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ABSTRACT This paper studies the output-feedback control for stochastic feedforward nonlinear systems
with Markovian switching and unknown measurement sensitivity. By developing a stochastic dual-
domination design approach, a state observer and an output feedback control law are designed. By using the
generalized Itô formula and Dynkin formula for Markovian switching systems, it is shown that the closed-
loop system has a unique solution and the solution of the closed-loop systems is almost surely asymptotically
stable. Finally, a simulation example is given to illustrate the effectiveness of the control scheme.

INDEX TERMS Stochastic feedforward nonlinear systems, Markovian switching, output feedback control.

I. INTRODUCTION
Research on the control design of feedforward nonlinear
systems (also known as upper-triangular nonlinear systems)
has attracted much attention in the past two decades due
to their wide practical applications such as planar vertical
landing aircraft in [1] and the cart-pendulum system in [2].
For this kind of problems, [3] design control laws by nesting
saturation functions for uncertain feedforward nonlinear sys-
tems; [4] studies the adaptive controller design for systems
with delays of unknown length.

Most researches in the above literature assume that there
is no noise in the studied systems. However, real systems
are often subject to stochastic noise [5]–[8] in uncertain
environments. Therefore, it is necessary and beneficial to
study the control of stochastic feedforward nonlinear sys-
tems. For the state-feedback control, [9], [10] investigates
stochastic feedforward nonlinear systems with time-varying
delay; [11] focuses on the decentralized stabilization for
large-scale stochastic feedforward nonlinear systems; [12]
studies the cooperative control of stochastic feedforward
nonlinear multi-agent systems under directed network topol-
ogy. For the output-feedback control, [13] investigates the
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output-feedback control of stochastic feedforward nonlinear
systems with state time delay; [14] extends the results in [13]
to stochastic high-order case; [15] studied the approximate
sampled-data observer design for a class of stochastic nonlin-
ear systemswith exact output function y = h(x1); [16] studied
the ILC problem for a class of stochastic systems with mea-
surement noise; [17] considers output-feedback control of
stochastic feedforward systems with unknown control coef-
ficients and unknown output function; Besides, [18] investi-
gates the problem of output feedback control for a class of
stochastic feedforward systems with unknown measurement
sensitivity.

It is worth pointing out that, all the output-feedback con-
trol schemes provided in [13]–[17], are limited to a special
class of systems with strict conditions, where systems are
free of sensor sensitivity error and do not consider Marko-
vian switching. And [18] do not consider Markovian switch-
ing. However, in practice, there always exists a sensitivity
error [19]–[21]. Besides, many physical systems are subject
to abrupt variations in their structures, due to random failures
or repairs of components and sudden environmental distur-
bances, which can be effectively described by the differential
equations with Markovian switching [22], [23]. Therefore,
study of output-feedback control for stochastic feedforward
nonlinear systems with Markovian switching and unknown
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measurement sensitivity is of practical significance and thus
warranted. To our best knowledge, there is no results in open
literature on this topic.

Inspired by [24]–[27] and [31], this paper attempts to
solve output-feedback stabilization problem of stochastic
feedforward nonlinear systems with Markovian switching
and unknownmeasurement sensitivity. Themain features and
contributions of this paper are summarized as follows:

(1) This paper is the first result on output-feedback control
of stochastic feedforward nonlinear systems with unknown
measurement sensitivity. To deal with stochastic noise and the
unknown measurement sensitivity simultaneously, stochastic
dual-domination approach is developed to construct a state
observer and an output-feedback controller. In the stochastic
dual-domination design, two gains are designed. One gain is
designed to deal with the unknown measurement sensitivity,
and the other gain is designed to deal with the feedforward
system structure.

(2) Even for the state-feedback control of stochastic feed-
forward nonlinear systems with Markovian switching, this
paper is new since this paper is the first attempt to introduce
Markovian switching into stochastic feedforward systems.
How to deal with the interconnected term in the infinitesi-
mal generator of Lyapunov function produced by Markovian
switching is nontrivial.

The remainder of this paper is organized as follows.
Section II is on preliminaries. Section III is for problem
formulation. Section IV focuses on controller design and
stability analysis. Section V gives a numerical example to
show the effectiveness of the theoretical results. Section VI
includes some concluding remarks.

II. PRELIMINARY RESULTS AND USEFUL LEMMAS
The following notations will be used throughout this paper.
R+ denotes the set of all nonnegative real numbers, and Rn

denotes the real n-dimensional space. For a given vector or
matrix X ,XT denotes its transpose, Tr{X} denotes its trace
whenX is square, and |X | is the Euclidean norm of a vectorX .

Defining |A| =
(∑n

i=1
∑m

j=1 a
2
ij

) 1
2

for matrix A. Ci denotes
the set of all functions with continuous ith partial derivatives.

Consider the following stochastic nonlinear system

dx(t) = fσ (x(t), t)dt + gσ (x(t), t)dω, (1)

where x(t) ∈ Rn is the state of system, the Borel measurable
functions fσ (x(t), t) and gσ (x(t), t) are locally Lipschitz in
x ∈ Rn for all t ≥ 0, and ω is an m-dimensional independent
standard Wiener process defined on the complete probability
space (�,F ,Ft ,P) with a filtration Ft satisfying the usual
conditions (i.e., it is increasing and right continuous while
F0 contains all P-null sets). Let σ (t) (written as σ for short
in this paper) be a right-continuous homogeneous Markov
process on the probability space taking values in a finite state
space S = {1, 2, . . . ,N } with generator 0 = (γpq)N×N given

by

Ppq(t) = P{σ (t + s) = q|σ (s) = p}

=

{
γpqt + o(t) if p 6= q
1+ γppt + o(t) if p = q

for any s, t ≥ 0. Here γpq > 0 is the transition rate from p
to q if p 6= q while γpp = −

∑N
q=1,q6=p γpq. for any s, t ≥ 0.

Here γpq > 0 is the transition rate from p to q if p 6= q while
γpp = −

∑N
q=1,q 6=p γpq.

For system (1) and V ∈ C2,1(Rn×R+× S;R+), introduce
the infinitesimal generator by

LV (x, t, p) = Vt (x, t, p)+ Vx(x, t, p)f (x, t, p)

+
1
2
Tr
[
gT (x, t, p)Vxx(x, t, p)g(x, t, p)

]
+ IIV ,

where IIV =
∑N

q=1 γpqV (x, t, q), Vt (x, t, p) =
∂V (x,t,p)

∂t ,
Vx(x, t, p) = ( ∂V (x,t,p)

∂x1
, . . . , ∂V (x,t,p)

∂xn
),Vxx(x, t, p) =( ∂2V (x,t,p)

∂xl∂xm

)
n×n .

The following definition and lemmas are useful for the
controller design and stability analysis.
Definition 1 [28]: A stochastic process x(t) is said to

be bounded in probability if the random variable |x(t)| is
bounded in probability uniformly in t; that is

lim
c→∞

sup
t>t0

P{|x(t)| > c} = 0.

Lemma 1 [24]: For any l > 0, define the first exit time ηl
as

ηl = inf{t : t ≥ t0, |x(t)| ≥ l}.

Assume that there exist a positive function V ∈ C2,1(Rn ×
R+ × S;R+), parameters d and D ≥ 0 such that

EV (x, ηl ∧ t, σ (ηl ∧ t)) ≤ Ded(ηl∧t−t0),

R→∞ H⇒ VR = inf
t≥t0,|x|>R

V (x, t, σ (t))→∞.

Then for every x(t0) = x0 ∈ Rn and σ (t0) = i0 ∈ S,
there exists a solution x(t) = x(x0, i0; t, σ (t)), unique up to
equivalence, of system (1).
Lemma 2 [25]: Let V ∈ C2,1(Rn × R+ × S;R+) and

τ1, τ2 be bounded stopping times such that 0 ≤ τ1 ≤ τ2 a.s..
IfV (x, t, σ (t)) andLV (x, t, σ (t)) are bounded on t ∈ [τ1, τ2]
a.s., then

E[V (x, τ2, σ (τ2))− V (x, τ1, σ (τ1))]

= E
∫ τ2

τ1

LV (x, t, σ (t))dt.

Lemma 3 [28]: For (x, y) ∈ R2, the following inequality
holds:

xy ≤
νp

p
|x|p +

1
qνq
|y|q,

where ν > 0, the constants p > 1 and p > 1 satisfy
(p− 1)(q− 1) = 1.
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Lemma 4 [29]: For p ∈ [1,∞) and any xi ∈ R,
i = 1, . . . , n, the following inequality holds:

(|x1| + · · · + |xn|)p ≤ np−1(|x1|p + · · · + |xn|p).

III. PROBLEM FORMULATION
Consider the stochastic feedforward nonlinear systems with
Markovian switching and unknown measurement described
by

dx1 = x2dt + fσ1(x̃3)dt + gTσ1(x̃3)dw,

dx2 = x3dt + fσ2(x̃4)dt + gTσ2(x̃4)dw,
...

dxn−2 = xn−1dt + fσ,n−2(x̃n)dt + gTσ,n−2(x̃n)dw,

dxn−1 = xndt,

dxn = udt,

y = θ (t)x1, (2)

where x̃i = (xi, · · · , xn)T ∈ Rn−i+1, u ∈ R and y ∈ R are the
state, the input, and the output of the system, repectively. The
functions fσ i and gσ i are smooth with fσ i(0) = 0, gσ i(0) = 0.
The sensor sensitivity θ (t) is a bounded unknown continuous
function of t ∈ R+. The definitions of Wiener process ω and
Markov process σ (t) (written as σ for short) can be found
in system (1). We assume that the Markov process σ (t) is
independent of the Brownian motion ω.
For system (2), we need the following assumption.
Assumption 1: For i = 1, · · · , n − 2, there exist positive

constants bσ i and cσ i such that

|fσ i(x̃i+2)| ≤ bσ i(|xi+2| + · · · + |xn|),

|gσ i(x̃i+2)| ≤ cσ i(|xi+2| + · · · + |xn|).

Remark 1: What should be emphasized is that, for
the output-feedback control of system (2), the existing
results [13] and [14] are based on the ideal condition θ (t) ≡ 1.
However, in practice, a sensitivity error in θ (t) often exists
for manufacturing reasons, which makes θ (t) deviate from its
real value θ0 = 1. For instance, as demonstrated by [20], in a
magnetic bearing suspension system, there exists±10% sen-
sitivity error for the displacement sensor. Thus, the output of
this sensor may differ from the actual value with±10% varia-
tion. Therefore, with the effect of the sensor sensitivity error,
the output-feedback stabilization problem for system (2) is
nontrivial.
Remark 2: To the best of our knowledge, all the exist-

ing results about stochastic feedforward nonlinear systems,
such as [9]–[17], either for state-feedback control or output-
feedback control, did not consider Markovian switching.
Considering that many physical systems are subject to abrupt
variations in their structures, system (2) is more practical
model than that considered in [9]–[17].
Remark 3: As shown in [13]–[17], Assumption 1 is a stan-

dard assumption for the output-feedback control of stochastic
feedforward nonlinear systems, which is frequently used in
the observer and output-feedback controller design.

The objective of this paper is to construct a state observer
and an output-feedback controller to solve the output-
feedback stabilization problem for system (2).

IV. CONTROLLER DESIGN AND STABILITY ANALYSIS
In this section, we aim to solve the output-feedback stabi-
lization problem for system (2) under Assumption 1 via the
following four steps:
A) Design a Linear Observer;
B) Construct the output feedback controller;
C) Design the dual domination gains; and
D) Stability of the closed-loop control system is studied.

A. LINEAR OBSERVER DESIGN
Construct the linear observer as

dx̂1 = x̂2dt − εa1x̂1dt,

dx̂2 = x̂3dt − ε2a2x̂1dt,
...

dx̂n = udt − εnanx̂1dt, (3)

where 0 < ε < 1 is a design parameter to be determined
later, and ai > 0, i = 1, . . . , n, are coefficients of the Hurwitz
polynomial h1(s) = sn + a1sn−1 + · · · + an−1s+ an.
Define the estimation error

ei =
xi − x̂i
εi−1

, i = 1, . . . , n. (4)

Denoting e = (e1, · · · , en)T , from (2)-(4) we have

de = (εAee+ εBex1 + Fσe)dt + GTσ1dw, (5)

where

Be =

 a1...
an

, Ae =


−a1 1 · · · 0
...

...
. . .

...

−an−1 0 · · · 1
−an 0 · · · 0

,
Fσe = [fσ1(x̃3), 1ε fσ2(x̃4), · · · ,

1
εn−3

fσ,n−2(x̃n), 0, 0]T , GTσ1 =

[gTσ1(x̃3),
1
ε
gTσ2(x̃4), · · · ,

1
εn−3

gTσ,n−2(x̃n), 0, 0]
T . Since Ae is a

Hurwitz matrix, there exists a positive-definite matrix Pe
satisfying ATe Pe + PeAe = −In.

Choosing V0(e) = eTPee, by (5) we get

LV0(e) = (εAee+ εBex1 + Fσe)TPee+ eTPe(εAee

+ εBex1 + Fσe)+
1
2
Tr
{
Gσ1

∂2V
∂e2

GTσ1

}
+ IIV0(e)

= −ε|e|2 + 2εeTPeBex1 + 2eTPeFσe

+
1
2
Tr
{
Gσ1

∂2V
∂e2

GTσ1

}
+ IIV0(e)

≤ −ε|e|2 + 2ε|e||Pe||Be||x1| + 2|e||Pe||Fσe|

+
1
2
Tr
{
Gσ1

∂2V
∂e2

GTσ1

}
+ IIV0(e), (6)
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where IIV0(e) =
∑N

q=1 γpqV0(e). From Lemma 3 we have

2ε|e||Pe||Be||x1| ≤
1
2
ε|e|2 + 2ε|Pe|2|Be|2x21 . (7)

By Assumption 1 we obtain

2|e||Pe||Fσe| ≤ 2b|e||Pe|
(
|x3| + · · · +

n− 2
εn−3
|xn|

)
, (8)

where b =
∑N

i=1
∑n−2

j=1 bij.
By Lemma 3 we get

|e||x3| ≤ ε2|e|2 +
1
4ε2

x23 ,

1
ε
|e||x4| ≤ ε2|e|2 +

1
4ε4

x24 ,

...
1
εn−3
|e||xn| ≤ ε2|e|2 +

1
4ε2n−4

x2n ,

which substituting into (8) yields

2|e||Pe||Fσe|

≤ 2b|Pe|
(
ε2|e|2 +

1
4ε2

x23 + 2ε2|e|2 + 2
1
4ε4

x24 + · · ·

+ (n− 2)ε2|e|2 + (n− 2)
1

4ε2n−4
x2n

)
≤ 2b|Pe|

[
ε2|e|2(1+ 2+ · · · + n− 2)

+
1
4
ε2
(

1
ε4
x23 + · · · +

n− 2
ε2n−2

x2n

)]
= bε2(n− 1)(n− 2)|Pe||e|2

+
1
2
bε2|Pe|

(
1
ε4
x23 + · · · +

n− 2
ε2n−2

x2n

)
≤ bε2(n− 1)(n− 2)|Pe||e|2 +

1
2
bε2(n− 2)|Pe|

·

(
1
ε4
x23 + · · · +

1
ε2n−2

x2n

)
. (9)

By Assumption 1 and Lemma 4 we can get

1
2
Tr
{
Gσ1

∂2V
∂e2

GTσ1

}
= |Pe|

(
|gσ1|2 + · · · +

|gσ,n−2|2

ε2n−6

)
≤ c2|Pe|

(
(|x3| + · · · + |xn|)2 + · · · +

|xn|2

ε2n−6

)
≤ c2|Pe|

(
(n− 2)(x23 + · · · + x

2
n )+ · · · +

x2n
ε2n−6

)
≤ c2|Pe|

(
(n− 2)x23 + · · · +

(n− 1)(n− 2)
2ε2n−6

x2n

)
≤ c2ε4

(n− 1)(n− 2)
2

|Pe|
(
x23
ε4
+ · · · +

x2n
ε2n−2

)
, (10)

where c =
∑N

i=1
∑n−2

j=1 cij.

Substituting (7), (9), and (10) into (6) yields

LV0(e)

≤ −
1
2
ε|e|2 + bε2(n− 1)(n− 2)|Pe||e|2

+
1
2
bε2(n− 2)|Pe|

(
x23
ε4
+ · · · +

x2n
ε2n−2

)
+ c2ε4

(n− 1)(n− 2)
2

|Pe|
(
x23
ε4
+ · · · +

x2n
ε2n−2

)
+ 2ε|Pe|2|Be|2x21 + IIV0(e)

≤ −
1
2
ε|e|2 + bε2(n− 1)(n− 2)|Pe||e|2

+
1
2
ε2[b(n− 2)+ c2ε2(n− 1)(n− 2)]|Pe|

·

(
1
ε4
x23 +

1
ε6
x24 + · · · +

1
ε2n−2

x2n

)
+ 2ε|Pe|2|Be|2x21 + IIV0(e)

≤ −
1
2
ε|e|2 + bε2(n− 1)(n− 2)|Pe||e|2

+
1
2
ε2[b(n− 2)+ c2(n− 1)(n− 2)]|Pe|

·

(
1
ε4
x23 +

1
ε6
x24 + · · · +

1
ε2n−2

x2n

)
+ 2ε|Pe|2|Be|2x21 + IIV0(e). (11)

B. OUTPUT FEEDBACK CONTROLLER DESIGN
Consider the following augmented systems

dx1 = x2dt + fσ1dt + gTσ1dw,

dx̂2 = x̂3dt + ε2a2(e1 − x1)dt,

dx̂3 = x̂4dt + ε3a3(e1 − x1)dt,
...

dx̂n = udt + εnan(e1 − x1)dt. (12)

We design the output feedback controller as

v = −bny− bn−1z2 − · · · − b2zn−1 − b1zn, (13)

where bi > 0, i = 1, . . . , n, are coefficients of the Hurwitz
polynomial h2(s) = sn + b1sn−1 + · · · + bn−1s+ bn and the
change of coordinates are defined by

z1 = x1, zi =
x̂i

(εL)i−1
, v =

u
(εL)n

, i = 2, . . . , n, (14)

with L ≥ 1 being a design parameter to be determined later.
From (12) and (14) we have

dz1 = Lεz2dt + εe2dt + fσ1dt + gTσ1dw,

dz2 = Lεz3dt +
εa2
L
e1dt −

εa2
L
z1dt,

dz3 = Lεz4dt +
εa3
L2

e1dt −
εa3
L2

z1dt,

...

dzn = Lεvdt +
εan
Ln−1

e1dt −
εan
Ln−1

z1dt. (15)
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Substituting (13) into (15) we get

dz =
(
εLAzz+ εLBzbn(1− θ (t))z1 + εD2e2

+
ε

L
D1(e1 − z1)+ Fσ z

)
dt + GTσ2dw, (16)

where

z =

 z1...
zn

, Bz =

 0
...

1

, D1 =



0
a2
1
L
a3
...

1
Ln−2

an


,

D2 =

 1
...

0

, Az =


0 1 · · · 0
...

...
. . .

...

0 0 · · · 1
−bn −bn−1 · · · −b1

,
and

Fσ z =


fσ1
0
...

0

, GTσ2 =


gTσ1
0
...

0

.
SinceAz is a Hurwitzmatrix, there exists a positive-definite

matrix Pz satisfying ATz Pz + PzAz = −In.
Choosing V1(z) = zTPzz, from (16 )we have

LV1(z)

= −εL|z|2 + 2εLzTPzBzbn(1− θ (t))z1

+ 2zTPz

(
ε

L
D1e1 + εD2e2 −

ε

L
D1z1

)
+

1
2
Tr
{
Gσ2

∂2V
∂z2

GTσ2

}
+ 2zTPzFσ z + IIV1(z)

≤ −εL|z|2 + 2bnεL|1− θ (t)||Pz||z|2 + 2
ε

L
|z||Pz|

· |D1||e| + 2ε|z||Pz||e| + 2|Pz||Fσ z||z|

+
1
2
Tr
{
Gσ2

∂2V
∂z2

GTσ2

}
+ IIV1(z), (17)

where IIV1(z) =
∑N

q=1 γpqV1(z), |Bz| = 1, |D2| = 1.
By Lemma 3 we obtain

2
ε

L
|z||Pz||D1||e| ≤

1
8
ε|e|2 +

8γ 2ε

L2
|Pz|2|z|2,

2ε|z||Pz||e| ≤
1
8
ε|e|2 + 8ε|Pz|2|z|2,

where |D1| ≤ (
∑n

j=2 a
2
i )

1
2 := γ .

Similarly, from Lemma 3 we have

|z||x3| ≤ ε2|z|2 +
1
4ε2

x23 ,

1
ε
|z||x4| ≤ ε2|z|2 +

1
4ε4

x24 ,

...
1
εn−3
|z||xn| ≤ ε2|z|2 +

1
4ε2n−4

x2n , (18)

which together with Assumption 1 and the definition of Fσ z
yields

2|z||Pz||Fσ z|

≤ 2b10|Pz||z|(|x3| + · · · + |xn|)

≤ 2b10|Pz||z|
(
|x3| +

1
ε
|x4| + · · · +

1
εn−3
|xn|

)
≤ 2b10|Pz|ε2(n− 2)|z|2

+
1
2
b10|Pz|ε2

(
1
ε4
x23 + · · · +

1
ε2n−2

x2n

)
= 2b10ε2(n− 2)|Pz||z|2 +

1
2
b10ε2|Pz|

·

(
1
ε4
x23 + · · · +

1
ε2n−2

x2n

)
, (19)

where b10 = 6N
i=1bi1.

From Assumption 1, Lemma 4, and the definition of Gσ2
we obtain
1
2
Tr
{
Gσ2

∂2V
∂z2

GTσ2

}
= |Pz||gσ1|2

≤ c210|Pz|(|x3| + · · · + |xn|)
2

≤ c210(n− 2)|Pz|(x23 + · · · + x
2
n )

≤ c210(n− 2)|Pz|
(

1
ε2
x23 + · · · +

1
ε2n−4

x2n

)
= c210ε

2(n− 2)|Pz|
(

1
ε4
x23 + · · · +

1
ε2n−2

x2n

)
, (20)

where c10 = 6N
i=1ci1.

Substituting (18)-(20) into (17) yields

LV1(z)

≤ −εL(1− 2bn|1− θ (t)||Pz|)|z|2 +
1
4
ε|e|2 +

8γ 2

L2

· ε|Pz|2|z|2 + 8ε|Pz|2|z|2 +
2γ ε
L
|Pz||z|2 + 2ε2

· b10(n− 2)|Pz||z|2 +
1
2
ε2(b10 + 2(n− 2)c210)

· |Pz|
(

1
ε4
x23 + · · · +

1
ε2n−2

x2n

)
+ IIV1(z)

= −εL(1− 2bn|1− θ (t)||Pz|)|z|2 +
1
4
ε|e|2

+ εL
(
k1
L
+
ε2k2
ε

)
|z|2 +

1
2
ε2(b10 + 2(n− 2)

· c210)|Pz|
(

1
ε4
x23 + · · · +

1
ε2n−2

x2n

)
+ IIV1(z), (21)

where

k1 = 2γ (1+ 4γ |Pz|)|Pz| + 8|Pz|2 > 0,

k2 = 2b10(n− 2)|Pz| > 0.
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C. DUAL DOMINATION GAINS DESIGN
Noting that x1 = z1, xi = εi−1ei + (εL)i−1zi, i = 2, . . . , n,
from Lemma 4 we get

1
ε2i−2

|xi|2 ≤ 2|e|2 + 2L2i−2|z|2, i = 3, . . . , n,

which means that

1
ε4
x23 ≤ 2|e|2 + 2L4|z|2,

1
ε6
x24 ≤ 2|e|2 + 2L6|z|2,

...
1

ε2n−2
x2n ≤ 2|e|2 + 2L2n−2|z|2. (22)

From (22) we have

1
2
ε2[b(n− 2)+ c2(n− 1)(n− 2)]|Pe|

·

(
1
ε4
x23 + · · · +

1
ε2n−2

x2n

)
≤

1
2
ε2[b(n− 2)+ c2(n− 1)(n− 2)]|Pe|[2(n− 2)|e|2

+ 2L(L3 + L5 + · · · + L2n−3)|z|2],

which substitutings into (11) results in

LV0(e)

≤ −
1
2
ε|e|2 + bε2(n− 1)(n− 2)|Pe||e|2

+ 2ε|Pe|2|Be|2x21 +
1
2
ε2[b(n− 2)

+ c2(n− 1)(n− 2)]|Pe|[2(n− 2)|e|2

+ 2L(L3 + L5 + · · · + L2n−3)|z|2]+ IIV0(e)

≤ −
1
2
ε|e|2 + ε2[b(n− 1)(n− 2)|Pe| + (b(n− 2)

+ c2(n− 1)(n− 2))(n− 2)|Pe|]|e|2 + [2ε|Pe|2

· |Be|2 + Lε2[b(n− 2)+ c2(n− 1)(n− 2)]

· (L3 + L5 + · · · + L2n−3)|Pe|]|z|2 + IIV0(e)

= −
1
2
ε|e|2 + (2ε|Pe|2|Be|2 + ε2Lk̂2)|z|2

+ ε2k̂1|e|2 + IIV0(e), (23)

where

k̂1 = b(n− 1)(n− 2)|Pe| + [b(n− 2)

+ c2(n− 1)(n− 2)](n− 2)|Pe| > 0,

k̂2 = [b(n− 2)+ c2(n− 1)(n− 2)](L3 + L5

+ · · · + L2n−3)|Pe| > 0.

Similar to (23), substituting (22) into (21) we obtain

LV1(z)
≤ −εL(1− 2bn|1− θ (t)||Pz|)|z|2

+
1
4
ε|e|2 + εL

(
k1
L
+
ε2k2
ε

)
|z|2

+
1
2
ε2(b10 + 2c210(n− 2))|Pz|[2(n− 2)|e|2

+ 2L(L3 + L5 + · · · + L2n−3)|z|2]+ IIV1(z)

= −εL(1− 2bn|1− θ (t)||Pz|)|z|2 +
1
4
ε|e|2 + εL

·

(
k1
L
+
ε2k2
ε

)
|z|2 + ε2(b10 + 2c210(n− 2))

· (n− 2)|Pz||e|2 + Lε2(b10 + 2c210(n− 2))(L3

+L5 + · · · + L2n−3) · |Pz||z|2 + IIV1(z)

= −εL(1− 2bn|1− θ (t)||Pz|)|z|2 +
1
4
ε|e|2 + εL

·

(
k1
L
+
ε2k2
ε

)
|z|2 + ε2(b10 + 2c210(n− 2))

· (n− 2)|Pz||e|2 + Lε2k̂3|z|2 + IIV1(z), (24)

where k̂3 = (b10+2c210(n−2))(L
3
+L5+· · ·+L2n−3)|Pz| ≥ 0.

Choosing Lyapunov function V = V0(e)+V1(z), from (23)
and (24) we have

LV = LV0(e)+ LV1(z)

≤ −
1
2
ε|e|2 + (2ε|Pe|2|Be|2 + ε2Lk̂2)|z|2

+ ε2k̂1|e|2 − εL(1− 2bn|1− θ (t)||Pz|)|z|2

+
1
4
ε|e|2 + εL

(
k1
L
+
ε2k2
ε

)
|z|2

+ ε2(b10 + 2c210(n− 2))(n− 2)|Pz||e|2

+Lε2k̂3|z|2 + IIV , (25)

where

IIV = IIV0(e)+ IIV1(z)

=

N∑
q=1

γpqV0(e)+
N∑
q=1

γpqV1(z).

Now, we choose the allowable sensitive error θ̄ as

θ̄ < θ∗ =
1

2bn|Pz|
, (26)

where θ∗ is the upper-bound of the allowable sensitivity error.
From (26) and 1− θ̄ ≤ θ (t) ≤ 1+ θ̄ we get

1− 2bn|1− θ (t)||Pz| ≥ ρ, (27)

where 0 < ρ = 1− 2bnθ̄ |Pz| < 1.
Substituting (27) into (25) we obtain

LV = LV0(e)+ LV1(z)

≤ −εL
(
ρ −

2|Pe|2|Be|2 + k1
L

− ε(k2 + k̂2

+ k̂3)
)
|z|2 − ε

(
1
4
− ε[(b10 + 2c210(n− 2))

· (n− 2)|Pz| + k̂1]
)
|e|2 + IIV

= −εL
(
ρ −

k̃2
L
− εk̃3

)
|z|2 − ε

(
1
4
− εk̃1

)
|e|2

+ IIV , (28)
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where

k̃1 = (b10 + 2c210(n− 2))(n− 2)|Pz| + k̂1 > 0,

k̃2 = 2|Pe|2|Be|2 + k1 > 0,

k̃3 = k2 + k̂2 + k̂3 > 0.

We choose the parameters ε and L in the following order:

L ≥ max
{
1,

4k̃2
3ρ

}
,

0 < ε ≤ min
{
1,

ρ

8k̃3
,
2− ρ

8k̃1

}
, (29)

which with (28) yields

LV ≤ −
ρ

8
|e|2 −

ρ

8
|z|2 + IIV . (30)

D. STABILITY ANALYSIS
Now, we are in a position to state the main results of this
paper.
Theorem 1: If Assumption 1 holds for system (2), with the

observer (3) and output feedback control law (13), then we
have

(1) for every x(t0) = x0 ∈ Rn and σ (t0) = i0 ∈ S, the
closed-loop system composed of (2), (3), (14), (13), and (29)
has a solution, unique up to equivalence.

(2) for any x0 ∈ Rn and i0 ∈ S, the solution of the closed-
loop systems is almost surely asymptotically stable.

Proof: Denote χ (t) =
(
eT (t), zT (T )

)T , from the defini-
tion of V we can conclude that

VR = inf
t≥t0,|χ (t)|>R

V (χ (t))→∞ ⇐⇒ R→∞. (31)

Since V is independent of Markov nodes, we obtain
that IIV = 0.

For any l > 0, define the first exit time

ηl = inf{t : t ≥ t0, |χ (t)| ≥ l}. (32)

Let tl = ηl ∧ t for any t ≥ t0. Since |χ (t)| is bounded in
the interval [t0, tl] a.s., which implies that V (χ ) is bounded
on [t0, tl] a.s.. From (30), it can be obtained that LV is also
bounded on [t0, tl] a.s..
From (30) and Lemma 2 we have

EV (χ (tl)) ≤ EV (χ (t0)). (33)

By (31), (33), and Lemma 1, we can get conclusion (1).
From (2), (30), and the definition of V , by using

Theorem 2.1 in [30], conclusion (2) holds.
Remark 4: In this section, A stochastic dual-domination

design technique is developed for the output-feedback control
for stochastic feedforward nonlinear systems, in which a
high-gain L > 1 and a low-gain 0 < ε < 1 are intro-
duced. From sections A-C, we can see that this method can
effectively deal with the unknown measurement sensitivity,
stochastic noise and Markovian switching simultaneously.

FIGURE 1. The responses of states x(t) for the closed-loop system
(34)–(37).

FIGURE 2. The responses of estimations x̂(t) for the closed-loop
system (34)–(37).

V. A SIMULATION EXAMPLE
Consider system (2) with two modes. The Markov process
σ (t) belongs to the space S = {1, 2} with generator 0 =
(γpq)2×2 given by γ11 = −4, γ12 = 4, γ21 = 3 and γ22 =
−3. We can get π1 = 3

7 , π2 =
4
7 .

When σ (t) = 1, the systems is described by

dx1 = x2dt +
1
2
x3dt + sin x3dω,

dx2 = x3dt,

dx3 = udt,

y = θ (t)x1. (34)

When σ (t) = 2, the systems can be written as

dx1 = x2dt + sin(x3)dt +
1
4
x3dω,

dx2 = x3dt,

dx3 = udt,

y = θ (t)x1. (35)

In (34)-(35), we choose θ (t) = 1 + 0.25 sin(|10t|), which
means that θ̄ = 0.25 < θ∗ where θ∗ = 0.2667.

By following the design procedure developed in section IV,
we can design the observer as

dx̂1 = x̂2dt − εa1x̂1dt,

dx̂2 = x̂3dt − ε2a2x̂1dt,

dx̂3 = udt − ε3a3x̂1dt, (36)
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FIGURE 3. The responses of errors e for the closed-loop system (34)–(37).

FIGURE 4. The responses of control u for the closed-loop system
(34)–(37).

FIGURE 5. The response of Markov process σ (t).

and the controller as

u = −140.3789y− 85.0781x̂2 − 12.3750x̂3. (37)

In the practical simulation, we choose a1 = 4, a2 =
2, a3 = 1, b1 = 1.5, b2 = 1.25, b3 = 0.25, the
parameters L = 15, ε = 0.55, and the initial states
x1(0) = 1, x2(0) = 5, x3(0) = −1, x̂1(0) = 1,
x̂2(0) = −0.5, x̂3(0) = −1. Fig.1-Fig.4 give the responses of
closed-loop system (34)-(37). From Fig.1-Fig.4, we can see
that lim

t→+∞
xi = lim

t→+∞
x̂i = lim

t→+∞
ei = lim

t→+∞
u = 0 a.s.,

which verifies the conclusions in Theorem 1, i = 1, 2, 3.
Fig.5 gives the response of the Markov process σ (t).

VI. CONCLUSION
The output-feedback control for stochastic feedforward non-
linear systems with Markovian switching and unknown
measurement sensitivity is investigated. A stochastic

dual-domination design technique is developed, by which a
state observer and an output-feedback controller are designed
to guarantee that the closed-loop system has a unique solution
and the solution of the closed-loop systems is almost surely
asymptotically stable.
For the output-feedback control of stochastic feedforward

nonlinear systems, many important issues are still open and
worth investigating, such as the generalization of the results
in this paper to more general systems [32]–[38].
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