
Received 26 May 2022, accepted 22 June 2022, date of publication 14 July 2022, date of current version 22 July 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3190978

Large-Scale Analysis on Anti-Analysis Techniques
in Real-World Malware
MINHO KIM , HAEHYUN CHO , AND JEONG HYUN YI , (Member, IEEE)
Graduate School of Software, Soongsil University, Seoul 06978, South Korea

Corresponding author: Haehyun Cho (haehyun@ssu.ac.kr)

This work was supported by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the
Korea government, Ministry of Science and ICT (MSIT) (No.2017-0-00168, Automatic Deep Malware Analysis Technology for Cyber
Threat Intelligence).

ABSTRACT To dynamically identify malicious behaviors of millions of Windows malware, anti-virus
vendors have widely been using sandbox-based analyzers. However, the sandbox-based analysis has a
critical limitation that anti-analysis techniques (i.e., Anti-sandbox and Anti-VM techniques) can easily
detect analyzers and evade from being analyzed. In this work, we study on anti-analysis techniques used
in real-world malware. First off, to measure how many Windows malware exhibits anti-analysis techniques,
we collect anti-analysis techniques used in malware. We, then, design and implement an automated system,
named EvDetector, that detectsmalware which employ anti-analysis techniques. EvDetector finds if malware
uses an anti-analysis technique and monitors whether the malware changes its execution paths based on
the result of the anti-analysis technique. By using EvDetector, we analyzed 763,985 real-world malware
that emerged from 2017 to 2020. Our evaluation results show that 16.21% of malware use anti-analysis
techniques on average. Also, we check the effectiveness of the analysis result by comparing EvDetector and
static analysis. EvDetector analyzes up to 49.88% of malware detected by static analysis did not use anti-
analysis techniques. In addition, we analyze that only up to 3.75% of the packed malware used anti-analysis
techniques. Finally, we analyze the evasive malware trend through familial analysis and behavioral analysis.
Our work implies that the research community needs to put more effort on defeating such anti-analysis
techniques to automatically analyze emerging malware and respond with them.

INDEX TERMS Anti-analysis, anti-VM, anti-sandbox, dynamic analysis.

I. INTRODUCTION
There is an increasing volume of malware reported to
anti-virus every day [30], [40]. According to FireEye’s
M-Trends report [19] in 2020, they analyze 1.1 million mal-
ware samples every day on average, and they show that the
most of malware (roughly 95%) they analyzed runs on the
Windows OS. To deal with such the large number of malware,
anti-virus vendors have been using automated sandbox-based
analysis techniques [9], [21], [22], [47]. The sandbox-based
analyzers execute millions of malware to analyze malware’s
behavior every day. Such sandbox-based approaches become
popular, malware writers started using evasion techniques

The associate editor coordinating the review of this manuscript and

approving it for publication was Claudia Raibulet .

to avoid being analyze [7]. Malware that uses anti-analysis
techniques forcibly terminates execution on sandboxed
execution environments or intentionally does not perform
malicious behaviors [27]. Those malware can be alive in-the-
wild longer than the others that do not use anti-analysis tech-
niques by delaying time to be detected [38]. The emergence
of such evasive malware has brought strong technical chal-
lenges to automatically analyze them based on their malicious
behaviors.

To handle the large number of malware that use anti-
analysis techniques, the security researchers have proposed
various detection approaches and have reported promising
evaluation results [14], [15], [39]. In general, they tried to find
signatures related to anti-analysis techniques in malware that
do not perform malicious behaviors on the sandbox-based

75802
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-2068-5276
https://orcid.org/0000-0002-5344-5252
https://orcid.org/0000-0002-2720-0593
https://orcid.org/0000-0002-7194-3159

M. Kim et al.: Large-Scale Analysis on Anti-Analysis Techniques in Real-World Malware

analysis environment. However, a lot of Windows APIs
related to anti-analysis techniques are generally used in
benign applications as well. For example, a program can
check system information and display the environmental data
to a user. Because the API used by such a program uses the
same API as the anti-analysis techniques, the previous pro-
posed approaches may appear to detect malware when they
meet such benign applications. Therefore, the approaches for
detecting anti-analysis techniques through finding signatures
in malware inherently yield high false-positives.

To address this problem, techniques for analyzing the
behavioral similarity have been proposed [25], [26]. They
compare execution results of a given malware on several
sandboxes. In contrast to the previous approaches, they ana-
lyzed the system calls and network packets to compare the
behavioral similarity of malware processes. This line of work
compares the behavior similarity of malware, but using those
approaches in a small number of sandboxes can yield low
accuracy. As an another line of work, recently, Lee et al. [28]
proposed an approach using a bypassing module to analyze
malware that use anti-analysis techniques such as anti-VM.

In this paper, we propose an approach for detecting eva-
sive malware based on dynamic analysis results. By using
our approach, named EvDetector, we automatically check
whether the signatures used in the prior work are used and
analyze whether the signatures affect the execution result of
the malware. Our work targets Windows malware that has
not been analyzed yet. Compared to the prior works, we per-
formed the largest analysis to the best of our knowledge—we
analyze the trend from 2017 to 2020 of in-the-wild malware.
Our major contributions are, thus, as follows.
• We collect anti-analysis techniques used in real-world
malware by analyzing the prior works.

• We propose an automated tool, EvDetector, to detect
malware that use anti-analysis techniques. EvDetector
dynamically inspects malware to check whether the
anti-analysis techniques affect the execution result of the
malware.

• We conduct a large-scale evaluation using the real-world
malware dataset collected in 2017–2020 and show that
howmuch malware are using anti-analysis techniques in
the wild.We also conduct a comparative study, and show
trends of evasive malware.

The rest of the paper is organized as follows: section II
describes related work and why the analysis of evasive mal-
ware is complex. section III describes the anti-analysis tech-
niques used by malware. section IV describes an overview
of our work. section V describes the design of EvDetector
and its implementation. section VI describes our evaluation
results. section VII discusses the limitations faced during the
research. section VIII concludes the work.
To foster future research, we have released the source code of
EvDetector and signatures the anti-analysis techniques that
we investigated for this study.1

1https://github.com/ssu-csec/EvDetector

II. BACKGROUND
Malware writers have been attempting to create malware that
can avoid being analyzed from anti-virus vendors’ detec-
tion systems. Naturally, the number of malware which equip
anti-analysis techniques is increasing in the wild. To han-
dle such evasive malware, previous studies proposed various
approaches. In this section, we summarize the previous work
in subsection II-A and introduce challenges to deal with
evasive malware subsection II-B.

A. RELATED WORK
Kirat et al. [25] proposed BareBox, a bare-metal based sys-
tem to analyze malware that detects VMware [48] and
QEMU [42] virtual environments. To evaluate the malware
that detects VMware and QEMU, BareBox used a mal-
ware dataset from Anubis [11], [12]. By classifying the
malware family, BareBox analyzed malware’s system call
and compared whether malware created new processes or net-
work packets inVMware, QEMU, andBareBox, respectively.
BareBox observed that all malware was more active only
in BareBox, proving the stealthiness was outstanding than
VMware and QEMU. However, BareBox cannot identify
anti-analysis techniques used in malware.

Branco et al. [14] categorized anti-analysis techniques into
four categories: anti-debug, anti-disassembly, obfuscation,
and anti-VM. They employed a static analysis to check
whether specific APIs or instructions used in anti-analysis
techniques exist. For finding if malware employs anti-VM
techniques, they checked whether malware could have differ-
ent execution results between a host machine and a guest VM.
They measured that 81.4% of 4,030,945 malware samples
used anti-VM techniques. They classified it as malware that
detects virtual machines if it contains instructions such as
SIDT (Store Interrupt Descriptor Table), SGDT (Store Global
Descriptor Table), and SLDT (Store Local Descriptor Table).
These instructions obtained the values of the CPU’s descrip-
tor table and returned different values from the host and guest
machines. Existing detection techniques used these charac-
teristics to detect virtual machines. On single-core processor
systems, it is straightforward to detect guest machines using
the IDTR because there is only one IDTR. However, on muti-
core systems, there are multiple IDTRs for each core and
the host machine even may return a different value when the
SIDT instruction executes. Since IDTRs exist for each pro-
cessor, even the host may return a different value each time.
The detection approach leveraging SLDT and SGDT is called
as No Pill that exploits differences in execution results of the
SLDT and SGDT instructions between on the host and guest
machines. However, this approach can be easily bypassed
by disabling the acceleration option of guest machines.
These limitations are unsuitable for detecting virtual
machines [8], [31].

To analyze the malware that detect the sandbox,
BareCloud [26], a system that compares the behavior simi-
larity of malware in various environments, used bare metal,

VOLUME 10, 2022 75803

M. Kim et al.: Large-Scale Analysis on Anti-Analysis Techniques in Real-World Malware

virtualization, emulation, and hypervisor-based environ-
ments. Specifically, it simultaneously collected execu-
tion logs by running the same malware on Ether [18],
Anubis [11], [12], Cuckoo Sandbox [20], and BareCloud.
They collected the execution logs of 234 evasive malware
and 119 non-evasive malware to train the behavioral sim-
ilarity comparison model. To evaluate the performance of
the behavioral similarity comparison model, they tested
110,005 malware datasets. About 5,835 malware showed the
results to detect the analysis environment. However, their
system requires the overhead of running in four environments
to collect and compare logs of one malware. For this reason,
it can be a disadvantage for large-scale malware analysis.

Ping et al. [15] conducted a study on whether APT mal-
ware uses anti-debug and anti-VM techniques more than
other malware families. They used static analysis to inves-
tigate whether the signature of instructions and APIs used
for anti-analysis techniques exist in malware. For example,
they examined strings related to virtual machines and sand-
boxes, such as ‘‘VMware’’ and ‘‘sbiedll.dll’’ in malware.
They conducted a comparative analysis on the APT malware
datasets (2009–2014: 1,037) and six general malware fam-
ilies datasets (2009–2014: 16,000). The evaluation results
showed the anti-analysis detection rate and the anti-virus
detection rate in each category. Their approach detected
instructions with different execution results in hosts and
guests and commonly used API such as ‘‘Sleep’’. However,
there are limitations in detecting APIs that can reduce detec-
tion accuracy or instructions that are not valid in modern
environments. [8].

Yokoyama et al. [50] analyzed collected features from
76 actual sandbox-based malware analysis services and
represented refined features that distinguish between the
sandbox services and user systems. They categorized the
detection techniques into hardware, history, and execution.
To prove their performance, they compared SandPrint with
PAFISH [37]. PAFISH is an open-source tool that implements
sandbox detection techniques. The evaluation results showed
that SandPrint’s single feature accuracy and combined accu-
racy are excellent than PAFISH. However, although Sand-
Print defined effective techniques for real-world sandboxes
detection, they did not evaluate how much malware applied
their feature to detect sandboxes.

Miramirkhani et al. [32] conducted research to analyze the
characteristics of the sandbox compared to the real user sys-
tem. To classify the Wear-and-Tears, they collected features
of 270 real user systems and 16 malware analysis sandboxes.
They showed the system’s aging, which can distinguish the
sandbox from the user system in the system, disk, network,
registry, and browser categories. Since it contains only the
degree of aging, which is data that does not violate privacy,
if the sandbox generates a randomfingerprint when it restores
the snapshot, the disadvantage is that it is difficult to detect
using a pre-trained model.

To evaluate malware that avoids the Cuckoo Sand-
box’s analysis, Oyama et al. [39] analyzed FFRI datasets

(2016: 8,243) that recorded malware behavior in the Cuckoo
sandbox. Due to the FFRI dataset did not record CPU instruc-
tion, they measured malware based on dynamically analyzed
API Call sequences and statically extracted signatures. The
evaluation results showed that 10.4% of malware use the
anti-analysis technique. However, most signatures statically
extracted from malware except for API calls. Although the
datasets analyzed in the sandbox, a dynamic analysis environ-
ment, are used, their detection approach is not significantly
different from the prior static analysis.

Choi et al. [16] proposed HybridEmu, a DBI framework
for dynamically analyzing malware. They compared var-
ious DBI frameworks to prove resistance to 29 common
anti-debug techniques and anti-debug techniques provided by
17 commercial protectors. HybridEmu prove to have resis-
tance to anti-debug techniques. In particular, they showed that
Intel Pin [29] had high resistance to anti-debug techniques
than other DBI frameworks. From this result, we implement
our approach based on Intel Pin.

Lee et al. [28] analyzed the anti-DBI and anti-VM tech-
niques provided by commercial protectors and showed
bypassing algorithms using Intel Pin. The commercial protec-
tors are Themida [36], Enigma [45], VMProtect [2], Obsid-
ium [35], and ACProtect [49]. To bypass each protection
technique, they analyzed the protector’s techniques in detail.
To prove that it is possible to analyze malware applied with
commercial protectors, they regarded the Juliet Test Suite
Code [34] as malware. Then, they showed that their analysis
tool successfully bypassed packed malware. However, detec-
tion and bypassing are possible only with the anti-analysis
techniques provided by the analyzed version of the commer-
cial protector. For example, it cannot counteract the protec-
tor’s technique provided by the unanalyzed version or another
technique used by the malware itself.

Yuhei et al. [23], [24] proposed a code tainting techniques-
based analyzer, API Chaser, to identify the execution of mon-
itored instructions. API Chaser gave different taint tags to the
API, benign, and malware samples. First, they identified mal-
ware that called the API instructions through a taint tag. Then,
they tagged the API execution result to respond to generated
data during execution. Tracking the API execution result is
roughly like our approaches. Their goal was to detectmalware
that used code injection and stolen code techniques, and they
focused on monitoring the propagation of taint tags. They
identified hook and target evasion malware and included it
in the monitoring target. However, there is a limitation in not
being able to respond to an API call of the Return Oriented
Programming.

B. CHALLENGES TOWARDS ANALYZING EVASIVE
MALWARE
Previous studies used various analysis methods to analyze
malware that uses anti-analysis techniques. Table 1 sum-
marizes the prior works investigated in subsection II-A.
Although many studies have been conducted, many

75804 VOLUME 10, 2022

M. Kim et al.: Large-Scale Analysis on Anti-Analysis Techniques in Real-World Malware

TABLE 1. The summary of previous work against anti-analysis techniques.

challenges still make our analysis difficult. For the future
research, we summarize the challenges.

The first common limitation that we discovered is the anal-
ysis scope: previous research work examined malware with
only well-known anti-analysis techniques. It is impossible
to detect unknown anti-analysis techniques, and thus, the
limitation of such design makes analysis of new anti-analysis
techniques infeasible. The second common limitation is the
complicated design to analyze large-scale malware datasets:
previous research work simultaneously compared logs gener-
ated in different conditions to validate the analysis. Building
various environments to analyze and verify malware incurs
overhead in terms of time and hardware.

The next limitation is in static analysis-based approaches.
We have considered anti-analysis signatures such as instruc-
tions, APIs, and strings exist in the code or data sections
of evasive malware. Therefore, detection is not possible if
malware applies protection techniques such as packing and
obfuscation. Windows APIs perform various roles depend-
ing on arguments passed when they execute. For example,
APIs that are well-known for anti-analysis techniques may
or may not be used in anti-analysis techniques, depending
on the argument. Also, with static analysis-based approaches,
it is impossible to accurately identify each API’s arguments
that may use in the anti-analysis techniques. If an analysis
tool simply detected a malicious application that uses an
anti-analysis technique based on APIs used in the malware,
the result could be a false positive.

The last limitation is in dynamic analysis-based
approaches. Similar to the previous limitation, when calling
APIs that are likely to be used as anti-analysis technique,
analyzing only the API and API’s arguments can lead to false
positives.We believe that, after calling the APIs, it is essential
to investigate whether the results affect the execution result
of the process. In analyzing the malware through a dynamic

analysis tool, the malware can detect the analysis tool and
change its behavior. In this work, we aim to resolve the
last challenge by dynamically tracing return values of APIs
widely used in anti-analysis techniques.

III. ANTI-ANALYSIS TECHNIQUES
In this section, we present anti-analysis techniques widely
used in real-world malware.

MITRE ATT&CK [33] analyzes, categorizes, and dis-
closes technologies used in real-world attacks. To prevent
being analyzed from analysis frameworks, malware can use
anti-analysis techniques. Anti-analysis technology is divided
mainly into an approach that protects the binary itself and
a method that manipulates the execution result according
to the execution environment. Protection techniques such as
packing, obfuscation, and encryption make it challenging
to analyze malware binary. Existing analysis tools cannot
usually extract malware’s code or data at the binary level.
Malware using such techniques should go through specific
processes for unpacking and decrypting some code and data
by itself to perform malicious actions. Previous studies have
detected such moments when protected codes or data are
unprotected. Other techniques are to stop execution in the
middle of the performance if the malware writers don’t want
it. Antivirus vendors do automated analysis in a sandbox
environment to counter a lot of malware. Malware writers
want to prevent malware from being analyzed in analysis
environments. For example, one of the general evasion tech-
niques is virtualization and sandbox avoidance techniques
(T1497, System Checks, User Activity-Based Checks, and
Time Based Evolution). To perform malicious behaviors or
detect analysis and forcibly terminate execution, evasive mal-
ware detects features that only appear in the sandbox-based
analysis environments. In general, to avoid sandbox-
based analysis, some techniques test the high-speed mouse

VOLUME 10, 2022 75805

M. Kim et al.: Large-Scale Analysis on Anti-Analysis Techniques in Real-World Malware

FIGURE 1. Overview of EvDetector: show that EvDetector analyzes the malicious application that use the anti-analysis techniques; EvDetector identifies
the APIs used for the anti-analysis techniques and inserts a hooking code that pinpoints the dynamically-allocated buffer. After that, EvDetector traces
the buffer’s usage flow and performs the process of finding a conditional branch to see if the buffer comparison result affects the execution flow of the
malicious application.

movements, check the number of clicks on certain icons,
and wait for execution for minutes to days [43], [46]. These
techniques are difficult to analyze and verify in the existing
analysis environments. Therefore, in this work, we aim to
analyze whether an malicious application uses an evasion
technique that can deterministically detect sandboxes in a
short time. To be specific, we investigated techniques such
as detection using environmental information of a specific
sandbox and virtualization solution’s registry key, Driver and
BIOS. The following subsections introduce each category of
information that can be used in anti-analysis techniques.

A. HARDWARE AND ENVIRONMENTAL INFORMATION
To detect sandbox-based analysis, malware can retrieve the
hardware and environmental information. Typically, anti-
virus vendors need to employ a lot of sanboxes to deal with
the millions of malware, and thus, each sandbox has lim-
ited hardware resources. For example, malicious applications
find the number of CPU cores and the size of ram on a
system [5], [13]. Then, they can compare the values with
the average hardware specifications of real-world sandbox
services for analyzing malware. If the retrieved value is less
than the average value, malware recognize itself as running
on a sandbox-based environment.

B. DRIVERS AND MODULE DETECTION
Malware can check the existence of drivers and system files
provided by virtualization solutions such as VMware and
VirtualBox [17]. For example, if there are drivers such as
‘‘vmmouse.sys’’ and ‘‘VBoxMouse.sys’’ on a system, mali-
cious applications recognize the system as a virtual machine.
These malware also can search modules or files found only
in the sandbox environment. For example, it is a well-known
fact that the Cuckoo sandbox uses files such as ‘‘agent.py’’
to communicate with the host and the guest environment.
Malware, thus, can detect whether it runs on a sandbox by
retrieving such files used in specific sandbox environments.

C. REGISTRY INFORMATION
Malicious applications can check the registry keys that
exist only in a sandbox environment [10]. For example, the

‘‘HARDWARE\ACPI\DSDT\VBOX__’’ key exists only in a
guest machine created by VirtualBox. Whey malware found
such registry keys, they can consider that they are running
on a virtualized guest machine. For example, the ‘‘System-
BiosVersion’’ key of ‘‘HARDWARE\Description\System\’’
stores a string value related to BIOS of a system. These reg-
istry keys store the string values related to the virtualization
solutions, such as ‘‘VMware,’’ ‘‘VirtualBox,’’ and ‘‘QEMU.’’
In general Windows environments, these registry key values
are totally different. Therefore, malware can detect a sandbox
by reading such registry key values.

D. ANTI-DBI TECHNIQUES
A Dynamic Binary Instrumentation (DBI) framework such
as Intel Pin enables the creation of dynamic program analy-
sis tools by performing instrumentations at run time on the
compiled binary files. Because the DBI framework is also
widely-used to analyze malware, there are several techniques
used in malicious applications to avoid being analyzed from
the DBI framework and debuggers [41]. However, the analy-
sis tools based on the DBI framework can have implement an
automated bypassing module that recognizes and instrument
such anti-DBI techniques to bypass them [28].

In this work, we focus on anti-DBI techniques, especially
for detecting Intel Pin [41] because our approach is based
on a dynamic analysis by using Intel Pin. In general, anti-
DBI techniques (for detecting Intel Pin) work based on the
NtQueryInformationProcess (ProcessDebugFlags), Single-
Step exception, and PAGEGUARD exception [28], [41].
Among them, the traditional NtGlobalFlag detection tech-
nique uses a feature that the value of NtGlobalFlag, one of the
variables in the PEB (Process Environment Block) structure,
is always set to 0 × 70 when a debugger is attached to the
process. This feature can be detected only when a Pin-based
tool analyzes a 32-bit program on the 64-bit Windows OS.
In addition, when the 64-bit Windows OS executes a 32-bit
program, the OS creates a 64-bit PEB structure and a 32-bit
PEB structure in the process memory for the compatibility.
Therefore, when a pin-based tool analyzes a 32-bit program,
the NtGlobalFlag values of 64-bit PEB and 32-bit PEBwill be
set to 0×70 and 0×0, respectively. As a result, the anti-DBI

75806 VOLUME 10, 2022

M. Kim et al.: Large-Scale Analysis on Anti-Analysis Techniques in Real-World Malware

technique can detect by examining the NtGlobalFlag value of
the 64-bit PEB structure.

IV. OVERVIEW
In this work, we aim to understand evasive techniques used
by Windows malware and effectively identify how many
malicious applications try to avoid anti-virus vendor’s inves-
tigation. Based on our approach, we believe that we can
step forward to automate bypassing anti-analysis techniques.
To this end, we employ Intel Pin, a representative DBI frame-
work, to dynamically inspect whether malware uses anti-
analysis techniques. Among the functions provided by Intel
Pin, we use the Routine Replace to hook the Windows APIs
used for anti-analysis techniques. Specifically, we insert code
that identifies a dynamically-allocated buffer in which the
Windows APIs stored APIs’ execution results. After a mali-
cious application calls the Windows APIs, we inspect that
whether or not the malware compares the value in the buffer,
executing conditional branches that affect the execution flow
of the malware. Only when EvDetector identified malware
executes conditional branches with the return values of the
Windows APIs, EvDetector confirmed it as an malicious
application that uses anti-analysis techniques. Figure 1 shows
the overview of our EvDetector to detect malware that use
anti-analysis techniques.

Listing 1. Concept of anti-analysis: The conditional branch we are
looking for means that occurs due to the execution of like
detectanalysisenvironment(), which affects the control flow of the
malware.

By using EvDetector, we evaluate our dataset that consists
of real-world Windows malware appeared from 2017 to 2020
(2017: 349,256, 2018: 119,952, 2019: 120,942, 2020:
173,785). Our evaluation results show that it is possible to
analyze recent real-worldmalware that evades sandbox-based
analysis (2017: 21.89%, 2018: 13.72%, 2019: 8.25%, 2020:
12.06%). It is worth to note that the half of detected signatures
(generally known to be used as anti-analysis techniques) do
not affect the execution results of the malware in our eval-
uation (2017: 48.83%, 2018: 49.88%, 2019: 48.22%, 2020:
42.37%). Therefore, our evaluation results imply that simply
finding such signatures could yield very high false-positives.
In addition, we shows only a tiny of packed malware detects
the analysis environment (2017: 0.73%, 2018: 1.66%, 2019:
1.60%, 2020: 3.75%). EvDetector has the following advan-
tages, overcoming the limitation of previous approaches:

• It is possible to detect more detailed results than the prior
analyses that find only the presence of the signatures of
anti-analysis techniques.

• To detect evasive malware, it consumes less compu-
tational resources and less time than approaches such
as BareCloud [26] because it does not need to run the
malware in multiple environments at the same time.

A. THREAT MODEL
By using EvDetector, our primary concern is how many
real-world malicious applications can evade anti-virus ven-
dor’s analysis. To analyze real-world malware trends,
we study malware collected over a period from 2017 to
2020 and we set up the following EvDetector’s threat model:

• Evasive malware will detect whether it is being ana-
lyzed by using the anti-analysis techniques in the initial
execution process, that is, before performing malicious
actions.

• Evasivemalware will have a conditional branch inwhich
the control flow of the malware varies depending on the
result of the anti-analysis techniques.

An example of our threat model is shown in Listing 1.
In the following sections, we show how we implement

EvDetector to analyze malware (subsection V-B), how we
collected our dataset (subsection VI-A), we evaluate EvDe-
tector with the dataset (subsection VI-B), and we discuss the
limitations of EvDetector in section VII.

V. DESIGN
The design goal of EvDetector is to automatically detect
evasive malware.

A. ANTI-ANALYSIS TECHNIQUES TARGETED
For the automated analysis of evasive malware, it is neces-
sary to investigate the anti-analysis techniques that malware
can operate. We have collected various documents, such as
analysis reports from anti-virus vendors about anti-analysis
techniques that malware can use.

We surveyed the anti-analysis techniques discussed
in section III and analyzed anti-analysis techniques and clas-
sified them by category as in Table 2, which shows exam-
ples of sandbox-based analysis detection techniques. In total,
we targeted 38 classified Windows APIs and 370 strings that
can be used as arguments.

B. EvDetector
To accurately detect anti-analysis techniques, we do not only
find usages of Windows APIs used in the anti-analysis tech-
niques but also focus on the dynamically allocated buffer
where the return values of the APIs are stored. We dynam-
ically trace the dataflow and analyze whether the return value
affects the control flow of the malware. Dynamic analysis is
required to identify buffer addresses, and track usage flows
accurately. To this end, we implemented EvDetector using
the DBI framework. Specifically, we employ Intel Pin that

VOLUME 10, 2022 75807

M. Kim et al.: Large-Scale Analysis on Anti-Analysis Techniques in Real-World Malware

TABLE 2. Examples of classified anti-analysis techniques: show that representative anti-analysis techniques. Our target is system checks and user
activity-based checks defined by MITRE ATT&CK, and we investigated and classified techniques for detecting sandboxes in a short time.
We use a total of 38 windows APIs and 370 strings to investigate malware that uses anti-analysis techniques.

provides a function called Routine Replace, so it can insert
code by hooking the APIs provided by the OS. Based on the
functionality of Routine Replace, we designed a way to inject
code that identifies the location of a dynamically-allocated
buffer that stores the APIs’ execution results, targeting the
Windows API used in the anti-analysis techniques.

1) INSERTING THE API-HOOKING CODE
Our targets are the Windows APIs used for anti-analysis
techniques. The most of Windows APIs can perform more
then two functions. Depending on the parameters of eachAPI,
it can or cannot be used as an anti-analysis technique. Tradi-
tional approaches for anti-analysis techniques were to simply
examine the values of APIs and parameters. A lot of studies
statically disassemble the malware binary. They inspected
the disassembly code to see if the malware calls APIs
(with parameters) used for anti-analysis techniques. On the
other hand, many approaches analyzed malware dynami-
cally through the API hooking techniques. The existing API
hooking method works by patching process memory, inject-
ing loaded DLL files, etc. They logged the hooked APIs,
which parameters passed during execution. Such method can
be detected by API monitoring or file patching detection
techniques. Therefore, we implement a API hooking tech-
nique via Intel Pin. Intel Pin executes instrumented code
by the DBI framework. Intel Pin, also, supports replacing
pre-instrumented code which cap wrap the actual API func-
tion. Before executing each API that can be used to imple-
ment anti-analysis techniques, EvDetector inserts analysis
code that inspects the parameters values. After executing
the API function, EvDetector analyzes where malware stored
the return value. This approach has the advantage that EvDe-
tector does not need to patch some areas of the process
memory or inject files. As shown in Algorithm 1, when
malware called a well-known API used for anti-analysis
techniques, we insert code that checks the parameters of
the API and code and the code identifies the address of
a buffer that the API dynamically allocates. For example,

Algorithm 1 API Hooking for Anti-Analysis Techniques
Input: Current API(curRTN)
Output: Buffer’s Address List
1: API_List ← 38 API used for anti-analysis techniques
2: Signature← 370 signatures used for anti-analysis
3: if curRTN ⊂ API_List then
4: if curRTN_Param = Signature then
5: Replace curRTN with wrapped_curRTN
6: end if
7: end if

Listing 2. Example of the API Hooking: It shows that intel pin hooked
getsystemfirmwaretable API for identifying the qpfirmwaretablebuffer’s
address.

a technique to check the SMBIOS of a system could call
the GetSystemFirmwareTable API. To check SMBIOS, the
first parameter (FirmwareTableProviderSignature) must be
‘‘RSMB.’’ SMBIOS information is stored in the buffer
pointed by the third parameter (pFirmwareTableBuffer).
Therefore, as shown in Listing 2, we insert code that examines
the parameters and identifies the buffer. Since the location of
in/out parameters is different for eachWindowsAPI, wewrite
hooking code for each API we want to analyze.

75808 VOLUME 10, 2022

M. Kim et al.: Large-Scale Analysis on Anti-Analysis Techniques in Real-World Malware

Algorithm 2 Trace the Usage Flow of the Buffer
Input: Current Instruction(curINS)
1: BufferAddrList
2: ← Buffers related to anti-analysis API
3:

4: if curINS_Operand2 ⊂ BufferAddrList then
5: if curINS = mov_INS then
6: storeBufferAddr(curINS_Operand1)
7: end if
8: end if
9:

10: if curINS_Operand1 ⊂ BufferAddrList then
11: if curINS = push_INS then
12: storeBufferAddr(curINS_Operand1)
13: end if
14: if curINS = pop_INS then
15: deleteBufferAddr(curINS_Operand1)
16: end if
17: end if

FIGURE 2. Depending on the detection result, the execution result of the
conditional branch instruction is different. At this time, exit_routine or
malicious_behavior may be operated by conditional branching, and the
execution result may be completely opposite.

2) TRACKING THE DATAFLOW FROM THE BUFFER
Because the Windows API’s dynamically-allocated buffers
have a different address on each run, they must be identified
each time correctly in the previous process. After the API
hooking code injection, as in Algorithm 2, we track the
dataflow of the stored value in the buffer. There is a possibility
that the malware backs up the target buffer to another heap or
stack address. The anti-analysis techniques can be used by
referring to the backed-up buffer in the subsequent execution
process. As shown in Figure 2, the malware can compare
values using the copied string address. Because this case must
be handled to detect an anti-analysis strategy, it is essential
to accurately trace the dataflow. EvDetector, thus, traces the
dataflow until it meets conditional branches using the return
value of the APIs based on Algorithm 2.

3) DETECTING THE BUFFER AFFECT TO CONDITIONAL
BRANCH
While tracing the dataflow from the stored values in the
buffers, EvDetector inspects instructions that compares the

Algorithm 3 Compare Buffers and Find Conditional Branch
Input: Current Instruction(curINS), Current API(curRTN)
1: findCondBr ← False
2: BufferAddrList
3: ← Buffers related to anti-analysis API
4: EFLAGS_Value← 0
5:

6: if curINS = cmp_INS then
7: if curINS_Operand ⊂ BufferAddrList then
8: findCondBr ← True
9: EFLAGS_Value← EFLAGS_REG
10: end if
11: end if
12:

13: if curRTN = memcmp_API then
14: if curRTN_Param ⊂ BufferAddrList then
15: findCondBr ← True
16: EFLAGS_Value← EFLAGS_REG
17: end if
18: end if
19:

20: if findCondBr = True AND curINS = cond_br_INS
then

21: if EFLAGS_Value = EFLAGS_REG then
22: identifyCondBr()
23: end if
24: end if

values with other variables. EvDetector also inspects APIs
that compare two data in memory. After an instruction or API
compares buffers, it will change the value of the EFLAGS
register. We look for a conditional branch affected by the
EFLAGS value until it changes again. Algorithm 3 and
Figure 2 shows how to find a conditional branch after com-
paring the buffer values.

4) BYPASSING MODULE FOR ANTI-DBI TECHNIQUES
When EvDetector analyzes malware, it should obtain the
same result as the general execution result for the relia-
bility. However, DBI frameworks such as Intel Pin can be
detected byAnti-DBI techniques, as discussed in the previous
section. EvDetector, thus, has to be resist against the anti-DBI
techniques. For implementing the bypassing module, we are
resistant to the following techniques. The ProcessDebugFlags
of the NtQueryInformationProcess API can detect Intel Pin.
This technique returns 0 in ProcessInformation if debugging
is in progress. If the value of ProcessInformation is 0, the
anti-DBI detection technique detects that the process is being
debugged. The bypassing module detects the ProcessDe-
bugFlags technique. We bypassed this technique by abusing
the value of ProcessInformaton to be 1 instead of 0.

By default, all debuggers and DBIs ignore exceptions
raised by debuggee. All exceptions have the characteristic
of being handled directly by the analysis tool. To bypass

VOLUME 10, 2022 75809

M. Kim et al.: Large-Scale Analysis on Anti-Analysis Techniques in Real-World Malware

the detection techniques using the exception, analysis tools
should handle exceptions without ignoring them. If the tech-
nique sets the value of Trap Flag in the EFLAGS register
to 1, the CPU runs single-step mode. A single-step exception
occurs when the program executes an instruction in single-
step mode. There is a singularity that branch instructions do
not work in this case. To bypass this, when the program called
popfd instruction, we check the Trap Flags value. We manip-
ulate the EIP and ESP registers to execute the single-step
exception handling code if the single-step exception occurs.
After that, Intel Pin handles the exception without ignoring it.

When accessing the memory area set as PAGEGUARD,
an exception occurs. To bypass the PAGEGUARD excep-
tion technique, when accessing the PAGEGUARD memory,
we handle an exception for ACCESS_INVALID_PAGE.

NtGlobalFlag is one of the variables of the PEB struc-
ture. During debugging, the debugger set NtGlobalFlag to
0 × 70. Intel Pin has the characteristic of storing 0 × 70 to
NtGlobalFlag of 64-bit PEB structure when 32-bit Program
runs in 64-bit OS. Since the detection technique can detect
NtGlobalFlag value of the 64-bit PEB structure, we bypass it
by manipulating this value as 0.

VI. EVALUATION
This section describes the results of analyzing real-world
malware dataset using EvDetector. Specifically, we address
the following research questions.
• RQ1. How many in-the-wild malware are using anti-
analysis techniques?

• RQ2. Can EvDetector effectively find anti-analysis
techniques implemented in real-world malware?

• RQ3. Compared to the previous approaches, can EvDe-
tector find anti-analysis techniques more accurately in
terms of the number of false-positives?

A. EXPERIMENTAL SETUP
1) MALWARE DATASET
To investigate anti-analysis techniques used in malware over
the 4 years prior to the research (2017-2020). We col-
lected 763,985 real-world malware samples provided by
VirusShare (2017: 349,256, 2018: 119,952, 2019: 120,942,
2020: 173,785).

2) EXPERIMENTAL SETUP
We implemented EvDetector based on the Intel Pin
(V3.20.98437) and EvDetector analyzed each malware on a
Windows 10 VM (Windows 10 Pro, 21H1, V19043.1415).
We conducted our experiments on three Ubuntu 18.04 host
machines. We used 40 VMs in total to analyze the large
dataset. Each VM was set to have 2 CPUs and 4GB of RAM.
Also, we limit the execution time of each malware to be
3 minutes.

3) EXPERIMENTAL METHOD
VMware can control the guest VM on the host by using
command line interface. We uploaded malware from the

TABLE 3. The detection result of packed malware by year.

TABLE 4. The detection detail result of packed malware: shows the
number of detections per packer each year.

host machine to a guest VM via the shared directory. Then,
EvDetector ran the malware and downloaded the execution
log from the guest to the host. Using a script, we used 40 VMs
running the malware sequentially.

B. FINDING PACKED AND EVASIVE MALWARE
1) PACKED MALWARE
Before measuring the anti-analysis techniques used in mal-
ware, we evaluated the malware dataset to find how many
malicious applications are packed with an open-source tool:
PyPackerDetect [6] that provides an analysis function that
integrates various heuristic analysis methods, such as the
signature of PEiD [4] and the section names of well-known
packers. Table 3 shows the packing detection results in
our malware dataset: In our dataset, about 30% of mal-
ware was packed by known packers every year. Addition-
ally, we analyzed which packers are mostly used for the
malware. Table 4 shows that the analysis result. Unknown
in the table means that malware used two or more packers
together, or it is impossible to identify a packer. Notably,
‘‘Unknown Packer’’ accounts formore than half of the packed
malware samples. Otherwise, the other malware used a single
packer to pack an executable file. Malware used UPX [1]
and Armadillo overwhelmingly compared to other packers.
Next, PECompact, VMProtect, ASPack [3], and Themida
are widely applied. These packers provide protection

75810 VOLUME 10, 2022

M. Kim et al.: Large-Scale Analysis on Anti-Analysis Techniques in Real-World Malware

TABLE 5. The detection result of anti-analysis techniques of malware by
year.

techniques such as anti-Debug and anti-VM as well. Many
studies have been conducted to analyze Packer’s techniques
for the packed malware that provides the self protection tech-
niques. Those results made us question how many packing
samples use evasion techniques to detect sandbox-based anal-
ysis. In subsection VI-C, we demonstrate evaluation results
of how many packed malicious applications use anti-analysis
techniques using EvDetector.

2) DETECTION RESULTS OF ANTI-ANALYSIS TECHNIQUES
We analyze how many malicious applications in our dataset
equip the anti-analysis techniques with EvDetector. In addi-
tion, based on the detection results, we performed other anal-
yses in subsection VI-C, subsection VI-D.

We first paid attention to the detection rate because the
number of malware samples varies widely from year to year.
Table 5 shows the results of malware that tries to evade
analysis environments. On average, around 11% of malware
in 2018–2020 is still detecting the analysis environment.
In 2017, the ratio of malware that detects sandbox environ-
ments was about 21.89%, which is the highest rate among
the dataset by year used in our experiments. Since then,
in the 2018–2020 malware dataset, 13.72%, 8.25%, and
12.06% of malware are detecting sandbox environments,
respectively. These results show a slight decline in the
frequency of using the virtualization and sandbox detec-
tion techniques. However, this does not mean that malware
using other anti-analysis techniques decreases. As mentioned
in section III, because virtualization and sandbox detec-
tion techniques are a part of many anti-analysis techniques,
we believe the research community needs towork on the other
anti-analysis techniques continuously.

C. THE EFFECTIVENESS OF EvDetector
1) THE EFFECTIVENESS
As we discussed in section II, the previous approaches
for detecting the anti-analysis techniques usually find only
the existence of the signatures of anti-analysis techniques
in malware. However, the existence of the signatures of
anti-analysis techniques does not always mean a malicious
application implements an anti-analysis techniques because
Windows APIs used for evasive malware can have multi-
ple functionalities depending on the arguments. Therefore,
in this evaluation, we compared two anti-analysis detection
results: One is detected by a static analysis that finds sig-
natures related to APIs that can be used for implementing

FIGURE 3. Comparison of detection results between the static analysis
and EvDetector.

FIGURE 4. Comparison of detection results between the packing and
EvDetector.

anti-analysis techniques that detect virtual machines, and
sandboxes, the other one is detected by EvDetector.
Figure 3 demonstrates the results of comparing the signa-
ture detection result with the EvDetector. The static analysis
shows that many malware use anti-analysis techniques every
year. On the other hand, when analyzing through EvDetec-
tor, it analyzed that most of the detected malware does not
use the anti-analysis—when we use only the static analy-
sis, the results can have a lot of false-positives. Also, as
in Figure 3, even when a static analysis did not find any sig-
nature, EvDetector could detect anti-analysis techniques—
the static analysis result can have false-negatives. Those
results demonstrate the importance of the dataflow analysis
that EvDetector employs to accurately detect anti-analysis
techniques.

2) ANALYSIS RESULTS OF PACKED MALWARE
As mentioned earlier, packers such as PECompact, VMPro-
tect, and Themida provide features such as Anti-VM and
Anti-Sandbox. However, it is unknown that the other pack-
ers are also employ anti-analysis techniques. Therefore, we
analyzed the correlation between packing techniques and
anti-analysis techniques. As Table 3 shows, in our dataset,
averagely 30% of malware by year use packers to protect
themselves. However, our analysis results demonstrate that
the most of the packed samples does not use anti-analysis
techniques as shown in Figure 4.

VOLUME 10, 2022 75811

M. Kim et al.: Large-Scale Analysis on Anti-Analysis Techniques in Real-World Malware

FIGURE 5. Analysis of evasive malware usage techniques each year: shows that malware steadily uses hardware detection,
and other methods show a different distribution every year.

TABLE 6. The detection detail result of evasive malware: shows the
number of techniques per malware each year.

3) DETAILED RESULTS OF ANTI-ANALYSIS TECHNIQUES
Most malware appeared to use 1 to 4 techniques, as shown
in Table 6. The number of malware using more than 5 tech-
niques was significantly reduced. We found malware
using more than 10 anti-analysis techniques only in the
2020 dataset. Next, we investigated what characteristics of
the malware scans in the analysis environment. As shown
in Figure 5, most malware inspected hardware characteristics
such as CPU core and RAM size and OS environments such
as display resolution and username.

D. ANALYSIS USING avclass2
We used avclass2 [44] and VirusTotal to further analyze
evasive malware detected by EvDetector. Avclass2 is a tool

that automatically classifies malware and categorizes it by
a class, family, and its behavior. We collected VirusTotal’s
reports of only evasive malware detected by EvDetector
2018–2020.We, then, classified the collected analysis reports
using Avclass2. Because we analyzed only Windows mal-
ware, we categorized them based on the families and behav-
iors of the malware detected.

1) BEHAVIORAL-ANALYSIS
We analyzed the classification results according to
behaviors for evasive malware in 2018–2020 (2018: 24,767,
2019: 11,015, 2020: 24,585). We note that, as a result of
the analysis, there are cases where one malware classified
several overlapping actions. We found that evasive malware
by year consisted of 2018: 29, 2019: 33, and 2020: 35 behav-
iors, respectively. Also, behaviors are becoming increasingly
diverse. Figure 6 shows the detection results of the top 10
behaviors by year. The top five behaviors continue to rank in
the top five annually. Based on this analysis result, we can
observe that malware which exhibits ‘‘infosteal,’’ ‘‘inject,’’
‘‘execdownload,’’ and ‘‘filemodify’’ behaviors usually use
anti-analysis techniques.

2) FAMILIAL-ANALYSIS
According to family classification, we analyzed the results
for 2018–2020 (2018: 13,149/16,476, 2019: 7,532/9,982,
2020: 10,855/20,978). We found that evasive malware by
year consisted of 2018: 121, 2019: 125, and 2020: 164 fami-
lies, respectively. Families are becoming increasingly diverse.

75812 VOLUME 10, 2022

M. Kim et al.: Large-Scale Analysis on Anti-Analysis Techniques in Real-World Malware

TABLE 7. The analysis results of the top 30 family types out of 205 show that as time passes, various families are emerging. There were 40 newly
discovered types in 2019 and 44 freshly discovered types in 2020. Among the newly discovered types, only sfone and palevo types in 2019 and only
agenttesla and qbot types in 2020 ranked in top 30.

FIGURE 6. A result of the top 10 behavioral analyses of evasive malware:
shows that they are used in various categories as time goes by.

Table 7 shows the detection results of the top 30 families
by year. It is noteworthy that the ‘‘fareit’’ malware family
accounts for 72.33% of evasive malware in 2018, but it is
decreasing year by year, and it can see that various families
use anti-analysis techniques. However, still, we can find that
malicious applications in the ‘‘fareit’’ family widely use the
anti-analysis techniques.

VII. LIMITATION
1) HARDWARE COMPATIBILITY
We use Intel Pin to analyze Windows malware in this work.
Intel Pin can analyze binaries reliably on Intel CPU-based
operating systems (e.g., Windows, Linux, and macOS). How-
ever, unlike the other DBI frameworks, Intel Pin only works
with Intel CPUs. As a result, we should re-implement EvDe-
tector for using it on the other CPUs.

2) OUT OF SYMBOL PROBLEM
In this work, we employ Intel Pin to trace Windows APIs
used in the anti-analysis techniques and return values of them.
Intel Pin provides the ‘‘Routine Replace’’ function to help
implementing API hooking functions as shown in Listing 2.
However, Windows OS does not provide all symbols of APIs
and services needed to implement hooking functions. For
example, the WMI, which is one of the frequently used
service to check the system information. This service queries
the system information through called ExecQuery and Get
methods. Despite theWMI symbol provided byWindowsOS,
Intel Pin cannot hook the methods because the symbols of

VOLUME 10, 2022 75813

M. Kim et al.: Large-Scale Analysis on Anti-Analysis Techniques in Real-World Malware

the methods are not exported. Therefore, our analysis has a
limitation that cannot hook all APIs which can be used to
implement an anti-analysis technique.

3) API CALL CHAIN
Some of the evasion techniques detect through the linked
call-chain while reusing the handle to call each API. The
FindFirstFile-FindNextFile call-chain is one of the evasion
techniques that finds files related to sandboxes or VMs. In this
work, we did not consider how to track the handle, as we
only focused on the APIs’ dynamically allocated buffers. For
this reason, EvDetector is limited to detect the anti-analysis
techniques that work through such call-chains.

4) UNLABELED DATASET PROBLEMS
Our goal is to detect evasive malware and to analyze
anti-analysis techniques trends. We collected in-the-wild
malware dataset that does not have labels to show whether
each malware equips anti-analysis techniques or not. We ana-
lyzed the trends of evasive malware. Our analysis results are
meaningful in that we can classify them in more detail than
the prior and analysis tools. However, it is impossible to have
ground truth regarding anti-analysis techniques used in the
malware. We leave this limitation as future work and would
like to solve in the near future.

5) POSSIBLE DETECTION ERRORS AND THE SCOPE OF
DETECTION
To track the data flow associated with the buffers generated
by the APIs, we trace instructions such as MOV, PUSH,
and POP. Also, we monitor the CMP-like instructions and
MEMCMP-like APIs used to compare data in memory. How-
ever, since we do not know every Windows APIs that can
modify memory, there can be missing APIs that we should
trace. In addition, even though, we dynamically trace a mali-
cious application to find whether or not the use of APIs used
in anti-analysis techniques affects the execution flow of the
malware, we did not completely validate our analysis results,
and thus, false-positivesmay exist. For example, a conditional
branch that EvDetector observed could not be the one to
decide whether or not executing malicious behaviors. Also,
we assume that evasive malware will first scan the execution
environment on which it runs before performing malicious
behaviors. We, thus, focused on anti-analysis techniques
that detects sandboxes and virtual machine-based analysis
environments. However, as discussed in section III, various
anti-analysis techniques exist in addition to the sandbox and
virtual machine detection techniques. We leave those limita-
tion as our future work.

VIII. CONCLUSION
In this work, we investigated malware’s anti-analysis
techniques that effectively evade anti-virus vendor’s anal-
ysis and how much Windows malware detects the anal-
ysis environment. To this end, we design and implement
an analysis system, EvDetector, that finds if malware uses

anti-analysis techniques and monitors whether the malware
changes its execution path through anti-analysis results.
By using EvDetector, we analyzed 763,385 in-the-wild mal-
ware from 2017 to 2020. To our knowledge, this is the largest
dynamic analysis study involving anti-analysis techniques.
Our evaluation results show that at least 8% to 21% of mal-
ware can detect sandbox-based analysis each year. To check
the effectiveness of the analysis result, we compared the
static analysis result and the result of EvDetector. Analyzing
through EvDetector, most of the samples detected by the
static analysis did not use anti-analysis techniques. We also
analyzed samples that use commercial protectors, which pro-
vide a variety of anti-analysis techniques. Our evaluation
results demonstrate that most packed malware does not detect
sandbox. Finally, we analyzed the malware trend that uses
anti-analysis techniques through familial analysis and behav-
ioral analysis. Our analysis implies that the research commu-
nity needs to put more effort into defeating such anti-analysis
techniques to automatically analyze emerging malware and
respond with them.

REFERENCES
[1] UPX—The Ultimate Packer for Executables, 1996–2022.

Accessed: Sep. 7, 2020. [Online]. Available: https://upx.github.io/
[2] VMProtect Software Protection, 2003–2022. Accessed: Sep. 7, 2020.

[Online]. Available: https://vmpsoft.com/
[3] ASPACK Software, 2007–2022. Accessed: Sep. 7, 2020. [Online]. Avail-

able: http://www.aspack.com/
[4] PEiD, 2008–2022. Accessed: Mar. 4, 2021. [Online]. Available:

https://www.aldeid.com/wiki/PEiD
[5] Al-Khaser, 2015–2022. Accessed: Jun. 24, 2020. [Online]. Available:

https://github.com/LordNoteworthy/al-khaser
[6] PyPackerDetect, 2018–2022. Accessed: Apr. 6, 2021. [Online]. Available:

https://github.com/cylance/PyPackerDetect
[7] L. Abrams. Malware Adds Online Sandbox Detection to Evade

Analysis, 2020–2022. Accessed: Jul. 14, 2021. [Online]. Available:
https://www.bleepingcomputer.com/news/security/malware-adds-online-
sandbox-detection-to-evade-analysis/

[8] A. Algawi, M. Kiperberg, R. Leon, A. Resh, and N. Zaidenberg, ‘‘Creating
modern blue pills and red pills,’’ in Eur. Conf. Cyber Warfare Secur.,
Coimbra, Portugal, 2019, pp. 6–14.

[9] Any.Run. (2021). Interactive Malware Hunting Service. [Online]. Avail-
able: https://any.run/

[10] Y. Assor. Anti-VM and Anti-Sandbox Explained, 2016–2022.
Accessed: Jul. 14, 2021. [Online]. Available: https://www.cyberbit.
com/blog/endpoint-security/anti-vm-and-anti-sandbox-explained

[11] U. Bayer, I. Habibi, D. Balzarotti, E. Kirda, and C. Kruegel, ‘‘A view on
current malware behaviors,’’ in Proc. LEET, 2009, pp. 1–11.

[12] U. Bayer, C. Kruegel, and E. Kirda, TTAnalyze: A Tool for Analyzing
Malware. 2006.

[13] J. Bolg. Analyzing Azorult’s Anti-Analysis Tricks With Joe Sandbox
Hypervisor, 2020–2022. Accessed: Jul. 14, 2021. [Online]. Available:
https://www.joesecurity.org/blog/9048980422564630717

[14] R. R. Branco, G. N. Barbosa, and P. D. Neto, ‘‘Scientific
but not academical overview of malware anti-debugging, anti-
disassembly and anti-VM technologies,’’ Black Hat, vol. 1,
pp. 1–27, 2012. Accessed: Mar. 8, 2021. [Online]. Available:
https://kernelhacking.com/rodrigo/docs/blackhat2012-paper.pdf

[15] P. Chen, C. Huygens, L. Desmet, and W. Joosen, ‘‘Advanced or not? A
comparative study of the use of anti-debugging and anti-VM techniques in
generic and targeted malware,’’ in Proc. IFIP Int. Conf. ICT Syst. Secur.
Privacy Protection, Ghent, Belgium, May 2016, pp. 323–336.

[16] S. Choi, T. Chang, S.-W. Yoon, and Y. Park, ‘‘Hybrid emulation for bypass-
ing anti-reversing techniques and analyzing malware,’’ J. Supercomput.,
vol. 77, no. 1, pp. 471–497, Jan. 2021.

75814 VOLUME 10, 2022

M. Kim et al.: Large-Scale Analysis on Anti-Analysis Techniques in Real-World Malware

[17] A. Dahan. New Betabot Campaign Under the Microscope,
2018–2022. Accessed: Jul. 14, 2021. [Online]. Available: https://www.
cybereason.com/blog/betabot-banking-trojan-neurevt

[18] A. Dinaburg, P. Royal, M. Sharif, and W. Lee, ‘‘Ether: Malware analysis
via hardware virtualization extensions,’’ in Proc. 15th ACM Conf. Comput.
Commun. Secur., New York, NY, USA, 2008, pp. 51–62.

[19] FireEye. (2020). M-Trends 2020. [Online]. Available: https://content.
fireeye.com/m-trends/rpt-m-trends-2020

[20] Stichting Cuckoo Foundation. Cuckoo Sandbox—Automated Malware
Analysis, 2010–2022. Accessed: Apr. 7, 2021. [Online]. Available:
https://cuckoosandbox.org/

[21] H. Triage.Hatching Triage is a Fully Automated Solution for High-Volume
Malware Analysis Using Advanced Sandboxing Technology, 2018–2022.
Accessed: Feb. 15, 2021. [Online]. Available: https://tria.ge/

[22] JoeSecurity. Why Joe Sandbox? 2003–2022. [Online]. Available:
https://www.joesecurity.org/why-joe-sandbox

[23] Y. Kawakoya, M. Iwamura, E. Shioji, and T. Hariu, ‘‘API chaser: Anti-
analysis resistant malware analyzer,’’ in Proc. Int. Workshop Recent Adv.
Intrusion Detection. Berlin, Germany: Springer, 2013, pp. 123–143.

[24] Y. Kawakoya, E. Shioji, M. Iwamura, and J. Miyoshi, ‘‘API chaser: Taint-
assisted sandbox for evasive malware analysis,’’ J. Inf. Process., vol. 27,
pp. 297–314, Jan. 2019.

[25] D. Kirat, G. Vigna, and C. Kruegel, ‘‘BareBox: Efficient malware analysis
on bare-metal,’’ inProc. 27th Annu. Comput. Secur. Appl. Conf., NewYork,
NY, USA, Dec. 2011, pp. 403–412.

[26] D. Kirat, G. Vigna, and C. Kruegel, ‘‘BareCloud: Bare-metal analysis-
based evasive malware detection,’’ in Proc. 23rd USENIX Secur. Symp.
(USENIX Secur.), San Diego, CA, USA, Aug. 2014, pp. 287–301.

[27] KISA. (2021). 2021 1H Cyber Security Issue Report. Accessed:
Jul. 14, 2021. [Online]. Available: https://krcert.or.kr/filedownload.
do?attach_file_seq=3431&attach_fil% e_id=EpF3431.pdf

[28] Y. B. Lee, J. H. Suk, and D. H. Lee, ‘‘Bypassing anti-analysis of
commercial protector methods using DBI tools,’’ IEEE Access, vol. 9,
pp. 7655–7673, 2021.

[29] O. Levi. PIN—A Dynamic Binary Instrumentation Tool, 2007–2022.
Accessed: Mar. 2, 2020. [Online]. Available: https://www.intel.
com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-
instrumentation-tool.html

[30] Malwarebytes Labs. (2020). 2020 State of Malware Report.
[Online]. Available: https://www.malwarebytes.com/resources/files/
2020/02/2020_state-of-malware-report.pdf

[31] M. Sikorski and A. Honig, Practical Malware Analysis: The Hands-
on Guide to Dissecting Malicious Software. San Francisco, CA, USA:
William Pollock, 2012.

[32] N. Miramirkhani, M. P. Appini, N. Nikiforakis, and M. Polychronakis,
‘‘Spotless sandboxes: Evading malware analysis systems using wear-and-
tear artifacts,’’ in Proc. IEEE Symp. Secur. Privacy (SP), San Jose, CA,
USA, May 2017, pp. 1009–1024.

[33] MITRE ATT&CK. Virtualization/Sandbox Evasion, 2019–2022.
Accessed: Aug. 9, 2021. [Online]. Available: https://attack.mitre.
org/techniques/T1497/

[34] NIST (National Institute of Standards and Technology). Juilet Test
Suites, 2010–2022. Accessed: Jan. 14, 2021. [Online]. Available:
https://samate.nist.gov/SRD/testsuite.php

[35] Obsidium Software. (2022). Obsidium Software Protection System.
[Online]. Available: https://www.obsidium.de/

[36] Oreans Technologies. Themida Overview—Oreans Technologies,
2004–2022. Accessed: Mar. 2, 2020. [Online]. Available: https://
www.oreans.com/Themida.php

[37] A. Ortega. Pafish, 2012–2022. Accessed: Jun. 23, 2020. [Online]. Avail-
able: https://github.com/a0rtega/pafish

[38] Y. Oyama, ‘‘Investigation of the diverse sleep behavior of malware,’’ J. Inf.
Process., vol. 26, pp. 461–476, Jan. 2018.

[39] Y. Oyama, ‘‘Trends of anti-analysis operations of malwares observed in
API call logs,’’ J. Comput. Virol. Hacking Techn., vol. 14, no. 1, pp. 69–85,
Feb. 2018.

[40] Panda Security. (2020). Panda Security Launches Its Threat Insights
Report 2020. [Online]. Available: https://www.pandasecurity.com/en/
mediacenter/panda-security/threat-insights-report-2020/

[41] J. Park, Y.-H. Jang, S. Hong, andY. Park, ‘‘Automatic detection and bypass-
ing of anti-debugging techniques for Microsoft windows environments,’’
Adv. Electr. Comput. Eng., vol. 19, no. 2, pp. 23–29, 2019.

[42] QEMU. QEMU, a Generic and Open Source Machine Emulator and
Virtualizer, 2009–2022. [Online]. Available: https://www.qemu.org/

[43] A. S. Sai Omkar Vashisht. Turing Test in Reverse: New Sandbox-
Evasion Techniques Seek Human Interaction, 2014–2022. Accessed:
Jul. 14, 2021. [Online]. Available: https://www.fireeye.com/blog/threat-
research/2014/06/turing-test-in-reverse-new-sandbox-evasion-techniques-
seek-human-interaction.html

[44] S. Sebastián and J. Caballero, ‘‘AVclass2: Massive malware tag extraction
from AV labels,’’ in Proc. Annu. Comput. Secur. Appl. Conf., Dec. 2020,
pp. 42–53.

[45] The Enigma Protector. Enigma Protector, 2004–2022. [Online]. Available:
https://enigmaprotector.com/

[46] C. S. Thomas Roccia. Evolution of Malware Sandbox Evasion
Tactics—A Retrospective Study, 2019–2022. Accessed: Jul. 14, 2021.
[Online]. Available: https://www.mcafee.com/blogs/other-blogs/mcafee-
labs/evolution-of-malware-sandbox-evasion-tactics-a-retrospective-study/

[47] VMRay. VMRay—Cyber Security Threat Detection & Analysis
Platform, 2015–2022. Accessed: Apr. 9, 2021. [Online]. Available:
https://www.vmray.com/

[48] VMware. VMware, 2006–2022. Accessed: Mar. 4, 2020. [Online]. Avail-
able: https://www.vmware.com/

[49] Yaldex. Acprotect Standard, 2006–2022. Accessed: Jan. 15, 2021.
[Online]. Available: http://www.yaldex.com/Bestsoft/Utilities/acprotect.
htm

[50] A. Yokoyama, K. Ishii, R. Tanabe, and Y. Papa, ‘‘SandPrint: Fingerprinting
malware sandboxes to provide intelligence for sandbox evasion,’’ in Proc.
Int. Symp. Res. Attacks, Intrusions, Defenses, Paris, France, Sep. 2016,
pp. 165–187.

MINHO KIM received the B.S. degree in
electronic engineering and the M.S. degree in
computer science and engineering from Soongsil
University, in 2020 and 2022, respectively, where
he is currently pursuing the Ph.D. degree with
the School of Software. He is also a Research
Staff with the Cyber Security Research Cen-
ter. His research interests include binary analy-
sis, software engineering, reverse engineering, and
systems security.

HAEHYUN CHO received the B.S. and M.S.
degrees in computer science from Soongsil Uni-
versity, Seoul, South Korea, in 2013 and 2015,
respectively, and the Ph.D. degree from the School
of Computing, Informatics and Decision Systems
Engineering, Arizona State University, majoring in
computer science, and especially concentrating on
information assurance. He is currently an Assis-
tant Professor with the School of Software and
the Co-Director of the Cyber Security Research

Center, Soongsil University. His primary research interests include the field
of systems security, which is to address and discover security concerns
stemmed from insecure designs and implementations. He is also passionate
about analyzing, finding, and resolving security issues in a wide range of
topics.

JEONG HYUN YI (Member, IEEE) received
the B.S. and M.S. degrees in computer science
from Soongsil University, Seoul, South Korea,
in 1993 and 1995, respectively, and the Ph.D.
degree in information and computer science from
the University of California at Irvine, Irvine,
in 2005. He was a Principal Researcher with
the Samsung Advanced Institute of Technology,
South Korea, from 2005 to 2008, and a member of
Research Staff with the Electronics and Telecom-

munications Research Institute (ETRI), South Korea, from 1995 to 2001.
From 2000 to 2001, he was a Guest Researcher with the National Institute
of Standards and Technology (NIST), Maryland, USA. He is currently a
Professor with the School of Software and the Director of the Cyber Security
Research Center, Soongsil University. His research interests include mobile
security and privacy, the IoT security, and applied cryptography.

VOLUME 10, 2022 75815

