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ABSTRACT This paper handles tracking a ground target using a single passive sonar sensor measuring
doppler shift of the target. We consider a scenario where the frequency of the emitting tone is not known
in advance. We further consider a ground target which is constrained to move along a known straight
road with a known course. It is assumed that the single sonar sensor is located close to the road, whose
shape is known in advance. This article introduces tracking the ground target assisted by road constraints.
We address a non-recursive estimation algorithm using a batch filter initialized with samples that are
distributed considering the road constraints. As far as we know, our paper is unique in using a single sonar
sensor for target localization with doppler-only measurements with unknown emitting frequency. Moreover,
our article is unique in target tracking based on doppler-only measurements of a single sonar sensor, assisted
by road constraints. The effectiveness of the proposed tracking filter is verified under MATLAB simulations.

INDEX TERMS Doppler-only measurements, road constraints, course constraints, constrained target
tracking, passive sonar sensor.

I. INTRODUCTION
We handle tracking a ground target using a single passive
sonar sensor measuring doppler shift of the target. The
doppler effect became an increasingly important factor in
many radar applications. Doppler shift measurements are
used in aviation, sounding satellites, meteorology, radiology,
and bistatic radar. Doppler shift can separate moving targets
from stationary clutter.

For tracking a ground target, the groundmoving target indi-
cator (GMTI) radar has been widely used, which can measure
range, azimuth, and doppler of the target [1], [2]. However,
GMTI works by generating active pulses from a transmitter.
GMTI continuously consumes power for generating active
pulses, and it cannot operate in a stealthy manner.

In our paper, we use a single passive sonar sensor for
tracking a ground target. We consider a passive scenario
in [3], where a sonar sensor only measures the doppler shifted
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sound generated from a non-cooperative target. The authors
of [3] considered a scenario where the target approaches a
sensor from a far, passes through or at some distance from
the sensor, and then departs. Reference [3] assumed that a
single moving target emits an acoustic signal (engine noise)
with constant but unknown frequency. This assumption is also
used in our paper.

A passive sonar sensor works in a stealthy manner, since it
only measures the sound of the target in a passive way. Our
paper considers a scenario where only one passive sonar sen-
sor is used to estimate the non-cooperative target’s emitting
frequency as well as the target state (position and velocity).

We consider tracking a ground target which moves with a
constant velocity along a known straight road with a known
course. Our tracking approach is assisted by road constraints,
which are known in advance. We show that if the target’s
course is not known in advance, then our tracking problem
with a known straight road is not observable.

References [4], [5] considered the case where the tar-
get moves in a straight line (road segment) at constant
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velocity. Assuming that the frequency of the emitting tone is
known, [4] mentioned that three doppler shift measurements
of a single sensor are sufficient to determine the target state
(position and velocity). Moreover, [5] considered scenarios
where multiple sensors are deployed to get doppler shift
measurements of the target. Assuming that the frequency of
the emitting tone is known, [5] addressed the optimization
criterion for sensor placement over the straight road.

Our paper was inspired by [4], [5], since we consider the
case where the target moves in a straight line at constant
velocity. However, we consider deploying a single sensor,
which is distinct from [5]. Moreover, our paper considers the
case where the emitting frequency is not known in advance,
which is distinct from [4], [5]. As far as we know, our paper
is novel in using a single sonar sensor for target localiza-
tion with doppler-only measurements with unknown emitting
frequency.

In our paper, we prove that at least three doppler shift
measurements of a single sensor are required to determine
the target state (position, velocity, and target’s emitting fre-
quency). Assuming that the frequency of the emitting tone is
known, [4] proved that three doppler shift measurements of a
single sensor are sufficient to determine the target’s position
and velocity. In our paper, we prove that at least three doppler
measurements are required for system observability, even in
the casewhere the frequency of the emitting tone is not known
in advance.

Acknowledge that recursive filters, such as Extended
Kalman filters (EKF) [6], are useful for tracking a maneu-
vering target with process noise. However, the initialization
of recursive filters is not trivial, since the filter performance
heavily depends on accurate track initialization [5]. Note
that we consider the case where the initial target state is
not known in advance. In doppler-only target tracking, target
state initialization is a critical issue as witnessed by the fact
that successful doppler-only target tracking has been so far
obtained by utilizing particle filters [7], [8]. Thus, we argue
that recursive filters are not suitable for our doppler-only
target tracking.

We use a batch of multiple doppler measurements in order
to estimate the target state (position, velocity, and target’s
emitting frequency). Since our estimation uses a batch of
doppler measurements, we can remove the estimation bias,
which may occur as we use recursive filters. Moreover,
an estimation error at one time-step does not propagate to the
error at the next time-step, since we use non-recursive batch
algorithms.

Note that once we estimate the target state using a batch
of doppler measurements, we can use the estimated target
state for initialization of recursive filters, such as EKF [6].
In other words, a batch of doppler measurements can be used
for initialization of recursive filters.

Our paper uses the Gauss-Newton (GN) algorithm to esti-
mate the target state from a batch of doppler measurements.
The GN method requires a rather accurate initial estimate for
its convergence. For initialization of the GN method, we use

distributed samples, so that each sample can randomly gen-
erate its associated solution considering the road constraints.
In the case where a sample yields a small measurement resid-
ual, the sample gets a larger importance weight compared to
other samples. At every time-step, we calculate importance
weights for every sample, and we can determine the range of
re-sampling from the weighted estimate and its variance.

Our contributions are summarized as follows. As far as
we know, our paper is novel in using a single sonar sensor
for target localization with doppler-only measurements with
unknown emitting frequency. Our article is novel in target
tracking based on doppler-only measurements of a single
sensor, assisted by straight road constraints. Furthermore,
our paper is unique in showing that if the target’s course is
not known in advance, our tracking problem with a known
straight road is not observable. The effectiveness of the pro-
posed tracking filter is verified under MATLAB simulations.

Section II presents the literature review related to our
paper. Section III discusses the preliminary information of
our paper. Section IV presents the tracking filter using a
batch of multiple doppler measurements. Section V presents
MATLAB simulations. Section VI provides Conclusions.

II. LITERATURE REVIEW
This section presents the literature review related to our
paper. It is well known that the target state from doppler-
only measurements has poor observability. In doppler-only
tracking, many papers [7]–[11] assumed that the frequency
of the emitting tone is known. In doppler-only target tracking,
target state initialization is a critical issue as witnessed by the
fact that successful doppler-only target tracking has been so
far obtained by utilizing particle filters [7], [8]. The authors
of [9] studied the observability of a constant velocity target
from a single doppler sensor, assuming that the frequency
of the emitting tone is known. The authors of [10] utilized
the Probability Hypothesis Density (PHD) filter to tackle the
problem of multi-target detection and tracking over a net-
work of separately located doppler-shift measuring sensors.
Reference [11] studied the problem of joint detection and
tracking of a target using multi-static doppler-only measure-
ments. The assumption of [11] was that in the surveillance
region, a single transmitter of known frequency is active with
multiple spatially distributed sensors collecting and reporting
doppler-shift frequencies to the data fusion center.

In order to estimate the target position based on doppler-
only measurements, several papers [3], [12], [13] considered
a sensor network with two or more synchronized nodes with
known positions. Considering multiple stationary sensors
capable of collecting noiseless doppler shift measurements
from a constant velocity target, [14] studied the minimum
number of sensors, such that there is a finite number of
solutions for target state (position and velocity). The authors
of [12] mentioned that at least four sensors are required to
yield one candidate target trajectory in 3-D environments.

The assumption of known frequency tone is not feasible,
considering a passive scenario where a sensor only measures
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the signal generated from a non-cooperative target. In our
paper, we consider a passive measurement scenario, such
that only one sonar sensor measures the sound of a non-
cooperative target.

References [1], [2] considered the case where the GMTI
radar is used, which can measure range, azimuth, and doppler
of the target. References [1], [2] considered tracking a ground
target assisted by road constraints, which are known in
advance. Based on the assumption that the target is following
the road network, [1] enabled the target estimation on the road
by using projection approaches. Note that our paper is distinct
from [1], [2], since we do not use GMTI radar, which can
measure range, azimuth, and doppler of the target.

III. PRELIMINARY INFORMATION
This section presents the preliminary information of this
manuscript.

A. DOPPLER-ONLY TRACKING PROBLEM STATEMENT
This manuscript handles how to calculate the target’s position
under doppler-only measurements. This manuscript consid-
ers discrete-time systems. Let dt present the sampling interval
in discrete-time systems.

Assume that the target moves along a straight road with
a constant velocity. We assume that the road information is
known in advance and that the target’s course is known a
priori. In other words, we consider a ground target which
is constrained to move along a known straight road with a
known course.

Let f e(k) denote the emitting frequency of the target at
time-step k . We assume that f e(k) is a constant for all k > 0.
Thus, we use f e instead of f e(k). This assumption is com-
monly used in the literature [3], [12], [13].

Let V (k) denote the target’s speed at time-step k . We con-
sider a constant speed target, which is commonly used in the
literature on doppler-only tracking [4], [5]. We assume that
V (k) is a constant for all k > 0. Thus, we use V instead
of V (k).
Let Vmax denote the maximum speed of the target, which

is assumed to be known in advance. Suppose we have a priori
information on Vmax .
Suppose we have a priori information on the maximum

sensing range. Let rmax denote the maximum sensing range.
The upper bound for signal strength of the target can be used
to set rmax .

Let road segment denote a line segment of the road, such
that each point in this segment is within rmax distance from the
sensor. Considering the maximum sensing range, the target
must exist on the road segment as the sensor measures the
signal of the target.

We consider a single sensor, which is located at the ori-
gin. We further set the coordinate system such that the road
segment is oriented in x-direction. In this coordinate system,
the road segment is parallel to the x-axis and its y-coordinate
is yd , which is known in advance. Here, yd is the relative
distance between the road and the sensor at the origin.

The state vector X (k) = [x(k),V , f e]T denotes the target’s
x-coordinate x(k), target speed V , and emitting frequency f e

at time-step k . Since the target moves along a straight road
with a constant velocity, we use

X (k) = FkX (0). (1)

where Fk is

Fk =

 1 dt ∗ k 0
0 1 0
0 0 1

 . (2)

Using (1), the target state X (k) can be derived from X (0).
Also, let X̂ (0) denote the initial target estimate. X̂ (0) presents
the estimation of X (0).
Let r(k) =

√
x(k)2 + y2d for convenience. The doppler-

only measurement at time-step k is

f (k) = f e ∗ (1−
ṙ(k)
C

)+ e(k). (3)

f (k) is the doppler shift of the target measured at time-step k .
In (3), C is the signal speed, and e(k) presents the mea-
surement noise and has a Gaussian distribution with e(k) ∼
N (0, σ 2

f ). In (3), ṙ(k) is derived as

ṙ(k) =
x(k) ∗ V√
x(k)2 + y2d

. (4)

(3) and (4) imply that f (k) is a function of X (k). In other
words, (3) can be rewritten as the following measurement
equation.

M (X (k)) = f e ∗ (1−
ṙ(k)
C

)+ e(k). (5)

Furthermore, using (1), M (X (k)) in (5) is a function of X (0).
Recall that X̂ (0) denotes the initial target estimate. In this

paper, we address how to estimate X (0) using a batch of
doppler measurements. Suppose that we derived X̂ (0) using
a batch of doppler measurements. Then, at each time-step k ,
the target state X (k) can be estimated using (1).

1) OBSERVABILITY ANALYSIS
We assume that the target’s course is accessible. We show
that if this assumption is not used, the target state is not
observable. In Figure 1, arrows indicate the maneuver of the
target along a known road. The numbers on the arrows show
the time step. The upper sub-figure shows the case where the
target moves from left to right, such that the target is to the
left of the sensor at time-step 0. Also, the lower sub-figure
shows the case where the target moves from right to left,
such that the target is to the left of the sensor at time-step 0.
Doppler measurements of these two cases are identical, since
the range rates are identical. If the target’s course is not known
in advance, the sensor cannot observe whether the target
moves from left to right, or from right to left. Thus, in order
to make the target state observable, the target’s course must
be accessible.
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FIGURE 1. Arrows indicate the maneuver of the target along a known
road. The numbers on the arrows show the time step. The upper
sub-figure shows the case where the target moves from left to right, such
that the target is to the left of the sensor at time-step 0. Also, the lower
sub-figure shows the case where the target moves from right to left, such
that the target is to the left of the sensor at time-step 0. Doppler
measurements of these two cases are identical.

We further show the conditions where the observability
of the doppler-only tracking does not hold. Consider two
cases where the emitting frequency are f e1 and f e2 = A ∗
f e1 respectively. Here, A < 1 is a positive constant. In the
first case, the target moves with range rate ṙ1, such that the
emitting frequency is f e1 . In the second case, the target moves
with range rate ṙ2, such that the emitting frequency is f e2 .
Using (3), these two cases generate the identical frequency
measurements when

f e1 ∗ (1−
ṙ1
C
) = A ∗ f e1 ∗ (1−

ṙ2
C
) (6)

hold. (6) leads to

ṙ1 = C − A ∗ C + A ∗ ṙ2. (7)

Thus, if (7) holds, then the system is not observable. Since
A < 1 is a positive constant, C −A ∗C in (7) is also positive.

In order to check the observability of the doppler-only
tracking problem rigorously, we use the observability anal-
ysis as presented in [15]. Consider the case where we
use a batch of doppler measurements in order to estimate
X (0). A batch of measurements sm has following M doppler
measurements.

sm = [f (1), f (2), . . . , f (M )]T . (8)

Recall that f (k) in (3) is a function of X (0). Thus, in the
absence of measurement noise, sm in (8) is equal to a known
function h(X (0)). Considering measurement noise, we have

sm = h(X (0))+ n. (9)

Here, n presents a Gaussian noise with mean 0 and covariance
matrix N .

The observability of X (0) from the measurements sm is that
the following observability matrix has full rank.

O =
∂h(X (0))
∂X (0)

(10)

Since X (0) has three elements, the observability matrix O
must have rank 3.

In this paper, we consider the case where the initial state
vector X (0) satisfies that the observability matrix O has
rank 3. If this observability condition is not met, then it
is impossible to derive X (0) from the measurement set sm.
In order to satisfy that the observability matrix O has rank 3,
we require at least M ≥ 3 measurements.
Assuming that the frequency of the emitting tone is

known, [4] proved that three doppler shift measurements of
a single sensor are sufficient to determine the target state
(position and velocity). We proved that at least three doppler
measurements are required for system observability, even in
the casewhere the frequency of the emitting tone is not known
in advance.

B. GAUSS-NEWTON (GN) ALGORITHM
Suppose that the doppler-only tracking system is observable,
as presented in Section III-A1. This subsection presents the
GN algorithm to derive X̂ (0) from a batch of doppler mea-
surements sm in (8). Suppose that we derived X̂ (0) using a
batch of doppler measurements. Then, at each time-step k ,
the target’s current state X (k) can be estimated using (1).

In this subsection, X̂0 is used instead of X̂ (0) for notation
simplicity. Also, X0 is used instead of X (0) for notation
simplicity.

The GN algorithm iteratively updates X̂0 to minimize

Q(X̂0) = (sm − h(X̂0))TN−1(sm − h(X̂0)). (11)

Since the GN algorithm is an iterative algorithm, X̂0,j is
utilized to represent X̂0 at j-th iteration. Let G be defined as
G = ∂h(X̂0)

∂X̂0
at X̂0 = X̂0,j. See that G is equal to the observ-

ability matrix O in (10), as we consider the case where X̂0 is
identical to the true state X0. Since the system is observable,
G has full rank when X̂0 = X0.

Let δ define the perturbation on X̂0,j. Utilizing (11),
we derive

Q(X̂0,j + δ) = DTN−1D. (12)

Here, D = sm − h(X̂0,j) − δG. In (12), the Taylor expansion
is utilized as follows.

h(X̂0,j + δ) = h(X̂0,j)+ δG. (13)

We differentiate Q(X̂0,j + δ) with respect to δ, and set it
equal to zero.

∂Q(X̂0,j + δ)
∂δ

= (−G)TN−1(sm − h(X̂0,j)− δG) = 0. (14)

Then, we get

δ = (GTN−1G)−1GTN−1(sm − h(X̂0,j)). (15)
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Hence, at each iteration of the GN algorithm, we update
the estimation using

X̂0,j+1 = X̂0,j + δ. (16)

Let V (X̂0) = E[(X̂0 − E[X̂0])(X̂0 − E[X̂0])T ] denote the
covariance of X̂0. Utilizing (15), we can get

V (X̂0) = (GTN−1G)−1. (17)

Considering the GN method, the authors of [16] addressed
how to derive the covariance matrix (17) in detail.

The GN method requires a rather accurate initial estimate
X̂0,0 for its convergence. For initialization of the GN method,
we use distributed samples, so that each sample can randomly
generate its associated X̂0,0 considering the road constraints.
In the case where a sample yields a small measurement resid-
ual, the sample gets a larger importance weight compared to
other samples. At every time-step, we calculate importance
weights for every sample, and we can determine the range of
re-sampling from the weighted estimate and its variance.

IV. TRACKING FILTER USING A BATCH OF MULTIPLE
DOPPLER MEASUREMENTS
For initialization of the GN method, we distribute samples,
so that each sample can randomly generate its associated X̂0,0.
In this paper, samples are distributed considering the road
constraints. Since samples are deployed along the road seg-
ment, we can decrease the number of samples required for
target estimation.

Suppose that we use N samples in total. These samples
are used to derive the initial target estimate X̂ (0). Once we
derived X̂ (0), then at each time-step k , the target state X (k)
can be estimated using (1).

Let X (j)
= [x(j),V (j), f (j)]T denote the state vector associ-

ated to the j-th sample at time-step k . InX (j), [x(j)] denotes the
x-coordinate of the j-th sample. Also, V (j) denotes the speed
of the j-th sample. f (j) is the emitter frequency f e associated
to the j-th sample.
From time-step 0 to time-step k , we can accumulate a

batch of doppler measurements composed of k measure-
ments. In other words, (8) leads to the followingmeasurement
set.

sm = [f (1), f (2), . . . , f (k)]T . (18)

The GN method in Section III-B requires that we have
sufficiently many doppler shift measurements in the set sm.
We apply the GN method in Section III-B, only in the case
where ‖sm‖ ≥ Mmin. Here, Mmin > 0 is a positive tuning
constant. In other words, samples are deployed only when
k ≥ Mmin. As k ≥ Mmin, we can satisfy that ‖sm‖ ≥ Mmin.
We address how to set our tuning constantMmin. Consider-

ing the observability condition in Section III-A1, we require
that the initial state vector X0 satisfies that the observability
matrix O has rank 3. If this observability condition is not
met, then it is impossible to derive X0 from the measurement
set sm. In order to satisfy that O has rank 3, we require that
Mmin ≥ 3.

In the optimal case where there is no measurement noise,
we can set Mmin = 3. However, considering the doppler
measurement noise, Mmin = 3 may lead to an inaccurate
solution. Thus, in MATLAB simulations, we set Mmin = 40.

A. SAMPLE INITIALIZATION
At time-step Mmin, samples are deployed for the first time.
At time-step Mmin, N samples are deployed to estimate the
initial state vector X̂ (0). Considering the j-th sample (j ∈
{1, 2, . . . ,N }), x(j)Mmin

is randomly deployed on the road seg-

ment, while satisfying that the relative distance between x(j)Mmin
and the sensor is less than the maximum sensing range rmax .
Also, V (j)

Mmin
is randomly generated using rand ∗ Vmax . Here,

rand generates a random number in the interval [0,1]. Also,
for all j ∈ {1, 2, . . . ,N }, f (j) is set as the doppler shift
measurement f (Mmin). The importanceweight of each sample
at time-step Mmin is w

(j)
Mmin
= 1/N where j ∈ {1, 2, . . . ,N }.

B. SAMPLE PROPAGATION
At every time-step k (k ≥ Mmin), N samples X (j) (j ∈
{1, 2, . . . ,N }) are generated to initialize the target solution of
the GN method in Section III-B. In other words, considering
the j-th sample, X (j) is set as the initial estimate X̂0,0 in the
GN method.

Let Ê (j) denote the target solution, which is generated by
the GN method initialized with the j-th sample X (j) (j ∈
{1, 2, . . . ,N }). At each time-step k (k ≥ Mmin), the likeli-
hood of Ê (j) (j ∈ {1, 2, . . . ,N }) is set as

l(j) =
1

√
det(N )

exp(−0.5qTs (N )−1qs). (19)

Here, qs = sm − h(Ê (j)), and N is the covariance of n in (10).
Then, at each time-step k (k ≥ Mmin), the importance weight
of Ê (j) (j ∈ {1, 2, . . . ,N }) is normalized using

w(j)
=

l(j)∑N
j=1 l

(j)
. (20)

The authors of [17] addressed how to combine the esti-
mates and the covariances of multiple filter banks. Inspired
by [17], the combined estimate, which is derived at time-step
k (k ≥ Mmin), is

Ê =
N∑
j=1

w(j)Ê (j). (21)

Here, Ê is the combined target estimation, which is derived
at time-step k . Once we derived Ê , then at each time-step k ,
the target state X (k) can be estimated using

X (k) = Fk Ê (22)

where (1) is used.
Recall that V (Ê) in (17) presents the covariance

of the solution Ê . Inspired by [17], the combined
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covariance is derived as

V (Ê) =
N∑
j=1

w(j)[V (Ê (j))+ (Ê (j)
− Ê)(Ê (j)

− Ê)T ]. (23)

Here, V (Ê) is the covariance of Ê .

C. RE-SAMPLING
At time-step Mmin, samples are deployed for the first time.
Thereafter, at each time-step k (k > Mmin), samples are
re-sampled considering the weighted estimate and its vari-
ance (Ê and V (Ê)). Let stdp be defined as

stdp = max(rngStdMin, η ∗
√
trace(V (Ê))). (24)

In (24), stdp determines the distribution range of samples
when samples are re-sampled. As stdp increases, samples
are distributed in a wider space. In (24), max(a, b) returns
a bigger value between a and b. It is not desirable that all
samples are concentrated in a small space. Thus, in (24),
rngStdMin > 0 is a tuning parameter, which is used as a
lower bound for stdp. Also, η ≥ 1 is a tuning parameter. As
η increases, samples are distributed in a wider space.
Recall that X (j)

= [x(j),V (j), f (j)]T denotes the state vector
associated to the j-th sample at time-step k . Considering the
j-th sample, x(j) is re-sampled as follows.

x(j) = Ê[1]+ randstd . (25)

Here, Ê[n] denotes the n-th element in a vector Ê . Also,
we use randstd = (rand ∗ 2 ∗ stdp− stdp), which implies that
randstd is randomly generated in the interval [−stdp, stdp],
since rand generates a random number in the interval [0, 1].
In this way, x(j) is generated along the road segment, such that
each sample is randomly located inside the circle with center
Ê[1] and radius stdp. (25) shows that stdp determines the
distribution range of samples when samples are re-sampled.

For all j ∈ {1, 2, . . . ,N }, V (j)
∈ X (j) is randomly

re-sampled using rand ∗ Vmax . This implies that V (j) is ran-
domly generated in the interval [0,Vmax]. Also, f (j) ∈ X (j) is
re-sampled using

f (j) = Ê[3]. (26)

V. MATLAB SIMULATIONS
MATLAB simulations are utilized to present the effectiveness
of our tracking filter using a batch of multiple doppler mea-
surements. According to [3], we consider a scenario where
the target approaches a sensor from a far, passes through or
at some distance from the sensor, and then departs.

We consider a single passive sonar sensor, which is located
at the origin. We further set the coordinate system such that
the road segment is oriented in x-direction. In this coordinate
system, the road segment is parallel to the x-axis and its
y-coordinate is yd , which is known in advance. In simulations,
the single sensor at the origin measures the doppler of sound
emitted from the constant velocity target.

The parameter settings are as follows. The sampling inter-
val is dt = 1 second. Also, f e = 1000 Hz. We set
rmax = 1000 meters. N = 300 samples are used. Further-
more, the sound speed is C = 350 m/s. The doppler shift
measurement noise σf is set as 0.1 Hz. We utilize Vmax =
20 meters per second. For re-sampling, we use η = 3 and
rngStdMin = 300 in stdp (24).
The GN method in Section III-B requires that we have

sufficiently many doppler shift measurements in the set sm.
Section IV mentions that in the optimal case where there
is no measurement noise, we can set Mmin = 3. However,
considering the measurement noise,Mmin = 3 may lead to an
inaccurate solution. Thus, we set Mmin = 40. We apply the
GN method in Section III-B, only in the case where ‖sm‖ ≥
Mmin. This implies that in the case where ‖sm‖ ≥ Mmin is not
met, the target estimation is not generated at all.

We run Mc = 100 Monte-Carlo (MC) simulations. p̂j(k)
where j ∈ {1, 2, , ,Mc} is the target’s 2-D position at time-
step k utilizing the j-th MC simulation. Let p(k) denote the
target’s 2-D position at time-step k .
‖p̂j(k)− p(k)‖ is the error of the target estimation at time-

step k . The following RMSE is calculated:

RMSEk =

√∑Mc
j=1 ‖p̂

j(k)− p(k)‖2

Mc
. (27)

A. POSTERIOR CRAMER-RAO LOWER BOUND (PCRLB)
We use the Posterior Cramer-Rao Lower Bound (PCRLB) as
the lowest estimation error of any unbiased estimator [18].
Let Bk|k define the error covariance (uncertainty) of the state
vector Xk .

At every time-step k , we utilize the EKF in [6] to update
Bk|k . According to [6], we get the recursive form of the
PCRLB by merging the prediction and the update step for
the error covariance of the EKF.

Since the target moves along a straight road with a constant
velocity, (1) leads to

X (k + 1) = F1X (k). (28)

where F1 is (2) with k = 1. Then, the error covariance (uncer-
tainty) of the state vector Xk+1 is predicted as

Bk+1|k = F1Bk|kFT1 . (29)

Using (29), the recursive form of the PCRLB is

(Bk+1|k+1)−1 = (F1Bk|kFT1 )
−1
+MT (R)−1M . (30)

Here, M is the Jacobian matrix of M (X (k)) in (5) given by
M = ∂M (X )

∂X |X=X (k).
We use the PCRLB in (30) as the lowest estimation error of

any unbiased estimator [18]. In (30), the initial iteration uses

B0|0 = 10−6 ∗ diag(r2max ,V
2
max , (δf )

2). (31)

In (31), diag(a, b, c, . . .) denotes a diagonal matrix with diag-
onal elements a, b, c, . . . in this order. Based on (5), (31) uses
δf = f e∗Vmax

C .
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Let Bk|k [j, j] denote the j-th diagonal element in Bk|k .√
Bk|k [1, 1] provides the lower bound for estimation error for

the state xk in Xk . Thus, the PCRLB at time-step k is

PCRLBk =
√
Bk|k [1, 1]. (32)

B. SCENARIO 1
The sensor is at (0,0), and the initial target is at (-200,200) in
meters. The target’s velocity vector is (3, 0) in m/s.

Figure 2 depicts the scenario of one MC simulation. The
sensor position is marked with a blue asterisk. Samples
deployed along the straight road segment are plotted with
yellow circles. In this figure, the target’s position at every
5 seconds is marked with red diamond. The target estimate
at every 5 seconds is plotted with black cross. The target
estimate is close to the true target position.

FIGURE 2. Scenario 1. The target’s position at every 5 seconds is plotted
with red diamond. The target estimation at every 5 seconds is plotted
with black cross. The target estimation is close to the true target position.

FIGURE 3. (a) Doppler shift measurements. (b) frequency estimation
error. (c) target speed estimation error (Scenario 1).

Considering the scenario in Figure 2, the subfigure (a) of
Figure 3 shows the doppler shift measurements as time goes
on. The subfigure (b) shows the difference between the true
frequency measurement and the estimated frequency mea-
surement (frequency measurement conjectured using the tar-
get estimate) as time goes on. The subfigure (c) shows the

difference between the true target speed and the estimated
target speed as time goes on. We derive the target estimation
using the GN method in Section III-B, only in the case
where ‖sm‖ ≥ Mmin. See that as time goes on, the estimates
converges to the true values.

1) RMSE OF MC SIMULATIONS
Considering the scenario in Figure 2, Figure 4 presents
RMSEk with respect to k . The lower sub-figure (b) is the
enlarged figure of the upper sub-figure (a). See that the RMSE
decreases as time goes on.

FIGURE 4. RMSE plot (Scenario 1). The lower sub-figure (b) is the
enlarged figure of the upper sub-figure (a). In the case where
‖sm‖ ≥ Mmin is not met, the target estimation is not generated at all.
Thus, we set RMSEk = ∞ when k < Mmin. As time goes on, the RMSE
reduces gradually.

In the case where ‖sm‖ ≥ Mmin is not met, the target
estimation is not generated at all. Thus, we set RMSEk = ∞
when k < Mmin. As time goes on, the RMSE reduces
gradually.

It takes almost 15 seconds to run one MC simulation using
MATLAB. Since the entire scenario runs for 96 seconds (see
the x-axis of Figure 4), the proposed doppler-only tracking is
suitable for real-time target tracking.

C. SCENARIO 2
The sensor is at (0,0), and the initial target is at (-200,400) in
meters. The target’s velocity vector is (10, 0) in m/s.
Figure 5 depicts the scenario of one MC simulation. The

sensor position is plotted with a blue asterisk. The target’s
position at every 5 seconds is plotted with red diamond. See
that the target moves away from the sensor at the origin.
Samples deployed along the straight road segment are plotted
with yellow circles. The target estimation at every 5 seconds
is plotted with black cross. The target estimation is generated,
only in the case where ‖sm‖ ≥ Mmin.

Considering the scenario in Figure 5, the subfigure (a) of
Figure 6 shows the doppler shift measurements as time goes
on. The subfigure (b) plots the difference between the true fre-
quency measurement and the estimated frequency measure-
ment as time goes on. The subfigure (c) plots the difference
between the true target speed and the estimated target speed
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FIGURE 5. Scenario 2. The target’s position at every 5 seconds is plotted
with red diamond. Samples deployed along the straight road segment are
plotted with yellow circles. The target estimation at every 5 seconds is
plotted with black cross. The target estimation is close to the true target
position.

FIGURE 6. (a) Doppler shift measurements. (b) frequency estimation
error. (c) target speed estimation error (Scenario 2).

FIGURE 7. RMSE plot (Scenario 2). The lower sub-figure (b) is the
enlarged figure of the upper sub-figure (a). The lower subfigure (b) shows
that the RMSE decreases as time goes on. In the case where ‖sm‖ ≥ Mmin
is not met, the target estimation is not generated at all. Thus, we set
RMSEk = ∞ when k < Mmin.

as time goes on. In the case where ‖sm‖ ≥ Mmin is not met,
the target estimation is not generated at all. As time goes on,
the estimates converges to the true values.

1) RMSE OF MC SIMULATIONS
Considering the scenario in Figure 5, Figure 7 presents
RMSEk with respect to k . The lower sub-figure (b) is the
enlarged figure of the upper sub-figure (a). The lower sub-
figure (b) shows that the RMSE decreases as time goes on. In
the case where ‖sm‖ ≥ Mmin is not met, the target estimation
is not generated at all. Thus, we set RMSEk = ∞ when
k < Mmin.

It takes almost 15 seconds to run one MC simulation using
MATLAB. Since the entire scenario runs for 96 seconds (see
the x-axis of Figure 7), the proposed doppler-only tracking is
suitable for real-time target tracking.

VI. CONCLUSION
In this paper, we consider tracking a ground target which
is constrained to move along a known straight road. It is
assumed that a single passive sonar sensor, which is located
close to the road, can measure the doppler shift of the signal
emitted from the target. We consider a scenario where the
frequency of the emitting tone is not known in advance. Also,
we assume that the road shape is known to the sensor and that
the target’s course is known in advance.

We address a non-recursive estimation algorithm using a
batch filter based on distributed sampling process. We use
the GN algorithm to calculate the target solution from a batch
of doppler measurements. The GN method requires a rather
accurate initial estimate for its convergence. We thus dis-
tribute samples, so that each sample can randomly generate
its associated solution considering the road constraints. In the
case where a sample yields a small measurement residual, the
sample gets a larger importance weight compared to other
samples. At every time-step, we calculate importance weights
for every sample, and we determine the range of re-sampling
from the weighted estimate and its variance.

As far as we know, our paper is novel in using road con-
straints for target tracking based on doppler-only measure-
ments. The effectiveness of the proposed tracking filter is
demonstrated using MATLAB simulations.

The proposed doppler-only tracking can be used for track-
ing various targets, such as ships or airplanes, whose routes
are known in advance. For instance, consider a scenariowhere
a target operates a routine patrol mission. If there is a single
sonar sensor close to the route of a target, then the sensor can
track the target using the proposed tracking approach.

In the future, we will do experiments with real sonar
sensors, in order to verify the effectiveness of the proposed
tracking approach. Also, we will tackle doppler-only tracking
using multiple heterogeneous passive sonar sensors.

This paper considers a passive scenario in [3], where a
sonar sensor only measures the doppler shifted sound gener-
ated from a non-cooperative target. Reference [3] considered
a scenario where the target approaches a sensor from a far,
passes through or at some distance from the sensor, and then
departs. In the future, we will tackle doppler-only tracking
of multiple non-cooperative targets, using multiple heteroge-
neous passive sonar sensors.
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