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ABSTRACT Dynamic multi-target assignment is a key technology that needs to be supported in order
to improve the strike effectiveness during the coordinated attack of the missile swarm, and it is of great
significance for improving the intelligence level of the new generation of strike weapon groups. Changes in
ballistic trajectory during the penetration of multi-warhead missiles may cause the original target assignment
scheme to no longer be optimal. Therefore, reassigning targets based on the real-time position of the warhead
plays an important role in improving the effectiveness of the strike. In this paper, the dynamic multi-target
assignment decision modeling method combining combat simulation and deep reinforcement learning was
discussed, and an intelligent decision-making training framework for multi-target assignment was designed
based on deep reinforcement learning. In conjunction with the typical combat cases, the warhead combat
process was also divided into the penetration phase and the multi-target assignment phase, the model
framework and reward function against the multi-target assignment of the missile were devised, and the
SAC algorithm was employed to conduct application research on intelligent decision modeling for multi-
target assignment. Preliminary test results suggest that the intelligent decision-making model based on
deep reinforcement learning provides better combat effects than the traditional decision model based on
knowledge engineering.

INDEX TERMS Deep reinforcement learning, combat simulation, intelligent decision-making, multi-target

assignment.

I. INTRODUCTION

Target assignment is an activity in which mission planners
formulate the optimal weapon attack plan according to the
target strike mission received in the war planning stage
or during the combat process. Dynamic target assignment
is an online decision-making activity that adjusts the
strike assignment plan in real-time according to changes
in the battlefield situation during the flight of the strike
weapon group. Typical examples are the dynamic multi-target
assignment problem of cruise missile swarm cooperative
attack, the dynamic multi-target re-assignment problem of
ballistic missile multi-warhead cooperative attack, etc. Its
attack mode has expanded from a single attack and defense
operation to a many-to-many group cooperative confrontation
and game. A coordinated multi-projectile attack can make
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full use of the scattered combat resources and information
sharing, effectively improving the striking and penetrating
capabilities [1].

In the problem of dynamic multi-target assignment of
multi-warhead, their respective strike targets and flight
trajectories are usually determined in advance. However,
in the case of interception by the enemy’s multiple defense
systems, multiple maneuvering penetrations are required,
which will make it difficult for the original assignment
scheme to achieve the expected effect, while reassigning
multiple targets after penetration can improve the combat
effect. The penetration decision and target re-assignment
of multi-warhead in the combat process directly determine
the systemization capabilities, which is one of the key
technologies for dynamic multi-target assignment.

The traditional method is mainly based on the combat
model of the offensive and defensive sides, and makes
target assignment by using mathematical programming. For

VOLUME 10, 2022


https://orcid.org/0000-0003-4641-2644
https://orcid.org/0000-0003-4501-1339

Y. Wu et al.: Dynamic Multitarget Assignment Based on Deep Reinforcement Learning

IEEE Access

example, the relative movement information of the projectile
and target can be used to evaluate the difficulty of guidance
and attack performance, while the threat degree of the
target can be evaluated on the basis of its own value and
movement characteristics [2], [3], and then assigns the target.
Shukan Liu et al. [4] comprehensively made use of the
expert systems and neural networks to construct a basic
model of behavioral decision-making, and then developed an
intelligent command system to optimize target assignment.
Another typical method is to convert the assignment problem
into a mathematical programming problem, which then can
be solved by the enumeration method, the branch and
bound method, or integer programming [5], [6]. Nonetheless,
with the increase of the scale of attack and defense, the
complexity of optimization will increase sharply, resulting
in an exponential increase in the computational time [7].
In consequence, the intelligent optimization methods that
are flexible, strongly adaptive, and has relatively simple
calculation have great advantages in solving complex multi-
target decision-making and assignment, which are typically
represented by genetic algorithm and particle swarm opti-
mization (PSO) algorithm [8]. The PSO algorithm adopts the
memory and learning of the individual movement position
and the overall optimal position in the swarm to move in
the optimal direction in the solution space, which, com-
pared with the genetic algorithm, has higher computational
efficiency. However, it lacks the fineness and global search
capability [9], [10].

The highly dynamic cluster attack and defense puts
forward extremely high demands for the optimality and
effectiveness of decision-making, of which its complex and
changeable attack and defense situation requires multiple
online decision-makings and assignments. Its characteristics
are that the state space is based on the original target position
distribution and weapon types, adding state variables such
as weapon group position, speed, remaining fuel, battlefield
uncertainty, and the complexity of problem solving sharply
increased. However, the above-mentioned optimization meth-
ods have their shortcomings in computational efficiency,
global optimality, and inheritance of multiple decisions.
Deep reinforcement learning combines deep learning with
perception ability and reinforcement learning with decision-
making ability, which can well solve decision-making prob-
lems under complex conditions and has achieved remarkable
results in the industrial and military fields [11]-[13].

This paper explores the use of deep reinforcement learning
methods to solve, the missile platform is intelligently trained
based on a general weapon equipment combat simulation
system (WESS) [14] and deep reinforcement learning to
enable intelligent multi-target decision-making and assign-
ment of the missile, including the construction of a deep
reinforcement learning training framework based on combat
simulation, the design of discretized action space, state space
and reward function, and the application research of the SAC
algorithm.
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Il. RELATED WORK

The weapon target assignment (WTA) studies how to assign
weapon units to strike enemy targets to achieve the best strike
effect. Currently, the research on WTA problem is mainly
focused on the model and algorithm, that is, how to establish
the optimal model, propose a reasonable solution algorithm,
and generate a weapon target allocation scheme [15].

And its problems can be divided according to static
WTA and dynamic WTA. For static WTA, the parameters
for weapon and target are known, and the defender can
analyze the countermeasures in the light of the weapon
type and prediction point of the attacker, and gives the
optimal assignment for the defense target, which is the
main focus of the current research on WTA problems. For
example, in article [16], the previous model research was
analyzed and made a systematic summary of the WTA
problem, based on this, the basic model of the WTA problem
was established, in article [17], the concept of value into
the model was introduced creatively, enriching the WTA
model. In article [18], a firepower assignment model was
constructed, of which its overall objectives are the combat
efficiency and the cost ratio of missile weapons and is
constrained by the target destruction. The genetic algorithm
was also utilized to solve the firepower assignment problem.
Meanwhile, in article [19], an improved multi-target particle
swarm optimization algorithm was designed to optimize the
assignment, and the particles were updated with improved
learning factors and inertia weights, which enabled results
with higher accuracy than the general Pareto front solution to
be obtained. In the rapidly changing battlefield environment,
research on static WTA provides a certain reference value,
but it is not applicable. Therefore, considering the practical
problems, research on dynamic WTA which are based on the
static WTA model and focus on possible random events in
the assignment process and processing them in time, enter the
picture. In article [20], multi-stage weapon-target assignment
was studied and the changes in state of each specific time
period were analyzed in detail. Meanwhile, in article [21],
the realistic effect was improved by leveraging the dynamic
WTA method based on Markov decision process optimization
in conjunction with dynamic assignment strategy and static
WTA model. In article [22], a dynamic WTA model of tank
warfare under the specific background of tank warfare was
established, and it has been solved based on the improved
model. And in article [23], when establishing the dynamic
WTA model, the idea of dynamic programming is used
to improve the arbitrary time algorithm by redefining the
termination conditions, and the model is solved, which can
reasonably ensure the timeliness and effectiveness of the
allocation.

The process of solving the WTA problem not only needs
to complete the corresponding model establishment, but also
needs to select an appropriate algorithm to solve it. Intelligent
algorithms are inspired by human beings from natural phe-
nomena or processes, and create new solutions to problems by
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FIGURE 1. Multi-target assignment operational process.

simulating these natural phenomena or processes. At present,
the methods of solving the WTA problem through intelligent
algorithms include genetic algorithm [24], artificial fish
swarm algorithm [25], particle swarm algorithm [26], neural
network [27], game theory [28], Hungarian algorithm [29],
new Non-dominated sorting algorithm [30] and so on.
This paper explores the use of the deep reinforcement
learning algorithm SAC to solve the problem of multi-
target allocation. In the third part, combined with the typical
problem, a decision-making modeling method for multi-
target allocation based on deep reinforcement learning is
proposed, including the modeling framework and training
method. In the fourth part, the application of the SAC
algorithm in target assignment is studied, and the model
input and output and reward function are designed. In the
fifth part, the effectiveness of deep reinforcement learning
in the application of multi-target assignment is demonstrated
by comparing the experimental results of rule-based and
SAC-based algorithms.

Ill. METHOD FOR MULTI-TARGET ASSIGNMENT
DECISION MODELING BASED ON DEEP REINFORCEMENT
LEARNING

A. PROBLEM DESCRIPTION

Consider the problem of multi-warhead penetration and
striking multi-target. Given that the red team has N warheads,
the blue team has M important targets and assigned n
interception positions on the way of the red team’s warheads.
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After N warheads are launched by the red team, they will
fly to M important targets according to the predetermined
trajectory. Each interception position of the blue team will
launch m interceptors to intercept each warhead of the red
team. When the red team’s warhead detects the interceptors
at a certain distance, it will maneuver. After a total of
n*m maneuvering and penetrations, the red team’s missile
platform will reassign targets according to the information
of warhead state. The applicability of the intelligent agent
can be increased by changing the position of the blue team’s
interception position.

In the process of hitting targets with multi-warhead,
it will go through the stages of maneuvering penetration
and target re-assignment. The penetration decision includes
whether to maneuver, that is, the timing of maneuvering; the
maneuvering duration, that is, the distance of maneuvering
and the maneuvering direction. The target, whether to
maneuver, the maneuvering duration, and the maneuvering
direction can be changed based on information of the real-
time state. Then, finally, the effectiveness of the experiment is
analyzed based on the hit of each target [31]. Since the missile
formation may be subject to one or more interceptions,
when encountering the interception of the enemy’s defense
system, the formation members can obtain the information
of he intercepted missile and damage target according to the
coordinated data transmission. Defense strategy and guidance
instructions are selected to avoid enemy interception and
complete the attack on the target under the condition of the
least fuel consumption.
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B. CONCEPTUAL FRAMEWORK OF REINFORCEMENT
LEARNING MODELING FOR INTELLIGENT
DECISION-MAKING

Missile penetration and attack are different from the common
game simulation, unmanned vehicle driving, and other
operations, and they rely on much manpower and funds
for research and experiment. In addition, since the missile
penetration object is uncontrollable, it is impossible to
complete an actual experiment. Reinforcement learning
relies on a continuous trial and error method to find the
optimal strategy, which requires a large number of database
samples to train the intelligent agent and is unacceptable for
carrying out actual missile experiments. Therefore, it is of
great importance to build a realistic battlefield environment
based on combat simulation technology to simulate the
offensive and defensive confrontation of missiles, thereby
supporting the learning, training, and simulation of the
intelligent penetration decision-making algorithm in terms of
environment.

The modeling framework of autonomous decision-making
for intelligent equipment based on combat simulation and
reinforcement learning is shown in the figure, which is
divided into a weapon equipment combat behavior model
and a weapon equipment simulation model. The weapon
equipment simulation model is responsible for generating
the sample database required for reinforcement learning,
while the weapon equipment combat behavior model is
responsible for the decision-making of the weapon equipment
in the simulation operation. In the behavior model, the
decision on combat behavior is implemented by a python
script, the conventional action decision by rule setting,
and the intelligent decision-making action by calling the
intelligent decision-making network to output the decision
action.

Meanwhile, training intelligent decision-making models
based on deep reinforcement learning methods requires the
help of combat simulation operations to generate sample
databases. Off-policy algorithms allow combat simulations
to be run in parallel, and the training samples for each
episode are written in parallel into the sample database for
each round. The off-policy reinforcement learning training
algorithm incorporates the generated sample database into
the replay-buffer for continuous sampling and training,
and updates the intelligent decision-making network. The
updated intelligent decision-making network will be loaded
during the subsequent combat simulation operation to reflect
the decision-making loop and affect the combat decision-
making behavior.

C. METHOD FOR INTELLIGENT DECISION-MAKING
NETWORK TRAINING

Due to the complexity of combat simulation computation,
reinforcement learning training directly based on randomly
initialized neural networks is often difficult to quickly
converge, or the number of combat simulation samples
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FIGURE 2. Modeling framework of intelligent decision-making for the
missile based on deep reinforcement learning.

required for convergence is unacceptable. To this end, the
pre-training may be carried out based on imitation learning,
the traditional knowledge-based methods (such as production
rules) are made full use for decision modeling, the rapid
parallel experiment traversal of the entire scenario set is
carried out by designing different decision rule schemes, from
which the combat decision rule scheme with ideal combat
effect is selected, and imitation learning is performed based
on its corresponding round sample database. The intelligent
decision-making network obtained through imitation learning
can provide a better combat effect in the training scenario,
based on which a step-by-step reinforcement learning
training can be conducted to quickly achieve the purpose of
network convergence. In short, the training and application
process of the intelligent maneuvering penetration algorithm
is mainly divided into the pre-training phase, iterative
training phase, and intelligent testing phase, with each phase
following the previous one, as shown in the figure.

Imitation learning Iterative training Intelligent test
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FIGURE 3. Flow chart of intelligent maneuver training of the missile.

In the pre-training phase, the multi-task scenario is firstly
designed based on the scenario editor to generate scenario
files. Then, the simulation experiments are conducted in
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parallel to obtain the experimental database. Finally, the pre-
training model is obtained by pre-training through supervised
learning.

The output strategy of the decision network is learned
and improved during the continuous interaction and iteration
with the environment, and hence, it is imperative to conduct
iterative training experiments. Based on the pre-training,
iterative training must first load the pre-training model for
initialization, and then build an empirical data pool of the
SAC algorithm. After the iterative training starts, a batch
of round data is extracted from the experience data pool
for training, and the sample data generated by the iterative
training and the environment must also be stored in the
experience data pool for the SAC algorithm to learn and
update. The results are recorded upon the completion of and
before exiting the training. The training is completed on
the condition that the multi-target assignment of the missile
can achieve satisfactory combat results in all multi-mission
scenarios.

After the iterative training, the intelligence test of the intel-
ligent maneuvering penetration decision-making algorithm
must be performed. In this phase, firstly, new task scenarios
are edited and designed based on the scenario editor and
generate test scenario files. Then, the network model based
on the iterative training is generated, and the initialization
parameters of the penetration decision network are loaded
through the behavior script of the missile model. Finally,
the simulation experiment is run in parallel, and the missile
penetration data is collected to analyze the results.

IV. FRAMEWORK DESIGN OF MULTI-TARGET
ASSIGNMENT DECISION MODEL OF THE MISSILE

A. MULTI-TARGET ASSIGNMENT BASED ON SAC

In a bid to cope with the high sampling complexity and
convergence vulnerability of reinforcement learning, the SAC
algorithm based on the Actor-critic (AC) offline strategy
of the maximum entropy framework is mainly used in
continuous control tasks, which adds the maximum entropy
to the reward, encouraging it to explore all possible optimal
paths, and updates the policy algorithm using the off-
policy [32]. Meanwhile, SAC-Discrete accounts for some
algorithm-level changes that need to be taken into account
in the application of the SAC algorithm in discrete actions.
For example, the architectural output of policy is no longer
a Gaussian distribution in continuous control, but a discrete
distribution of n actions. Overall, SAC-Discrete is better
suited for multi-warhead penetration and target assignment
decision-making, and as a result, the SAC-Discrete algorithm
is employed to train the intelligent penetration network. The
training goal of conventional reinforcement learning is to
maximize the cumulative action reward value and the action
state value function Qy (s, @). The action a when Q; is the
largest can be directly selected as the strategy, that is, the
optimal strategy is expressed as:

7* = argmax E(Sl,al)N,()l[Zt R(st, ap)] (1)
g
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In the SAC algorithm, the target function is composed of
reward and «-weighted policy entropy H, and the introduction
of entropy value makes the policy more random.

% = argmax E a)~nl ) Rl a) +aH@(ls)] ()
T — S——

entro
reward 4

In the multi-target assignment decision, different multi-
target assignment results lead to different combat outcomes.
As the combat effectiveness is associated only with the
information of the current and future state, but not with
that of the past, the multi-warhead penetration and multi-
target assignment decision conforms to the Markov decision
process. According to the requirements of the SAC method
for deep reinforcement learning, it is necessary to build
an intelligent assignment model according to the actual
combat task and design the state and action space and
reward function. The intelligent multi-target assignment
process based on the SAC algorithm is shown in the figure
below.

Random methods to
initialize the critic network
and the actor network

Inherit the last critic
network and actornetwork

¥
current assignment Combat Effectiveness
network Index Calculation

meet the
optimalit

Select Action: Output
Assignment Results

Status update and
reward calculation

critic network and actor
sac method
network updates

FIGURE 4. Iterative flowchart of intelligent decision-making based on the
SAC algorithm.

B. DESIGN OF NETWORK MODEL

1) PENETRATION DECISION MODEL

The description of the missile state space should attach
importance to the state variables that affect the final
penetration effect of the offensive and defensive sides
according to the actual confrontation process between the
missile and the enemy’s interception system, and form
variables directly related to the action space and the reward
function, which serve as inputs of the network, by processing
the indirectly related information of the state space. The
state space of the red team’s attack warhead is described
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TABLE 1. List of warhead state space variables.

TABLE 3. Multi-target assignment network input.

State variable Narpe of Dimension Pre-processing
variable
Remaining
fuel of fremain 1 Remaining fuel/Total fuel
warhead
Distance f?"m dye 1 Distance/Earth radius
target point
Relative Relative position vector
position to Ay, Ay A, 3 /Maximum detection range of
interceptor warhead
Relative Relative velocity component
velocity with vy, vy, v, 3 /Maximum flight speed of
interceptor interceptor
Angle
Ve?:é;f;e:nd Gwi ! Angle/ T
line of sight
Angle
between
interceptor Giw 1 Angle/
velocity and
line of sight

TABLE 2. List of warhead action space variables.

Type of Value

Action variable .
variable range

Description

0 represents not
maneuvering, 1
represents
maneuvering
Warhead fuel
consumption are
considered when the
warhead maneuver is
1

‘Whether to maneuver bool 0,1

Maneuver time int 1,...,6

as s= {RemainingFuel, Ay, Ay, Ay, dyy, Vx, Vy, V2, Qwis Giws
where RemainingFuel represents the fuel quantity of war-
head, (Ax, Ay, A;) represents the relative position vector
of the interceptor and the warhead, d,, represents the
distance between the warhead and the target point, (vy, vy, V)
represents the relative velocity vector of the interceptor and
the warhead, g,,; represents the angle between the direction of
the speed of warhead and the line of sight, and ¢;,, represents
the angle between the direction of the speed of interceptor
and the line of sight. The dimensionless processing of each
variable in the missile state space is shown in Table 1.

The reinforcement learning action space should be
designed in combination with the maneuver penetration
task. In this paper, the warhead employed a large overload
maneuver to complete penetration. When approaching the
interceptor, it decides whether to maneuver and the duration
of maneuver. The unit of maneuver time is the step
length in the simulation operation. After comprehensively
considering the maneuvering distance and fuel consumption
of the warhead, the value range of the maneuver time is
set to 1,2,...,6. Whether to maneuver is represented by
0 and 1. Therefore, the designed action space is shown in
Table 2
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State variable Symbol Ranges Dimension
Distance between each warhead dyy 0~1200 km M*N
and each target point
Deflection angle between each a, -90°~90° M*N
warhead and each target point
Pitch angle between each By -90°~90° M*N
warhead and each target point
Speed of each warhead V, 0~+oo N*1
Remaining fuel of each fremain 0~60 kg N*1

warhead

2) MULTI-TARGET ASSIGNMENT DECISION MODEL
For the strike of N warheads (N is a positive integer greater
than 1) on M target points (M is a positive integer greater
than 1), as shown in the table above, the network input is
the input of the overall environment variable, and the sum
is (3M +2)*N-dimensional state input. Here, the distance
determines whether the warhead will reach the target point,
the deflection angle and pitch angle determine whether an
adjustment in direction is required, the speed determines
whether the adjustment can be made, and the amount of
remaining fuel gives consideration to how far to make target
assignments. When the remaining fuel is insufficient, the
maneuver cannot be performed and the mission will fail.
The output of the network is the multi-target assignment
result, and the representation of the assignment result may
be in the form of a matrix, a vector, or a numerical
number. Here, for ease of presentation, numerical numbers
are used to represent the assignment results. If N warheads hit
N targets, the assignment result can be expressed as a tuple
“X1x2...x;...x," " representing the i-th warhead hitting the
x;-th target. In this experimental scenario, six warheads are
set to hit six targets, that is, both N and M are six.

C. DESIGN OF REWARD FUNCTION

Reinforcement learning is the learning of a mapping from
situations to actions so as to maximizes a scalar reward or
reinforcement signal. The learner does not need to be directly
told which actions totake, as in most forms of machine
learning, but instead must discover which actions yield the
most reward by trying them. Informally, the goal of an agent
is to maximize the total reward it receives. This means the
agent’s objective is to maximize the reward that it receives
over the long run but not the current gain [33]. In general, the
reward design is jointly determined by state S, action A, and
the next state S’. Mathematically, it can be expressed as the
following formula.

R:SxAxS —R 3)

The characteristic of multi-target assignment lies in that
the quality of assignment is only known after an experiment
has been completed, that is, the agent can be rewarded
only in the last state and only one valid database need
to be obtained from an episode. Therefore, the design
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of the reward function mainly considers the mission task
completion reward, including whether the warhead lands, the
amount of the warhead misses the target, and whether it hits
the target. The reward value is set according to the completion
of the final mission. If the target is successfully hit, the reward
value in [40] and [50] interval will be given according to
the distance of the warhead and the target. If it fails to hit
the target, the reward value in the range of [5] and [10] will
be given according to the distance of the warhead from the
target. The reward is calculated as follows (4), as shown at the
bottom of the page, where, ry;; represents the killing radius of
the warhead, and its value range is [1,100] kilometer. dyyqrhead
represents the distance the warhead deviates from the target,
and its value range is [0, +00]. When dyygrheqq 1S less than
rkinl, the warhead is considered to be able to damage the target.
The factor iy /dwarhead and (1 — dywarhead /Tkin) 1S set to make
R is negatively correlated with dyqrheqd, and the two factors’
value range is [0,1]. P represents the number of missed targets
among N warheads, and 0 < P < N (P is a positive integer).

V. EXPERIMENTAL PROGRESS

A. IMITATION LEARNING NETWORK TRAINING

In terms of multi-target assignment initialization network
based on supervised learning training, in the training, the
data set is the input state of the optimal rule experiment, and
the label is the assignment scheme adopted by the optimal
rule. For use, the current state is input, and the network
can output the solution that should be adopted under the
current environmental state. The learning rate is an important
hyperparameter in supervised learning and deep learning,
which determines whether the target function can converge
to the local minimum and when it converges to the local
minimum. If the learning rate is too large, the network
training will be insufficient, and the degree of intelligence
will not high; if the learning rate is too small, the network
will be difficult to converge. After many debugging and
improving network parameters, the learning rate “Ir” is
set to 0.0001, the hidden layer is set to 256*256, and the
interval return value is set to 2, that is, the current value
is returned every two steps to provide data for subsequent
observation of experimental changes. Since the multi-target
assignment problem is essentially a classification problem,
after comprehensive consideration, the cross-entropy loss
function ‘CrossEntropyLoss()’ is used for network training.
When the supervised learning script runs, it retrieves data
from the specified database, generates an initialized network
model, and saves it in the specified directory as the initial
model for subsequent reinforcement learning training. The
intermediate result generated during the run is shown as
follows in the train_loss chart.

train_loss
25 \
20 4 \
|
o |
10 4
5 \\\\\
.
=
oA -
T T T T T T T T
2.5 5.0 7.5 10.0 125 150 175 200

FIGURE 5. Supervised learning loss function of multi-target assignment.
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FIGURE 6. Reward convergence curve of iterative training of deep
reinforcement learning.

x-label represents epoch, y-label represents loss function
value. The figure above shows that with a learning rate
of 0.0001, the loss value in training drops to 0.1558 after
20 epochs, which means that the network training has
converged. The trained initialization network possessed an
initial decision-making capability. However, it has a narrow
applicable scenario and weak generalization capability.

B. ITERATIVE TRAINING OF REINFORCEMENT LEARNING

Before the training begins, the sample data needs to be stored
in the empirical data pool as the initial database for iterative
training, and the pre-training model is loaded to initialize the

dyarhead

[5+ 5% 7] P,
R =

{40 + 10 * (1 — %)} % (N — P), (Target hit successfully)

76004
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FIGURE 7. Comparison of intelligent testing results.

decision network. The factor value range and the number of
factor levels are determined, and the iterative training tool
of reinforcement learning is utilized to train 19,881 times to
obtain the reward graph and the final convergence graph as
follows:

The red curve represents the reward value, and the blue
curve represents the loss function value. According to the
curve recorded in the iterative training process, it can be
known that the reward value has been stable in the [50, 100]
interval, indicating that the average success rate of the useless
intelligent decision-making network in the iterative training is
about 30%. The convergence of the loss function means that
the intelligent decision-making network converges during
the iterative training process, which meets the require-
ments of network training. In the next section, the trained
intelligent decision-making network will be simulated and
tested, and compared with the rule-based decision-making
experiment.

C. INTELLIGENT TESTING

After saving the network obtained from the iterative training
of deep reinforcement learning, the intelligent decision and
the rule-based decision are tested and compared under a new
experimental scenario in a bid to better show the adaptability
and generalization of reinforcement learning. The rule-based
decision experiment employs the optimal rules selected by the
full-space experiment to make decisions, while the intelligent
decision experiment makes decisions by loading the trained
reinforcement learning network. Experiments were run, and
the experimental results were collected and analyzed, and is
exported as follows:

The X-axis and Y-axis of Figure 6 represent the deploy-
ment of the enemy’s interception positions. The image on the
left shows the intelligent test results of the deep reinforcement
learning network, the image on the right shows the test results
of the optimal rules. Judging from the distribution of the
images, for different enemy interception positions, the left
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image has reached the medium level or above in many places,
while the right image has only one close to the medium level,
indicating that the deep reinforcement learning training agent
is more capable generalization ability, able to adapt to more
scenarios. From the results of the image, left one where all
destruction rates are above 40%, that is, the attack targets
destroyed 40% of the total number of targets, or 90% and
even 100% in better cases. Right one where the destruction
rates are generally below 40% and only go as high as 50%.
The data of intelligent decision network test with the results
of the optimal rule testing is compared, and it is obtained that:

TABLE 4. Intelligent test experimental design of multi-target assignment.

Experimental results Intelligent decision Optimal rule
network testing testing
Maximum destruction rate 100% 50%
Minimum destruction rate 40% 10%
Average destruction rate 60.09% 32.05%

The table suggests that the intelligent decision network
has a destruction rate much higher than that of the optimal
rule decision, of which the average destruction rate is nearly
twice that of the optimal rule test. It is shown that the
generalization and adaptability of the decision model trained
by the deep reinforcement learning method are better than
the optimal rules, which proves the effectiveness of the deep
reinforcement learning algorithm in multi-target assignment.

VI. CONCLUSION

The penetration and target assignment of multi-warhead is
an important means for missiles to improve survivability
and effectiveness of strikes in combat missions. With the
continuous development of multi-level, multi-stage, and
multi-modal anti-missile defense systems, the difficulty of
missile penetration continues to rise, and the effectiveness of
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multi-warhead against multiple targets decreases. Research
on how to increase the operational effectiveness of missiles
through independent decision-making on missiles is of
practical significance to strengthening China’s strategic
deterrence. Starting from the actual situation of missile
combat tasks, in this paper, a multi-target assignment decision
modeling method based on combat simulation and deep
reinforcement learning was proposed for multi-warhead
penetration and target assignment, and a missile multi-
target assignment decision-making algorithm based on deep
reinforcement learning was investigated and designed. The
state space, action space, and reward function of missile
decision were also designed and proposed, and the SAC
algorithm was improved and applied in the decision-making
of missile penetration and multi-target assignment. Finally,
a case implementation is performed, and the feasibility and
effectiveness of the intelligent decision-making algorithm are
proved by comparing the results.

As the application research of deep reinforcement learning
algorithm, the research on dynamic multi-target assignment
of multiple warheads in this paper is not deep and compre-
hensive enough, and the next step needs to be improved and
perfected, including the following three aspects:

(1) Comprehensive comparison of multiple intelligent
decision-making methods. Due to the limited time and
energy, I only carried out a comparison between the intelli-
gent decision-making algorithm based on deep reinforcement
learning and the rule-based decision-making method. The
comprehensive comparison with other intelligent decision-
making methods such as expert systems and genetic algo-
rithms can effectively verify the intelligence of the algorithm.

(2) The decision space needs to be expanded. This
paper only studies the maneuver decision-making and target
assignment in the course of combat. Other decisions, includ-
ing electronic jamming, target detection, and coordinated
operations, have a greater impact on modern information
warfare and are worthy of further research.

(3) Multi-agent collaborative combat decision-making.
The multi-warhead target assignment problem studied in
this paper only involves strike assignment, and there is
no coordinated division of labor. The emergence of new
combat concepts such as multi-projectile coordination and
cluster penetration requires urgent research on collaborative
decision-making among multi-agents. The emergent char-
acteristics of clusters also lead to higher complexity of
multi-agent problems.
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