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ABSTRACT The height of an entrant is a critical parameter formany practical applications, e.g., the electrical
controlling in smart homes and personalized recommendation in smart clothing stores. This paper explores
the possibility, design and implementation of estimating the entrant’s height with low-cost passive RFID tags
deployed in the entrance zone (e.g. the doorway). Taking the signal RSSI measurements as the input, we first
identify the signal frames influenced by entrant’s passing through, and then convert the identified frames
into a strength image, so that the his/her height can be estimated using a simple yet effective image analysis
algorithm. We implement a prototype system of RFH with COTS RFID devices, and conduct extensive
experiments to validate our design. The experimental results demonstrate that our scheme is able to achieve
more than 80% acceptable accuracy in various scenarios with different parameter settings.

INDEX TERMS Height estimation, RFID, entrance sensing, strength image.

I. INTRODUCTION
The past decades have witnessed the prevalence of Radio
Frequency Identification (RFID) in numerous practical appli-
cations. With the merits of wireless communication, high
reading rate, low cost and easy deployment, passive RFID
tags (RFIDs) are attached on commodities in retail stores,
packages in logistics systems and books in libraries, so that
their information can be identified and recorded at the back-
end server, and can significantly improve the management
accuracy and efficiency.

Beyond the traditional identification, there is a clear trend
of turning RFIDs into one of wireless sensing technologies
in recent years. The two hottest topics are RFID localiza-
tion and tracking [1]–[4], activity and behavior recognition
[5]–[9], which have attracted much attention from both aca-
demic and industrial communities. Besides, there are also
many excellent works on mechanical vibration period sens-
ing [10], spinning sensing [11], heart and breath rate sens-
ing [12], and etc.

In our daily life, the entrant’s height is a critical and impor-
tant parameter. Many applications will be benefited from an

The associate editor coordinating the review of this manuscript and

approving it for publication was Marco Martalo .

FIGURE 1. System composition and possible application in unmanned
store.

accurate height estimation. For example, when a customer
enters the clothing store, the salesman can give out precise
clothing size recommendation if his/her height can be accu-
rately estimated. According to the estimated height, we can
intelligently adjust the light luminance over the sofa in a smart
home system. Both video [13] and smartphone [14] based
methods have great limitations. The video based approaches
are sensitive to the light conditions, and suffer from the issues
of blocking and privacy leakage risk. While the smartphone
based approaches require the user to keep stably for a period
of time during the height detection, which may cause conges-
tion at the doorway and hence unpractical.
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With the promising RFIDs, in this paper, we take the
entrant’s height estimation, which is primary important for
many applications as the goal. To our best of knowledge,
it is a completely new and open problem which cannot be
well resolved by existing object shape [15] and material [16]
detection methods. We propose a device-free and non-
intrusive height estimation solution called as RFH, to identify
and approximate the entrant’s height with low-cost passive
RFID tags. The main setting up of RFH is shown in Fig.1,
which consists of an antenna connected to an ImpinJ reader
and an array of k (k = 12 in our experiments) vertically
deployed tags. The intuition behind RFH is that the presence
of entrant between antenna and array will cause different
impacts to the backscattered signals of the tags in the array.
So it is possible for us to estimate the entrant’s height accord-
ing to the signal measurement differences of tags.

However, it is not so easy to achieve this and there are sev-
eral challenges which should be coped with well. First, how
to distinguish the boundary which can reflect the entrant’s
height accurately, since the presence of entrant will influence
the signal propagations of all the tags in the array. Second,
how to eliminate the impact of device diversity so as to
guarantee the easily deployment and transfer capability of our
RFH in different scenes.

The contributions of our work can be summarized as
follows:

• To our best of knowledge, we are the first to esti-
mate entrant’s height with low-cost RFID tags. And a
device-free solution called as RFH is proposed accord-
ing to the entrant’s influence differences between tags.

• We propose a novel fusion approach to identify the
influenced signal frames for entrant’s presence, and an
image transformation method is adopted to transform
these frames into a strength image, so that the entrant’s
height can be estimated accurately with a lightweight yet
effective image analysis.

• We design and implement a prototype of RFH using
COTS RFID devices without any hardware modifica-
tion. We also evaluated its performance via extensive
experiments. The results demonstrate that our RFH can
estimate entrant’s height with an accuracy of more than
80%.

This paper is organized as follows. We first discuss and
summary the related works in Section II. Then, Section III
extensively introduces background and problem formulation.
Next, we give out the detail design of RFH in Section IV. The
implementation of RFH and experimental evaluation results
are described in Section V. Finally, this paper is concluded
by Section VI.

II. RELATED WORK
Non-intrusive human associated sensing has been one of the
hottest topics in recent years. A school of approaches and
methods have been proposed. Existing works can be catego-

FIGURE 2. Experimental observations.

rized into three categories, i.e., image based methods, WiFi
based methods and RFID based methods.

A. VIDEO AND IMAGE BASED METHODS
Most of recent image based methods mainly focus on pose
detection [17] and gesture recognition [18], and the height
estimation problem is out of their scope. To estimate the
human pose and shape from images, model-based works [19]
use a parametric body model or template. Recent methods
typically predict 3D keypoints or stick figures from a sin-
gle image using the CNN. Pavlakos et al. [20] take another
approach by relying on weak 3D supervision in form of
a relative 3D ordering of joints. Some works [21] regress
correspondences to a body model which are used to fit
the model to depth data. Chu et al. [22] presents self por-
trait interface using vision-based hand motion gesture. Their
research makes it possible for users to manipulate digital
camera when taking self-portrait pictures.Madhuri et al. [23]
presents a vision based sign language translation device.
Raheja et al. [24] proposed a method to recognize and track
fingertips and center of palm using Kinect.

B. WiFi BASED METHODS
Recently, CSI measurements from WiFi systems are used
for different sensing purposes [25]. WiFi sensing reuses
the infrastructure that is used for wireless communication,
so it is convenient to deploy and low cost. The CSI ampli-
tude variations will present different patterns to different
users, activities, gestures, and so on, which makes it can be
used to achieve human presence detection [26], fall detec-
tion [27], motion detection [28], activity recognition [29],
gesture recognition [30]. Moreover, the CSI phase can be
used for accurate human localization and tracking [31] and
breathing rate estimation [32]. FormaTrack in [33] employs
the signal doppler of mmWave to identify body shape.

C. RFID BASED METHODS
There is also a trend of turning RFID into wireless sensing
system in recent years. Tadar [34] tracks moving objects by
establishing a multi-antenna system with RFID tags and ana-
lyzes the signals reflected frommoving objects. i2tag [9] ana-
lyzes multi-information with multidimensional dynamic time
warping–based algorithm to achieve recognition of four types
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of exercises. TagBreath [35] and [36] achieves detection of
breathing and body temperature using RFIDs. Tagsheet [37]
tries to capture and identify the body postures during sleeping
with the image information derived from reflected signals.

III. PRELIMINARIES
A. RSSI MEASUREMENT OF RFID
Without their own power supplies, passive tags only can
backscatter and modulate their data into the reader’s sig-
nal [38]. COTS RFID reader, such as ImpinJ 420, are able
to report signal measurements like RSSI, phase and doppler-
shift for the purpose of batteryless sensing. Referring to [7],
the received RSSI of a specified tag can be modeled as

RSSI = 10log10P, (1)

where P is the sum of the power (in mW) received by the
reader.

In an indoor environment, the transmitted signal and the
backscattered signal propagate to the receiver through mul-
tiple paths. Each path contributes with a differently delayed,
attenuated, and phase-shifted signal. Hence, the received sig-
nal is a combination of numerous alias versions of the original
signal. Therefore, the received power P can be denoted as

P =
N∑
i=1

Pi, (2)

where Pi is the power of ith multipath component andN is the
total number of components. Obviously, Pi is hypersensitive
to the propagation distance of ith multipath signal.
However, it is challenging and almost impossible to

decompose the received signals into different multipath sig-
nals. For simplicity, we can decompose it into two compo-
nents as many existing works do as

P = Plos + Pnlos, (3)

where Plos and Pnlos are the line-of-sight (LOS) and non-line-
of-sight (NLOS) components respectively. And the Plos is the
main component as declared in literatures. The blocking of
LOS caused significant decline to the received power, and
hence large RSSI variation.While the blocking of NLOS only
causes small RSSI decline. Fig.2 presents the RSSI variation
patterns when an entrant passes through the intermediate
region between reader and tags. Fig.2 also shows the one
selected tag’s RSSI and phase differences between dynamic
and static scenes. We can observe from the figure that the
RSSI declining is indeed hypersensitive to the entrant’s posi-
tion aswe expected. This characteristic inspires andmotivates
us to estimate the entrant’s height by leveraging the changes
of tags’ RSSI.

B. PROBLEM FORMULATION
Considering in a smart physical space, e.g., a smart retail
store or a smart home, RFID devices are deployed for the
purpose of ambient sensing. Particularly, a reader antenna and
an array of tags are deployed at the two sides of the entrance

as shown in Fig.1. The reader repeatedly interrogates tags and
reports their RSSIs for each identification reading. The tags
are laid out in a vertical column with 5cm spacing between
two adjunct ones.

When someone passing through the doorway, the presence
of entrant influences the signal propagations of all tags, and
hence leads to the RSSI changing and variation. However,
the presence of entrant only will block the LOS paths of
some tags (the tags behind entrant’s body), and block the
NLOS paths of others (the tags over entrant’s head). Such
phenomenon will cause different RSSI changing pattern to
the tags in the array. So there is a chance for us to estimate
his/her height approximately according to the differences
between tags.

Moreover, we assume that the entrant’s height is in the
range of 1.25m to 2m, the tag array is deployed with a height
of 1.25m from the ground. We also assume that the walking
speed of entrant is not so fast, and it is in the range of
0.9-1.2m/s. With 12 tags in the array, we can collect 8.33 data
samples per second under the sampling rate of 100 times
per second. We believe that such sample rate is already
enough to achieve relatively high accuracy. So that these two
assumptions are reasonable for practical application, which
will guarantee the availability of our proposal in practice.

IV. SYSTEM DESIGN
In this section, we give out the detailed design of RFH to
estimate entrant’s height via RSSI strength imaging.

A. SYSTEM OVERVIEW
As aforementioned, our goal is to estimate the entrant’s height
when someone passing through the sensing zone of deployed
RFID devices. Fig.3 presents the overall architecture of RFH.
As shown in the figure, our RFH consists of four steps with
signal RSSI as inputting and with height estimation result as
outputting.

The first step is data collection. The reader repeatedly
interrogates tags using only one antenna and produces a
stream of readings in its sensing zone. Then, the prepro-
cessing step eliminates the location-aware strength with an
average subtraction, interpolates the misreadings and aligns
the RSSIs of tags by time. In the third step, called influenced
frame identification, variance-based features are extracted
and fused to identify the influenced frame of the entrant
passing through. To estimate the entrant’s height, the RSSIs
of identified frames are converted to a strength image in the
last image analysis step.

B. PREPROCESSING
1) MISREADING INTERPOLATION
RFID is a typical central network, which means that the tags
can not communicate with each other. Tags can only use
TDMA mechanism to avoid collision. So there are always
identification collisions at reader side. The TDMA mecha-
nism will lead to there are always random misreading during
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FIGURE 3. System overview.

FIGURE 4. The signal before/after preprocessing.

the interrogation. To address this issue, we interpolate such
misreading RSSI with previous one of last reading sample.

2) AVERAGE SUBTRACTION
One more thing, as the reader antenna and tag array are
deployed on the two sides of door, the distances between each
tag and antenna are different from each other. In other words,
the received RSSIs is location-aware. Since we only concern
tags’ change patten rather than the absolute RSSI values,
the distance differences should be eliminated. To achieve
this goal, we first randomly select 200 samples from the
static setting (without passing through) of every tag’s read-
ing stream, and calculate their means. For each tag, we let
the original RSSIs subtract its own mean to eliminate the
influence of location difference. After the subtraction, the
RSSI measurements is close to 0 when there is no entrant’s
presence, while the change patten when there is entrant’s
presence are preserved for further analysis. Fig.4 plots the
RSSI stream of all 12 tags before and after preprocessing.

C. INFLUENCED FRAME SEGMENTATION
After preprocessing, we try to identify the influenced frame
which embraces the whole passing through behavior. The key
of frame segmentation is to accurately get the start and end
time of passing through.

1) OFFSET CALIBRATION
As shown in Fig.5, the preprocessed signals may still contain
small offset caused by various noises, such as the thermal and
environment noises.

If we define the preprocessed signals of arbitrary ith tag as
{x i1, x

i
2, . . . , x

i
t , . . .}, where x

i
t denotes the preprocessed RSSI

FIGURE 5. Influenced frame segmentation.

value of tag i at time t , we can calibrate the x it with a sliding
window whose width is w as

cx it = x it −
1
w

t+w∑
j=t

x ij , (4)

where cx it is the calibrated results of x
i
t and the value of w can

be tuned according to the averagewalking speed of entrants to
adapt different scenarios. In our experiments, we empirically
set it to be 4.

After that, the well known Savitzky-Golay smoothing [39]
is performed to further remove the random noises. And the
Fig.5(a) presents the results after the calibration.

2) FEATURE EXTRACTION
With the calibrated RSSI stream, we then calculated the time
series variances and standard deviations using another sliding
window as,Var int =

1
wl

∑nt+wl
t=nt (cx it − cx i)

2

Std int =
√
Var int

(5)

where nt is the time index and wl is the window length whose
value is set to be 2 in our experiment.

In order to eliminate excessive glitches in the signal, we
use traditional gradients to smooth the data. The purpose of
using gradients is also to eliminate the impact of data between
the time points before and after. In addition, we define both
variance gradient and standard deviation gradient between
two adjacent sliding windows as new variables:{

1Var int = |Varnt+1 − Varnt |
1Std int = |Stdnt+1 − Stdnt |

(6)
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FIGURE 6. Signal extraction.

Considering the influence of variance and deviation syn-
thetically, we set the weighting coefficient a and define the
formula as follow,

Gint = a1Var int + (1− a)1Std int . (7)

It should be noted that both the weighting coefficient andwin-
dow length are supposed to be precisely adjusted according
to the walking speed. In our experiment, we empirically set a
to be 0.9 for more accurate segmentation.

The extracted feature Gint from one tag may embrace false
positive. To enhance the frame identification accuracy, we
fuse features from all the tags together as

G =
n∑
i=1

Gint , (8)

where n is the total number of tags in the array. With such
fusion, the influence of entrant’s presence is amplified, which
is helpful for frame identification. Fig.5(b) plots the fused
G with six passing through. As shown in the figure, the
stationary portion and the influenced portion can be clearly
distinguished for further frame identification.

3) FRAME IDENTIFICATION
With the extracted feature G, we then identify the frame
boundary (i.e., start and end points) of passing through using a
heuristic threshold based method. In detail, we first calculate
the histogram which describes the distribution of G.
Since the values without entrant’s presence are always

smaller than those with entrant’s presence, the first compo-
nent of histogram can be ignored and the minimum value of
the second component can be regard as the wanted threshold.

We define this threshold as the lower bound. If the values
in G are smaller than this lower bound, we can determine
that they must be static states without entrant’s presence.
Otherwise, when the values are larger than the lower bound,
they must be dynamic states with entrant’s presence. Hence
we can take the first point whose value is larger than the lower
bound as the start point of the frame and the following last
point whose value is larger than the lower bound as the end
point of the frame. In such way, we can get the wanted frame
accurately as the red rectangle shown in Fig.5(b).

With this identified frame boundary, we can segment the
original RSSI streams of all the tags tidily. Fig.6(a) plots
the segment results of all the 12 tags. However, it is still

FIGURE 7. Strength image construction.

a challenge for us to estimate the entrant’s height accord-
ing to the segment results. Therefore, we adopt another
image-based method to quantitatively characterize the influ-
ence of entrant’s presence, so that the entrant’s height can
be estimated accurately as we show in the next subsec-
tion. Before that, a Butterworth low-pass filtering is further
employed to smooth the segmented original RSSI streams for
all the tags, and the results are shown in Fig.6(b).

D. HEIGHT ESTIMATION
When someone passing through the sensing zone, different
presence locations have different influences on all tags in the
array, so the influenced frame can be further divided into three
parts, weakly influenced part, medianly influenced part and
strongly influenced part. Among them, only the third strongly
influenced part indicates the blocking of LOS path between
reader and tags, and can be used for height estimation. How
to identify the third part, namely centrum identification, is
another problem which we should cope with well. To achieve
this, we convert the influenced frame into a strength image,
and estimate the entrant’s height with a image processing
method.

1) STRENGTH IMAGE CONSTRUCTION
Supposing there are n tags, and the length of influenced frame
is m, we can project them into a strength image as follows:

I =


x1,1 x1,2 · · · x1,m
x2,1 x2,2 · · · x2,m
...

...
...

...

xn,1 xn,2 · · · xn,m

 , (9)

where xi,j is the strength of ith tag at the time of m. In the
image, each row is uniquely mapped to a same tag. The
mapping fashion between the tags and rows is identical to
the vertical order from up to down in the deployed tag array.
Fig.7(a) presents a typical example of strength image for one
passing through.

Unfortunately, the image is not so perfect as we expected.
First, there are always outliers, i.e., the sporadic red pixels as
shown in Fig.7(a). Second, the pixels even on the centrum are
discontinuous. All these will cause ambiguity to the centrum
identification and finally cause error height estimation.

To this end, we introduce an entropy based optimization
algorithm (EBOA) in our RFH. We define the entropy for
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FIGURE 8. Height estimation pipeline.

each pixel as

ei,j = xi,jlog10(
xi,j
Xi

), (10)

where Xi =
∑m

j=1 xi,j is the sum of pixel values of ith tag.
Then, the pixel synthesis can be calculated as

xoptimali,j = xi,j + ei,j, (11)

where xi,j is the original pixel value and ei,j is the entropy.
Fig.7(b) plots the new strength image after optimization.
We can see from the figure thatmost outliers are removed, and
the most red pixels are concentrated on the centrum, which is
helpful for further centrum identification.

2) HEIGHT ESTIMATION
Then, we can estimate the entrant’s height according to con-
structed strength image. The whole estimation procedure (as
shown in Fig. 8) is consisted of three steps: foreground detec-
tion, centrum identification and height determination. The
goal of foreground detection is to further remove interference,
the centrum identification is to find out the most influenced
centrum by passing through, and the entrant’s height is esti-
mated in the last height determination step.

Step 1: Foreground detection: Foreground detection to
segment the foreground pixels from the rest of an image, i.e.
background, is a fundamental problem in computer vision,
which has been well studied for many years [33]. And the
background subtraction is the most popular method for fore-
ground segmentation. While such method is not suitable for
our RFH, because we compose the time series RSSI streams
of all the tags into a strength image.

To guarantee the system efficiency and achieve real-time
height estimation, we adopt a simple yet efficient threshold
based method to detect the foreground.We empirically define
another threshold here. If any pixel xi,j in the strength image
is larger than the threshold, it is taken as background. Other-
wise, it is regard as foreground. For these background pixels,
we reset them to be a default value, e.g. 0. And keep the
foreground pixels unchanged.

Step 2: Centrum identification: To identify the centrum,
namely the blocking of LOS, in the image, we calculate the

sum of each column as

Sj =
n∑
i=1

xi,j, (12)

where i is the index of tag and j is the index of column in the
strength image.

The blocking of LOS caused by passing through will lead
to significant influences on all the tags in the array, and hence
larger column sum. Therefore, we can take the kth column
which satisfy

k = argmax
j
Sj, (13)

as the centrum.
Step 3: Height determination: After the centrum iden-

tification, we can then approximate the entrant’s height
according to the strength distribution on the kth centrum. The
intuition behind it is to find out the highest (minimum) tag
index in the foreground pixels of the kth centrum. That is to
say, we want a h which satisfy

h = argmin
i
xi,k , (14)

where xi,k should subject to xi,k < 0, which means that xi,k
should be the foreground pixels of the strength image.

Since the deployed height of the tag array is a prior knowl-
edge in our RFH, we can estimate the entrant’s height (in cm)
according to the tag index h as

height = H − 5(h− 1), (15)

where H is the height of the tag array whose value is 185cm
(1.85m) in our experiments, 5 is the spacing distance (5cm)
between two adjacent tags.

V. PERFORMANCE EVALUATION
A. IMPLEMENTATION
We implement a prototype of RFH with COTS RFID devices
without any hardware modification.

1) HARDWARE
Fig.9 depicts the detailed hardware setup. We employ the
ImpinJ Speedway R420 reader connected with a 8.5dbic gain
Alien ALR-8696-L circular polarized antenna to interrogate
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FIGURE 9. Experimental scenes and hardware setup.

TABLE 1. System parameters and default experiment settings.

passive tags. We also evaluate different types of tags, includ-
ing ImpinJ H47, AZ-E53 and E41-C. The tags are deployed in
a vertical line, so as to construct a tag array with k = 12 tags.
The RFID system operates at the band between 902MHz
and 928MHz, and follows the standard EPC protocol. The
transmission power of reader is configured to be 30dBm. And
the reader reports and sends the low level data to the laptop
via Ethernet cable.

2) SOFTWARE
We implement RFH based on the public LLRP Toolkit (LTK)
with Java in a laptop, which equips a 2.5GHz cpu
(i5-7300HQ) and 8GB memory. The reader continuously
interrogates tags in the communication range and reports low
level dada (e.g., RSSI, phase, doppler shift and time stamp)
according to the parameter settings of reader. After the data
is collected, we analyze and process the data with MATLAB.

B. EXPERIMENTAL SETUP
As shown in Fig.9, the antenna and tag array are deployed
in the fixed locations with a displacement of D. The value
of D is set to be 1.5m, which is the common width of door
in China. To evaluate the performance of RFH, we recruit
12 volunteers, whose heights range from 160cm to 180cm
diversely. For each experiment, we ask a volunteer to walk
through the entrance zone between antenna and tag array with
a distance d to the tag array in a specific speed, no other
requirements are imposed, which means the volunteers can
walk in their own styles. Table 1 summarizes key system
parameters and default experiment settings.

Since our RFH is the first work towards height estimation
in literatures, we mainly compare the performance of RFH
with and without EBOA in the strength image construction

step. The estimation accuracy is one of the most important
metrics for height estimation, so we employ two typical
accuracy metrics to evaluate the performance of our RFH,
namely

Error = |heightested − heightgth|, (16)

and

Accuracy =
nright
ntotal

, (17)

where heightested is the estimated height and heightgth is the
height ground truth. Respectively, ntotal is the total number of
experiments and nright is the number of experiments when the
estimation Error is smaller than 2.5cm. The reason why we
calculate the accuracy with Equation 17 is that the spacing
distance of two adjacent tags is 5cm, so the estimation output
must be times of 5cm in our experiments. If someone wants
to improve the estimation accuracy, we can just attach more
tags in the tag array so as to reduce the spacing distance of
adjacent tags.

C. IMPACT OF ENTRANT ASSOCIATED PARAMETERS
1) IMPACT OF ENTRANT DIVERSITY
We first investigate the impact of entrant diversity to the
final height estimation accuracy with different volunteers.
All the volunteers are divided into five clusters accord-
ing to their height as C1 (160-165cm), C2 (165-170cm),
C3 (170-175cm), C4 (175-180cm), C5 (180-185cm) respec-
tively. Each volunteer is asked to walk through the entrance
zone for 25 times, and their heights are estimated using our
RFH for each passing through. Fig.10(a) plots the confusion
matrix for all the five clusters. We can see from the matrix
that both the C1, C3, C4 and clusters achieve more than 80%
estimation accuracy, the accuracy of C4 even reaches up to
100% in our experiments.While the accuracies of C2 are only
48%, which is far away from our expectation. The first reason
is that one of volunteer in C2 is too fat to bring significant
ambiguity during the centrum identification according to the
strength image. The second is that the number of experiments
for each volunteer is only 25 times, if more experiments are
conducted, the accuracy can be greatly improved.

2) IMPACT OF ENTRANT-ARRAY DISTANCE d
Then we examine the impact of the walking patten of entrants
to the estimation accuracy. Obviously, the distance d between
entrant and tag array is the first influence factor, which we
should consider in. With other parameters fixed, we ask the
volunteer to pass through the entrance zone with different d
varied from 30cm to 90cm. The estimation accuracy results
are shown in Fig.10(b). As shown in the figure, with d
increasing from 30cm to 90cm, our RFH achieve 90% estima-
tion accuracy in average. Particularly, when the distance d is
30cm, our RFH achieve more than 98% accuracy. Moreover,
we can find that The increase in distance is inversely pro-
portional to the accuracy, and the performance with EBOA is
better than without EBOA in general. Fig.10(c) presents the
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FIGURE 10. Impact of entrant associated parameters.

FIGURE 11. Impact of hardware associated parameters.

CDF of estimation error and the performance with EBOA are
better than without EBOA in general. when 100 experiments
are conducted for each entrant-array distance. We can get
from the figure that RFH achieves 2.5cm estimation error in
average when the distance is 30cm, and 5cm when d is 75cm.
Such phenomenon can be explained as when the entrant is far
away from the tag array and close to the antenna, the body of
entrant blocks most of LOS path and emitted signals, which
will bring significant ambiguity to the feature extraction and
centrum identification of RFH, so finally influence the height
estimation accuracy.

3) IMPACT OF ENTRANT’S WALKING SPEED
Moreover, the walking speed of the entrant is another key
parameter for height estimation accuracy. To evaluate its
influence, we asked a volunteer to walk through the entrance
zone with specified speeds, 0.3m/s, 1m/s and 1.2m/s respec-
tively. The first 0.3m/s is an extreme slow speed and 1m/s,
1.2m/s are general walking speeds. The volunteer was asked
to control his/her walking speed via walking time controlling.
The corresponding results are shown in Fig.10(d). As illus-
trated in the figure, when thewalking speed is extremely slow,
the estimation results are inaccurate with only 19% accuracy.
However, when the walking speed is general, the estimated
height is very close to the groundtruth, and RFH achieves
more than 82% accuracy. The reason can be that when the
entrant walks slowly, the presence of entrant will influence
the RSSI signals with a longer time, which brings ambiguity
to the centrum identification of final height estimation step.
All these suggest that it is better for the entrant to walk closer

to the tag array in a general speed to improve the accuracy of
RFH.

D. IMPACT OF HARDWARE ASSOCIATED PARAMETERS
1) IMPACT OF ANTENNA-ARRAY DISTANCE D
We then evaluate the performance of our RFH at different
distances from antenna to the tag array. In the experiment,
we keep other parameters with default values and vary the
antenna-array distances D from 1m to 2m. Fig.11(a) plots
the accuracy at different D. According to the experiment
results, the accuracy of RFH height estimation with EBOA
is only 85% when D=1m, and the accuracy is improved to
be 72% without EBOA and 98% with EBOA respectively
when the distance is 1.5m. When the distance is 2m, the
accuracy declines to be 30% without EBOA and 70% with
EBOA. The reason can be explained as when the antenna-tag
distance is large, the received signal RSSI is so weak that it
will cause errors in foreground detection, and finally cause
height estimation errors.

2) IMPACT OF ANTENNA HEIGHT
Furthermore, we evaluate the height estimation accuracy with
different antenna height whose default value is 1.5m. Both the
locations of antenna and tag array is fixed, we only change the
height of antenna from 1.3m to 1.6m while keep the height of
tag array unchanged. Fig.11(b) plots the corresponding exper-
imental results. According to the figure, when the antenna
height is 1.5m, our RFH gets the best estimation accuracy
around 76% without EBOA and around 97% with EBOA
optimization. This is because when the antenna height is
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FIGURE 12. Impact of environment associated parameters.

1.5m, the center of antenna is rightly facing the center of
the tag array, the passing through of entrant caused equal
influence to all tags in the array, so that the accuracy of
both foreground detection and centrum identification can be
guaranteed.

3) IMPACT OF ANTENNA ANGLE
The signals of RFID system are influenced by antenna ori-
entation, which has been widely discussed in many other
literatures. The aforementioned performance is achieved with
the assumption of the antenna is rightly facing the tag array.
Then, we evaluate the height estimation accuracy at differ-
ent antenna orientation. For this purpose, we keep the tag
array fixed and adjusted the angle of antenna to the left and
right sides. Fig.11(c) compares the estimation accuracy of
three typical antenna angles. We observe that the right facing
scheme achieve the best accuracy among all the antenna
orientations. Actually, such scheme will also be helpful for
practical deployment at the entrance zone, since antenna and
tag array can be easily deployed on the both sides of door.

E. IMPACT OF ENVIRONMENT ASSOCIATED PARAMETERS
1) IMPACT OF SCENARIO
To check RFH’s effectiveness under various scenarios, we
further evaluate the estimation accuracy with different exper-
imental scenarios as shown in Fig.12(a). We select three dif-
ferent scenarios in indoor environment, the left corner of hall,
the right corner of hall and the center of a small water room.
The size of hall is 6.0m × 14.2m and that of water room is
only 3.3m× 3.4m. Fig.12(b) depicts the results of these three
scenarios. As shown in the figure, the accuracy difference
of RFH in left and right corner of hall is quite similar and
subtle, the accuracy is larger than 90% in both scenarios with
our EBOA optimization. However, the performance in the
narrow water room is much lower. That is because of the rich
multipath effect in a narrow environment, which suggests our
RFH should be deployed in a open entrance zone to achieve
much better performance.

2) IMPACT OF TAG TYPE
Finally, we evaluate the impact of tag type on the height esti-
mation accuracy. We adopt three different types of tag in our

experiments, i.e., ImpinJ E41-C (type1), AZ-E53(type2) and
H-47(type3). With all other parameters unchanged, Fig.12(c)
plots the experimental results. According to the figure,
the square ImpinJ H-47 tags achieves the best estimation
accuracy larger than 98% among all the three types of tag.
By contraries, the E41-C achieves the worst performance.
The reason can be explained by coupling effect between
tags in the array, whose spacing distance is 5cm only. The
rectangle tags (E41-C and AZ-E53) usually have the line
antennas in the tag, which causes serious coupling effect
between adjacent tags when they are deployed close to each
other. To overcome such impact of coupling effect, we’d
better adopt the square shape tags in RFH.

VI. CONCLUSION
This work presents RFH, an low-cost RFID based height
estimation solution, which is the first attempt to estimate
entrant’s height using passive and low cost RFID devices. Our
key innovations lie in the RSSI changes caused by entrant’s
passing through can be a indictor of his/her height. With
the identified influenced frames, we transform the signals
into a strength image, so as to approximate entrant’s height
with foreground detection and centrum identification. Exper-
imental results demonstrate that our RFH can achieve more
than 80% accuracy in most cases. Although our solution
still has great improvement space in terms of both accu-
racy and robustness, we believe our system will promote
more possibilities of RFID-based sensing solution in practical
deployments. In future work, we will combine the phase
measurements of signals to model and analyze the entrant’s
height, which will possibly achieve a high accuracy.
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