a factor,
MOP(C_Iter) is a calculated solution,C_Iter is present itera-
tion,M_Iter is maximum iteration. α is a sensitive parameter
and the value is 5.

C. EXPLOITATION
In exploitation, the AOA utilizes the addition (A ‘‘+’’) and
subtraction (S ‘‘−’’) to obtain a higher precision solution.
These two search mechanisms are easy to gain the objective
solution due to the low dispersion. The search process is
obtained by calculating the MOA in the case where r1 is less
than the MOA. If r3 < 0.5, the AOA uses subtraction (S) to
complete the current search plan. Otherwise, the AOA uses
addition (A) to achieve the optimization process. The AOA
utilizes the local mechanism in several dense areas to attain
the fitness value. The position update is estimated as follows:

xi,j(C_Iter + 1)

=


best(xj)−MOP
× ((UBj − LBj)× µ+ LBj) if r3 < 0.5

best(xj)+MOP
× ((UBj − LBj)× µ+ LBj) if r3 ≥ 0.5

(5)

where r3 is a random number in [0,1], µ is an adjusted
parameter and the value is 0.5.

The solution process of the AOA is expressed in
Algorithm 1.

III. EAOA
The Lévy variation and the differential sorting variation are
introduced into the basic AOA, which achieves complemen-
tary advantages to avoid the search stagnation and premature
convergence. The EAOA can effectively balance the global
search ability and the local search ability to improve the
convergence rate and the calculation precision.

A. LÉVY VARIATION
The variation based on a haphazard walk mechanism extends
the solution area and intensifies the optimization perfor-
mance. The search method promotes calculation precision to
a certain extent. The position is estimated as follows:

Xi,j(C_Iter + 1) = Xi,j(C_Iter)

+µsign[rand − 1
/
2]⊕ Levy (6)

where Xi,j is the current position, µ is a random value, rand
is a random value [0,1], sign[rand − 1

/
2] are −1, 0, and 1.

⊕ is the entry-wise multiplication.
The position of the Lévy distribution is estimated as

follows:

Levy(s) ∼ |s|−1−β , 0 < β ≤ 2 (7)
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Algorithm 1 AOA
Initialize the solutions’ positions randomly Xi(i =

1, . . . ,N ) and initialize parameters α, µ.
Compute the fitness function of a given solution and
achieve the best solution x
while (C_Iter < M_Iter)
Update theMOA value applying Eq. (2).
Update theMOP value applying Eq. (4).
for (i = 1 to Solutions)

for (j = 1 to Positions)
Accomplish the random values between [0,1] (r1, r2, r3)

if r1 > MOA then
Exploration
if r2 > 0.5 then
(1) Utilize the division math operator (D ‘‘÷’’)
Update the ith solution’s position using the first

rule in Eq. (3).
else
(2) Utilize the multiplication math operator

(M ‘‘×’’)
Update the ith solution’s position using the

second rule in Eq. (3).
end

else
Exploitation
if r3 > 0.5 then
(1) Utilize the subtraction math operator (S ‘‘−’’)
Update the ith solution’s position using the first

rule in Eq. (5).
else
(2) Utilize the addition math operator (A ‘‘+’’)
Update the ith solution’s position using the

second rule in Eq. (5).
end

end
end

end
C_Iter = C_Iter + 1

end
Return the best solution x

where s is step length of Lévy variation, β is a factor, the s is
estimated by Mantega’s algorithm as follows:

s =
µ

|v|1/β
, µ ∼ N (0, σ 2

µ), v ∼ N (0, σ 2
v ) (8)

where β is set to 1.5, u and v is obey normal distributions
respectively.

σu =

[
0(1+ β) · sin (πβ

/
2)

β · 0 [(1+ β)
/
2] · 2(β−1)/2

]1/β
, σv = 1 (9)

where 0 is the normal gamma sign.

B. DIFFERENTIAL SORTING VARIATION
In this paper, we assign a ranking for each search agent
according to its fitness value. The population is sorted in
ascending order (i,e., from the best fitness value to the worst
fitness value) based on the fitness value of each solution. The
ranking of a solution is estimated as follows:

Ri = N − i, i = 1, 2, . . . ,N (10)

where N is the population size, the solution with the optimal
fitness value has a higher ranking.

A sorting operation is performed for each solution. The
selection probability Pi is estimated as follows:

pi =
Ri
N
, i = 1, 2, . . . ,N (11)

The differential sorting variation of ‘‘DE/rand/1’’ is
expressed in Algorithm 2. A search agent is randomly
selected in the population to calculate the selection proba-
bility pci of its individual and pci is compared with a random
number [0,1] to determine whether the selection is successful.
In nature, the profitable information is enclosed in an excel-
lent population, and better individuals are arranged for the
next generation of evolution. A higher ranking individual is
used as the basis or eventual vectors of the mutation operator,
and the probability of being chosen will increase, which is
beneficial to retain the information of better individuals. The
choice of the starting vector is not determined by sorting. The
two differential vectors are arranged from the optimal vectors,
and the corresponding step size decreases rapidly and causes
the algorithm to converge prematurely. Therefore, the choice
of the starting vector does not depend on sorting. The differ-
ential sorting variation of ‘‘DE/rand/1’’ filters out the optimal
search agent, avoids the search stagnation, enhances the local
search ability and accelerates the convergence rate.

Algorithm 2 Differential Sorting Variation of ‘‘DE/rand/1’’
Order the population, determine the sorting and selection
probability Pi of each given solution
Randomly assign c1 ∈ {1, . . . ,N } {base vector index}
while rand [0, 1] > pc1 or c1 == i
Randomly assign c1 ∈ {1, . . . ,N }
end
Randomly assign c2 ∈ {1, . . . ,N } {terminal vector index}
while rand [0, 1] > pc2 or c2 == c1 or c2 == i
Randomly assign c2 ∈ {1, . . . ,N }
end
Randomly assign c3 ∈ {1, . . . ,N } {starting vector index}
while c3 == c2 or c3 == c1 or c3 == i
Randomly assign r3 ∈ {1, . . . ,N }
end

The EAOAhas strong practicality and usefulness to receive
the best individual. The EAOA is expressed in Algorithm 3.
A flowchart of the EAOA is presented in figure 1.
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Algorithm 3 EAOA
Initialize the solutions’ positions randomly Xi(i =

1, . . . ,N ) and initialize parameters α, µ.
Compute the fitness function of a given solution and
achieve the best solution x
while (C_Iter < M_Iter)
Introduce differential sorting variation, order the popula-
tion and determine the sorting and selection probability Pi
of each solution.
Update theMOA value applying Eq. (2).
Update theMOP value applying Eq. (4).
for (i = 1 to Solutions)
for ( j = 1 to Positions)

Accomplish the random values between [0,1] (r1, r2, r3)
if r1 > MOA then
Exploration
if r2 > 0.5 then
(1) Utilize the division math operator (D ‘‘÷’’)
Update the ith solution’s position using the first

rule in Eq. (3).
else
(2) Utilize the multiplication math operator

(M ‘‘×’’)
Update the ith solution’s position using the second

rule in Eq. (3).
end

else
Exploitation
if r3 > 0.5 then
(1) Utilize the subtraction math operator (S ‘‘−’’)
Update the ith solution’s position using the first

rule in Eq. (5).
else
(2) Utilize the addition math operator (A ‘‘+’’)
Update the ith solution’s position using the second

rule in Eq. (5).
end

end
end

end
Update the position of each solution based upon the

Lévy flight in Eq. (6).
Compute the fitness function of a given solution
Update x if there is a better solution
C_Iter = C_Iter + 1

end
Return the best solution x

C. COMPUTATIONAL COMPLEXITY OF EAOA
The computational complexity of the EAOA is briefly ana-
lyzed in this section, the EAOA depends on three impor-
tant operations: initialization, fitness value evaluation, and
refreshing solutions. In EAOA, N indicates the population
size, M indicates the maximum iteration, and L indicates

the dimension of the problem. The computational complexity
of initialization is O(N ). The computational complexity of
fitness value evaluation is determined by the optimization
problem, we will not explore it here. Therefore, O(M ×
N )+ O(M × N × L) is the computational complexity of the
refreshing solutions. In sum, The computational complexity
of the EAOA is O(N × (ML + 1)). In the next section, the
function optimization and the project optimization are used
to verify the effectiveness and feasibility of the EAOA.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
A. SIMULATION ENVIRONMENT
The simulation platform is implemented on a computer with
an Intel Core i7-8750H 2.2 GHz CPU, a GTX1060, and 8 GB
memory with Windows 10 system. All of the algorithms are
programmed in MATLAB R2018b. All of the algorithms are
programmed in MATLAB R2018b.

B. BENCHMARK FUNCTIONS
To verify the effectiveness and feasibility of the EAOA, the
proposed algorithm is applied to solve the function opti-
mization problem. The purpose of optimization is to avoid
the algorithm falling into the local optimum and minimize
the fitness value of the objective function. The benchmark
functions are split into three types: f1 − f6 are the unimodal
functions, f7 − f10 are the multimodal functions, f11 − f16 are
the fixed-dimension multimodal functions. The benchmark
functions are described in Table 1.

The control parameters of each algorithm are representa-
tive empirical values, which are derived from the original
articles. Different optimization algorithms are used to solve
the function optimization problem, such as ABC, ALO, CS,
DA, MFO, SCA, WWO and AOA. The initial parameters of
each algorithm are described in Table 2.

For all comparison algorithms, the population size is 20,
the maximum iteration is 1000 and the independent run is 30.
Best, Worst, Mean and Std are the optimal value, worst value,
mean value and standard deviation, respectively. To reflect
the overall optimization performance of the algorithms, the
optimal value is exhibited in bold and the ranking is founded
on the standard deviation.

In Table 3, for f1, f2 and f3, the EAOA can find the
exact global optimization solution, the optimal value, worst
value, mean value and standard deviation of the EAOA are
superior to those of other algorithms, which shows that the
EAOA has a strong overall optimization ability to avoid
premature convergence of the algorithm and falling into the
local optimum, the EAOA can realize the best solution in the
search space. Compared with other algorithms, the ranking
of the EAOA is the first, the EAOA not only has a relatively
small standard deviation, but also has strong stability and
superiority. For f4 and f6, the optimal value, worst value,
mean value and standard deviation of the EAOA have been
significantly strengthened compared to those of the basic
AOA, and the optimization values of the EAOA are the
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FIGURE 1. Flowchart of EAOA.
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TABLE 1. Benchmark functions.
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TABLE 2. Initial parameters of each algorithms.

greatest in all algorithms, which shows that the EAOA has
strong global search ability and local search ability to obtain

the best solution. The ranking of the EAOA is first, so that
EAOA has strong stability to solve the unimodal functions.
For f5, the optimal value of the EAOA is worse than that
of the WWO, but the worst value, mean value and standard
deviation of the EAOA are better than those of other algo-
rithms. The ranking and stability of the EAOA are the best in
all algorithms. Lévy variation increases population diversity,
broadens the optimization space, enhances the global search
ability and improves the calculation precision. The differ-
ential sorting variation filters out the optimal search agent,
avoids the search stagnation, enhances the local search ability
and accelerates the convergence rate. The EAOA realizes
complementary advantages to avoid falling into the local opti-
mum. Therefore, the EAOAhas strong stability and reliability
to obtain a faster convergence rate and higher calculation
precision.

In Table 4, for f7, both the basic AOA and the EAOA
find the exact excellent solution. The optimal value, worst
value, mean value and standard deviation of the EAOA are
consistent with those of the AOA. Compared with other
algorithms, the optimal value, worst value, mean value and
standard deviation of the EAOA are better. The ranking of
the EAOA is the first and the EAOA has strong stability. For
f8, the optimal value, worst value, mean value and standard
deviation of AOA and EAOA are the same. The optimal value,
worst value, mean value and standard deviation of EAOA are
superior to those of other algorithms except the AOA. The
ranking of the EAOA is the first, which shows that EAOA has
excellent stability and superiority to find the global optimal
solution. For f9, the optimal value, worst value, mean value
and standard deviation of the EAOA have been improved
compared to those of the basic AOA, the optimal value of the
EAOA is better than those of other algorithms, the worst value
and mean value of the EAOA are better than those of ABC,
CS, than those of other algorithms except ALO and WWO.
For DA, MFO, SCA and AOA, but the standard deviation
of the EAOA is worse than those of ALO and WWO. For
f10, the optimal value, worst value, mean value and standard
deviation of the EAOA have been improved compared to
those of the basic AOA. The optimal value of the EAOA
is worse than that of the MFO, but the worst value, mean
value and standard deviation of the EAOA are superior to
those of ABC, ALO, CS, DA, MFO, SCA, WWO and AOA.
The EAOA has the best ranking and strong stability. The
Lévy variation has the characteristics of a large search range,
wide population diversity and strong global search ability.
The differential sorting variation has the characteristics of
avoiding premature convergence, filtering out the best search
agent and having a strong local search ability. The EAOA
realizes complementary advantages to avoid search stagna-
tion. Therefore, the EAOA can switch arbitrarily between
global search ability and local search ability to find the best
solution.

In Table 5, for f11, each comparison algorithm finds the
global exact solution in the search space, but the worst value,
mean value and standard deviation of the EAOA are worse
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TABLE 3. Experimental effect for f1 − f6.

than those of other algorithms. For f12, the optimal value,
worst value, and mean value of the EAOA are consistent with
those of the ABC, ALO, CS, MFO, WWO and AOA. The
relative values of the EAOA are superior to those of the DA
and SCA. The standard deviation of the EAOA is smaller
than those of DA, SCA and AOA. For f14, all algorithms find
the global exact solutions except SCA. The optimal value,
worst value, and mean value of ALO, CS, MFO and WWO
are consistent, and the relative values are better than those
of other algorithms. Compared to the basic AOA, the mean
value and standard deviation of the EAOA have been slightly
improved. For f13, f15 and f16, the AOA and EAOA all find the
global exact solution, and their the optimal value, worst value,
mean value and standard deviation are the same. The optimal
value, worst value, mean value and standard deviation of

the EAOA are better than those of other algorithms. Com-
pared with other algorithms, the EAOA has a higher rank-
ing and stronger stability to obtain the best solution. The
Lévy variation increases the population diversity of the algo-
rithm and expands the search range of the algorithm, which
enhances the exploration ability and improves the calcula-
tion precision of the AOA. The differential sorting variation
filters out the best individual from multiple candidate solu-
tions and avoids premature convergence of the AOA, which
enhances the exploitation ability and accelerates the con-
vergence rate of the AOA. The EAOA realizes complemen-
tary advantages to avoid premature convergence. Therefore,
the EAOA can effectively balance exploration and exploita-
tion to find the global optimal solution in the whole search
space.
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TABLE 4. Experimental effect for f7 − f10.

The P-value Wilcoxon rank-sum test is used to detect
whether two sets of data are the significant distinction
between the EAOA and the other algorithms [30].P > 0.05 in
bold shows that there is no significant distinction between the
two sets of data. P ≤ 0.05 shows that there is a significant
distinction between two sets of data. The results of the p-value
Wilcoxon rank-sum test are described in Table 6. Most of the
P-values are less than 0.05, which shows that there is a signif-
icant distinction between the EAOA and the other algorithms,
and the data are real and valid, not obtained by chance.

The convergence graphs of these algorithms are presented
in figure 2. The convergence curve intuitively demonstrates
the convergence rate and calculation precision of different
algorithms in solving the function optimization problem. The
algorithm has a faster convergence rate and higher calculation
precision, which shows that this algorithm has strong overall
optimization performance and search ability to obtain the
global optimal solution. For f1 − f6, the EAOA uses the
exploration ability and exploitation ability to avoid falling
into the local optimum and find the best solution. The optimal
value, worst value, mean value and standard deviation of the
EAOA are superior to those of other algorithms, as shown
in Table 3. The relevant values of the EAOA have been
greatly improved compared to the basic AOA, which shows
that the EAOA has a strong search ability and optimization
ability to find a faster convergence rate and higher calculation
precision. For f7 − f10, the EAOA has a large search range

and wide population diversity to filter out the best search
agent and avoid premature convergence. The EAOA has
strong global optimization and local optimization to obtain
the global finest solution. Compared with other algorithms,
most of the optimal value, worst value, mean value and stan-
dard deviation of the EAOA are better, as shown in Table 4.
The convergence rate and calculation precision of the EAOA
are better than those of other algorithms, which shows that
the EAOA has excellent stability and superiority to solve the
multimodal functions. For f11 − f16, the EAOA combines the
Lévy variation and the differential sorting variation to achieve
complementary advantages and improve the overall search
ability. The EAOA can obtain the exact optimal solution in
the search space, which shows that the EAOA has certain
stability and superiority to solve the fixed-dimension mul-
timodal functions. Most of the optimal value, worst value,
mean value and standard deviation of the EAOA are better
than those of other algorithms, as shown in Table 5. The
convergence rate and calculation precision of the EAOA are
the best in all algorithms except f14. The Lévy variation
broadens the optimization space and increases population
diversity to achieve the global search ability. The differential
sorting variation filters out the optimal search agent and
avoids the search stagnation to achieve the local search abil-
ity. The EAOA effectively adjusts exploration and exploita-
tion to find a faster convergence rate and higher calculation
precision.
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TABLE 5. Experimental effect for f11 − f16.

The ANOVA test of these algorithms is presented in
figure 3. The standard deviation can intuitively reflect the
stability of each comparison algorithm in solving the function
optimization problem. The algorithm has a smaller standard
deviation, which shows that the algorithm has strong overall
optimization ability and stability. The ranking is based on
the standard deviation. The Lévy variation and the differen-
tial sorting variation enhance the exploration ability and the
exploitation ability of the AOA to improve the convergence
rate and calculation precision. For f1− f6, the standard devia-
tion of the EAOA is superior to those of other algorithms, and
the ranking of the EAOA is first, which shows that the EAOA
not only has a relatively small standard deviation, but also has
strong stability and superiority. The EAOA has strong search

ability and practicability to solve the unimodal functions.
For f7 − f10, the EAOA utilizes two additional strategies to
expand the population space and avoid dropping into the
local optimal solution, which is beneficial to enhance the
global search ability and the local search ability. Compared
with other algorithms, the standard deviation of the EAOA
is better, which shows that the EAOA has a relatively small
standard deviation and strong stability. For f13, f15 and f16, the
EAOA has strong overall search ability and superiority to find
the exact solution in the search space. The standard deviation
of the EAOA is better than those of other algorithms. The
EAOA has a high ranking and relatively small standard devi-
ation, which shows that the EAOAhas strong stability. For f11,
f12 and f14, the standard deviation of the EAOA is relatively
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TABLE 6. Results of the p-value Wilcoxon rank-sum test.

stable compared to the other algorithms. The Lévy variation
increases the population diversity and expands the search
range to enhance the global search ability. The differential
sorting variation filters out the best individual from multiple
candidate solutions and avoids premature convergence to
enhance the local search ability. The EAOA realizes comple-
mentary advantages to obtain a faster convergence rate and
higher calculation precision. The EAOA has strong stability
and superiority to solve the function optimization problem.

To verify the robustness of the EAOA, the optimal value,
worst value, mean value, standard deviation and P-value
Wilcoxon rank-sum test are used as some evaluation indica-
tors. The robustness of the EAOA is mainly reflected in the
following aspects. First, the EAOA balances exploration and
exploitation to obtain a faster convergence rate and higher
calculation precision. Second, the EAOA has a relatively
small standard deviation, which shows that the algorithm has
strong overall optimization ability and stability. Third, if the
EAOA has a large standard deviation, which will not cause
catastrophic and combinatorial explosions.

C. EAOA FOR SOLVING PROJECT OPTIMIZATION
To corroborate the practicability and availability, the EAOA
is used to resolve the project optimization problems, such
as the welded beam project [31], tension/compression spring
project [32], pressure vessel project [33], cantilever beam
project [34], and speed reducer project [35].

1) WELDED BEAM PROJECT
The objective is to consume less creation cost to complete
the design project. As presented in figure 4, a few crucial

constraint variables are as follows: shear stress (τ ), beam
bending stress (σ ), beam end deflection (δ), bar buckling load
(Pc), and boundary constraints. There are four optimization
variables: weld thickness (h), clamped bar length (l), bar
length (t), and bar thickness (b). The formula is as follows:
Consider

x = [x1 x2 x3 x4] = [h l t b] (12)

Minimiz

f (x) = 1.10471x21x2 + 0.04811x3x4(14.0+ x2) (13)

Subject to

g1(x) = τ (x)− τmax ≤ 0 (14)

g2(x) = σ (x)− σmax ≤ 0 (15)

g3(x) = δ(x)− δmax ≤ 0 (16)

g4(x) = x3 − x4 ≤ 0 (17)

g5(x) = P− Pc(x) ≤ 0 (18)

g6(x) = 0.125− x1 ≤ 0 (19)

g7(x) = 1.1047x21 + 0.04811x3x4(14.0+ x2)

−5.0 ≤ 0 (20)

Variable range

0.1 ≤ x1 ≤ 2, 0.1 ≤ x2 ≤ 10,

0.1 ≤ x3 ≤ 10, 0.1 ≤ x4 ≤ 2 (21)

where

τ (x) =

√
(τ ′)2 + 2τ ′τ ′′

x2
2R
+ (τ ′′)2 (22)
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FIGURE 2. Convergence graphs of these algorithms.
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FIGURE 2. (Continued.) Convergence graphs of these algorithms.
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FIGURE 3. ANOVA tests of these algorithms.
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FIGURE 3. (Continued.) ANOVA tests of these algorithms.
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FIGURE 4. Welded beam project.

FIGURE 5. Tension/ compression spring project.

τ ′ =
P

√
2 xxx2

, τ ′′ =
MP
J
, M = P(L +

X2
2
) (23)

R =

√
x22
4
+ (

x1 + x3
2

)2 (24)

J = 2

{
√
2 x1x2

[
x22
4
+ (

x1 + x3
2

)2
]}

(25)

σ (x) =
6PL

x4x23
, δ(x) =

6PL

Ex23x4
(26)

Pc(x) =
4.103E

√
x23x

6
4

36

L2

(
1−

x3
2L

√
E
4G

)
(27)

The optimization effect is described in Table 7. The EAOA
can obtain a relatively small manufacturing cost in addressing
the welded beam design. The control variables and objective
fitness solution of the EAOA are better, which shows that the
EAOA has better superiority.

2) TENSION/ COMPRESSION SPRING PROJECT
The objective is to achieve the minimum weight of a ten-
sion/compression spring. As presented in fig.5, a few con-
straint variables are as follows: smallest deflection (g1), shear
stress (g2), vibration amplitude (g3), and the external diame-
ter (g4). There are three decision variables: the spring diam-
eter (d), average coil diameter (D), and the number of coils
(N ). The formula is as follows:
Consider

x = [x1 x2 x3] = [d D N ] (28)

Minimize

f (x) = (x3 + 2)x2x21 (29)

FIGURE 6. Pressure vessel project.

Subject to

g1(x) = 1−
x32x3

71785x41
≤ 0 (30)

g2(x) =
4x22 − x1x2

12566(x2x31 − x
4
1 )
+

1

5108x21
≤ 0 (31)

g3(x) = 1−
140.45x1
x22x3

≤ 0 (32)

g4(x) =
x1 + x2
1.5

− 1 ≤ 0 (33)

Variable range

0.05 ≤ x1 ≤ 2.00, 0.25 ≤ x2 ≤ 1.30,

2.00 ≤ x3 ≤ 15.0 (34)

The optimization effect is described in Table 8. The optimal
cost of the EAOA is the smallest in all algorithms, and the
decision variables of the EAOA are superior to those of other
algorithms, which shows that the EAOA has a strong global
search ability to acquire a higher convergence precision.

3) PRESSURE VESSEL PROJECT
The objective is to optimize the minimum total cost. As pre-
sented in fig. 6, a few variables are as follows: the pressure
pipe thickness (Ts), the pressure cap thickness (Th), inside
radius (R), cylinder length (L). The formula is as follows:
Consider

x = [x1 x2 x3 x4] = [Ts Th R L] (35)

Minimize

f (x) = 0.6224x1x3x4 + 1.7781x2x23
+ 3.1661x21x4 + 19.8x21x3 (36)

Subject to

g1(x) = −x1 + 0.0193x3 ≤ 0 (37)

g2(x) = −x3 + 0.00954x3 ≤ 0 (38)

g3(x) = −πx23x4 −
4
3
πx33 + 1296000 ≤ 0 (39)

g4(x) = x4 − 240 ≤ 0 (40)

Variable range

0 ≤ x1 ≤ 99, 0 ≤ x2 ≤ 99,

10 ≤ x3 ≤ 200, 10 ≤ x4 ≤ 200 (41)
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TABLE 7. Optimization effect of the welded beam project.

TABLE 8. Optimization effect of the tension/ compression spring project.

The optimization effect is described in Table 9. The design
variables and optimal effect of the EAOA are better compared
to other algorithms. The EAOA has a strong overall opti-
mization ability. The EAOA utilizes exploration and exploita-
tion to strengthen the calculation efficiency and precision,
which shows that the EAOA has good robustness and global
optimization.

4) CANTILEVEL BEAM PROJECT
The objective is to reduce the weight of the cantilever beam.
The formula is as follows:

Consider

x = [x1 x2 x3 x4 x5] (42)

Minimize

f (x) = 0.6224(x1 + x2 + x3 + x4 + x5) (43)

Subject to

g(x) =
61

x31
+

37

x32
+

19

x33
+

7

x34
+

1

x35
≤ 1 (44)

Variable range

0.01 ≤ x1, x2, x3, x4, x5 ≤ 100 (45)
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TABLE 9. Optimization effect of the pressure vessel project.

TABLE 10. Optimization effect of the cantilever beam project.

FIGURE 7. Cantilever beam project.

The optimization effect is described in Table 10. The
design variables and optimal cost of the EAOA are better
than those of other algorithms, which shows that the EAOA
expands the search space and avoids premature convergence
so that the EAOA has strong stability and robustness to
achieve the global optimal solution.

5) SPEED REDUCER PROJECT
The objective is to minimize the weight of the speed reducer.
As presented in fig. 8, the design variables are as follows: the

FIGURE 8. Speed reducer project.

breadth (b), the number of teeth (m), the number of pinion
teeth (z), the first bearing length (l1), the second bearing
length (l2), first shaft bearing (d1), the second bearing diam-
eter (d2). The formula is as follows:
Consider

x= [x1 x2 x3 x4 x5 x6 x7] = [b m z l1 l2 d1 d2]

(46)
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TABLE 11. Optimization effect of the speed reducer project.

Minimize

f (x) = 0.7854x1x22 (3.3333x
2
3 + 14.9334x3 − 43.0934)

− 1.508x1(x26 + x
2
7 )+ 7.4777(x36 + x

3
7 )

+ 0.7854(x4x26 + x5x
2
7 ) (47)

Subject to

g1(x) = −x1 + 0.0193x3 ≤ 0 (48)

g2(x) =
397.5

x1x22x3
− 1 ≤ 0 (49)

g3(x) =
1.93x34
x2x46x3

− 1 ≤ 0 (50)

g4(x) =
1.93x35
x2x57x3

− 1 ≤ 0 (51)

g5(x) =
[(745x4

/
x2x3)2 + 16.9× 106]1/2

110x36
− 1 ≤ 0 (52)

g6(x) =
[(745x5

/
x2x3)2 + 157.5× 106]1/2

85x37
− 1 ≤ 0 (53)

g7(x) =
x2x3
40
− 1 ≤ 0 (54)

g8(x) =
5x2
x1
− 1 ≤ 0 (55)

g9(x) =
x1
12x2

− 1 ≤ 0 (56)

g10(x) =
1.5x6 + 1.9

x4
− 1 ≤ 0 (57)

g11(x) =
1.1x7 + 1.7

x5
− 1 ≤ 0 (58)

2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28 (59)

7.3 ≤ x4 ≤ 8.3, 7.3 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9 (60)

5.0 ≤ x7 ≤ 5.5 (61)

The optimization results are described in Table 11. The
EAOA utilizes the Lévy variation and the differential sort-
ing variation to perform global optimization. The optimal

variables and optimal cost of the EAOA are the best in all
algorithms, which shows that the EAOA has strong stability
and feasibility to achieve a better optimal value.

Statistically, the AOA is based on the distribution charac-
ter of the dominant arithmetic operators to imitate addition
(A), subtraction (S), multiplication (M ) and division (D) to
find the global optimal solution in the whole search space.
The EAOA effectively solves the function optimization and
the project optimization for the following reasons. First, The
EAOA has the characteristics of a simple algorithm frame-
work, better control parameters, less computational cost,
stronger stability and easy implementation. Second, the Lévy
variation increases population diversity, broadens the opti-
mization space and enhances the global search ability. The
differential sorting variation filters out the optimal search
agent, avoids the search stagnation and enhances the local
search ability. The two optimization strategies can achieve
complementary advantages to avoid falling into the local
optimum and obtain the best solution. Third, the control
parameter r1 can regulate exploration and exploitation to
enhance the overall optimization performance of EAOA. If
r1 < MOA, the EAOA uses multiplication (M ) and division
(D) to perform the exploration phase and find the position
of the optimal search agent, which is beneficial to avoid
premature convergence and accelerate the convergence rate.
If r1 ≥ MOA, the EAOA uses addition (A) and subtraction (S)
to perform the exploitation phase and enhance the local search
ability, which is beneficial to avoid search stagnation and
improve the calculation precision. To summarize, the EAOA
effectively uses exploration and exploitation to obtain a faster
convergence rate, higher calculation precision and stronger
stability.

V. CONCLUSION AND FUTURE RESEARCH
In this paper, an enhanced AOA based on the Lévy vari-
ation and the differential sorting variation is proposed to
solve the function optimization and the project optimiza-
tion. The purpose of the algorithm optimization is to obtain
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the best solution of the benchmark function and the min-
imum consumption cost of the engineering design project.
The Lévy variation increases the population diversity of the
algorithm and expands the search range of the algorithm,
which enhances the exploration ability and improves the
calculation precision of the AOA. The differential sorting
variation filters out the best individual from multiple can-
didate solutions and avoids premature convergence of the
algorithm, which enhances the exploitation ability and accel-
erates the convergence rate of the AOA. Therefore, the EAOA
can optionally switch between the exploration ability and
the exploitation ability to find the global optimal solution
in the search space. For function optimization, the EAOA
adopts the obvious advantages of two variations to improve
the overall optimization performance of the AOA. The EAOA
has a strong global search ability and local search ability to
avoid the search stagnation of the algorithm. The convergence
rate and the calculation precision of the EAOA are better than
those of other algorithms. The EAOA has a relatively small
standard deviation, which indicates that the EAOA has strong
stability. For project optimization, compared with other algo-
rithms, the EAOA has a strong overall search ability to obtain
better control parameters and a smaller consumption cost.
The experimental results show that the EAOA has a faster
convergence rate, higher calculation precision and stronger
stability. Meanwhile, the EAOA is an effective and feasible
algorithm to solve the optimization problem.

In future research, introducing effective search strategies,
adopting unique coding methods (complex-valued encoding,
quantum coding, or discrete coding), or combining with
other swarm intelligence algorithms will achieve comple-
mentary advantages and improve the overall optimization
ability. The enhanced AOA will accelerate the convergence
rate and improve calculation precision. The enhanced AOA
will be used to solve the coordinated path planning of mul-
tiple unmanned underwater vehicles, the coordinated path
planning of unmanned combat aerial vehicles and unmanned
underwater vehicles in underwater target strike missions, and
the optimal path planning of an unmanned underwater vehicle
undersea terrain matching navigation and the dynamic obsta-
cle avoidance of unmanned underwater vehicles. The purpose
of optimization is to effectively avoid all threat areas and find
the shortest and safest path with minimal threat cost and fuel
cost.
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