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ABSTRACT Equipment for the correct identification of living objects entrapped under heavy debris is
generally purpose-built, is costly, must be operated by highly trained professionals and is not readily available
in a catastrophic event. A more readily available solution for improving the time-to-rescue ratio and logistics
issues can be provided with smartphones which, equipped with software to find signs of life, are readily
available at any disaster scene. This paper examines whether cardiac and pulmonary-related activities of
living objects can provide acceptably accurate readings from a non-contact detection method. Laboratory
experiments were conducted with Doppler radar at a 2.4 GHz frequency spectrum similar to smartphone-
like devices, with empirical results demonstrating that human vital signs can be clearly identified when using
smartphones for non-contact detection of living objects entrapped under debris. Experiments also simulated
the psychogenic tremors likely to be experienced by individuals while operating the sensor-equipped devices
under crisis conditions. The results show a clear relationship between the wavelength of pulmonary and
blood vessel activities and the distance between the trapped human and the sensor in various conditions.
The article also reports the design of a pseudo learning algorithm for model-based anomaly detection in
time series to detect vital signs during normal and abnormal ventilation based on cardiopulmonary clinical
records and datasets. This work significantly contributes to the existing body of research on timely rescue
during disaster events.

INDEX TERMS Doppler radar sensor, 2.4 GHz sensor, anomaly signal detection, noncontact cardiopul-
monary detection, near-skin vessel detection, vital sign detection.

I. INTRODUCTION
Research into survival rates of disaster victims entrapped
under rubble shows variations depending on whether or not
the victim was injured, adequate fluid and sufficient space for
movement of limbs were available, whether victims devel-
oped diarrhoea, the state of their overall health prior to
the disaster, their age and how long it took to find them.
A study compiled from 18 of 34 earthquakes highlights that
rescue generally commences approximately 48 hours after
the event, with the average time for detection and rescue being
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6.8 days [1]. The longest time of entrapment of any victim
ever found alive was 27 days [2] although this individual had
access to dry food for the first few days. The latter is an
exception rather than the norm, as international rescue organ-
isations usually call off the search and rescue mission after
5 to 7 days, during which no further victims are found even
if there are possible trapped victims who may be alive [3].
However, research opinions differ on the survival chances and
the length of rescue commitment due to the many variations
found in disaster events, Chiu et al. (2020), for example, argue
that there is 74% survival chance if fully equipped rescue
teams arrive within 24 hours, but diminish rapidly with every
passing day.
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Existing devices used for vital sign detection during res-
cue missions use mainly 22 or 40 MHz channel spaces at
2.4 GHz radio frequency spectrum, the wavelength is approx-
imated to be 124.95 millimetres (mm). They carry a high
cost, are time-consuming to deploy and generally require
expert personnel to operate them. An example is the DKL
LifeGuard [4] used after the earthquake in China in May
2008 [5] and during theWorld Trade Centre collapse in 2001.
Similarly, the portable radar NASA FINDER was used to
detect vital signs of victims trapped in the 2015 earthquake
in Nepal [6]. Regarding frequencies used in non-invasive
or contactless cardiopulmonary vital sign detection, signifi-
cant research comes from Kara ([7], [8], who used ‘line-of-
sight’ between the sensor and human subject. Lee et al. [8]
and Girao et al. [9] deployed Microwave frequencies, while
Kara and Sovlukov [10] experimented with Ultrasound. Less
expensive systems have been proposed, such as the Doppler
Radar sensor by Nosrati and Tavassolian [11] who operated
at 2.4 GHz but only focused on the detection of passive
intercostal muscle movement. At the same time, the sub-
jects’ chests faced the antennae, and there were obstacles
(i.e., debris) between the live subject and the Doppler sensor.
These research methods can all be used for detecting live
objects trapped either less than a metre below the surface,
using Ultra-wideband (UWB) [33] noncontact equipment or
more expensive devices that are purpose-built with longer
wavelengths and deeper penetration below the earth sur-
face ([6], Baboli et al., 2009; Barrie, 2015; [31])

However, all these systems have the same disadvantage:
they need to be ‘brought’ into the disaster zone and are
not readily available. What is required is a device that is
commonly available that can be equipped to carry out the
detection of vital signs of victims trapped under debris, such
as smartphone-like technology. The number of these devices
was reported to be above 6.5 billion globally at the beginning
of 2022, and according to the United Nations, it is pro-
jected to shortly reach 7.8 billion [12]. There is, thus, a high
probability of availability of smartphone-like devices when
natural disasters occur in populated areas, enabling users to
detect entrapped humans. The main objective of this paper
is, thus, to introduce a robust, heuristic method for detecting
live objects trapped under rubble achieved through reading
vital signs using technology common to almost 7 billion indi-
viduals. To metamorphose the smartphone into an effective
sensing unit, a Doppler sensor [13] at 2.4 GHz and pattern
recognition and anomaly detection algorithm are proposed to
deliver reliable sensing capabilities within one metre from
the surface. It tends to simplify the calculation or resource
crunch and maximise the device’s battery longevity in cri-
sis scenarios. Lab experiments to test the proposition were
carried out using 0 to 60 seconds time-space sequences with
results approximating 1000 mm for breathing (pulmonary)
and 500 mm for near-skin vessel (vascular activities). The
datasets were obtained from sensing signals from human
bodies drawn from blood vessels under simulated conditions
of entrapment (Fig. 1) [14], [15]. This work, thus, offers

a significant contribution to the timely rescue of trapped
individuals in disaster events.

FIGURE 1. Essential vital signs of a living human subject.

A simple method was applied to identify the reflected radio
signal from trapped subjects, either cardiopulmonary or pul-
monary only and to estimate the distance between the human
subject and the sensor. The human subject may be conscious
or unconscious but hydrated if found immediately, the latter
being likely to diminish after being trapped under debris for
several days. If detection efforts commence soon after the
event, still hydrated trapped victims will have more substan-
tial blood flow and vital signs. Radio waves were compared
in the laboratory while mimicking entrapment under the fol-
lowing materials: soil, brick, and concrete mix, as shown in
Table. 1 configuration in the laboratory environment

To optimise short life of the battery, such smartphone-like
devices and possible no grid power supply available during a
crisis. A simple self-learning model-based anomaly detection
in time series was then proposed to detect vital signs during
normal and abnormal ventilation using a basic geometrical
application of calculus based on the collected datasets from
empirical research [16]. If the laboratory results from the
setting of the Doppler radar sensor at 2.4 GHz RF spec-
trum generate a significant deviation from the trained mean,
they are classified as anomalous [17]. For ease of operation,
an embedded training module is proposed for training the
anomaly algorithm.

Contributions of this paper are:
• Justification of the use of smartphones and tablet-like
devices to detect vital signs from humans trapped under
the rubble. Results of noncontact stationary and nonsta-
tionary or free movement of the Doppler sensor aimed
at directions of interest which simulate actual condi-
tions when holding actual smartphone-like devices to
face down to suspect direction to detect the human sub-
ject configured as Fig. 4. (a), (b) and actual results of
radio waves collected in a laboratory setup. This testing
method aimed to find the acceptable noise threshold
of radio wave propagation [11] and white and flicker
noises [18] so that the reflected signal is still recognis-
able. A pre-defined anomaly vital signs algorithm can
learn it.

• Proposal for a non-situated sensor capable of hovering
above a surface and moving within 10 degrees to trail
for pulmonary hotspots on the human body. A non-
stationary sensor can float freely within a pre-defined
range and capture groin, wrist, ankle, and cardiac neck
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activity. Thus, widening the chance of detection of sur-
vivors of a disaster event.

• Recognition of the importance of pulmonary hotspots
on the human body. These points have not so far
attracted significant attention. As they are distributed
across different regions of the human body, it is only in
conjunction with the non-stationary sensor that theymay
be found with more ease.

• Design of the theoretical model for a self-learning algo-
rithm to detect abnormalities in cardiopulmonary activ-
ities. The efficacy of this heuristic method lies in its
ability to validate the previously published observable
wavelet dataset for a human subject trapped under debris
relying on noncontact (i.e., non-invasive) vital sign sen-
sors for the correlation between heart rate and breathing
beat activities.

The remainder of this paper is arranged as follows: The
laboratory setting, hardware, Doppler radar sensors and non-
contact data collection methods are presented in Section II
followed by the results of the blood vessel and breathing
activities in MATLAB (Section III). Section IV proposes
and plots simple model-based anomaly detection in time
series. The conclusion and further perspectives are given in
Sections V and VIwith conflict of interest and funding decla-
ration, data collection on human compliance ethical standards
and acknowledgement found at the end of the paper.

II. CARDIOPULMONARY SIGNAL READING METHODS
This section describes the technology behind the Doppler
Effect radar technique and the laboratory Doppler sensor
configuration used in this research to send wavelengths
through obstacles and collect vital signs signals. The elements
of interest in living human body regions were blood ves-
sels and breathing activities. Participants are also identified
and briefly described together with the terms of the ethics
approval terms.

A. DOPPLER EFFECT RADAR TECHNIQUE
The concept of contactless vital sign detection and monitor-
ing using microwave has been applied since the 1970s [19]
primarily for non-invasive, non-intrusive and unobtrusive
medical diagnosis, including monitoring of foetal heartbeat,
air emboli, blood pressure and blood flow [9]. In the con-
text of a short theoretical study related to stellar motion,
Christian Johann Doppler, using a simple formula, demon-
strated the deviation of sin waves [20]. Doppler radar tech-
nologies have been widely used in many applications, such
as vehicle speed measurements, automotive obstacle detec-
tion, and storm tracking and mapping [18]. More recently,
these technologies have also been applied in the medical
domain, in areas such as medical imaging and heart rate and
pulmonary monitoring [9]. A significant body of research
and experiment apply Doppler Effect radar techniques in
a broader range of radiofrequency spectrums and bands.
They started at 450 MHz or 1500 MHz to detect vital signs
through earthquake rubble and concrete approximate 3meters
thick [21], to Ka band from 20-30 GHz.

JalaliBidgoli and colleagues have successfully tested and
collected vital signs of human subjects 1.5 to 10meters below
the surface subject to material density with a Doppler effect
sensor operated at 1.15 GHz and equipped with two horn
antennae [22]. Countless architectures for signal compensa-
tion and filtering noise techniques have been proposed and
tested within these RF ranges [18], [19]. The advantage of the
Doppler Effect and the prior knowledge of vital sign signals
has providedmassive scope for applying Doppler Effect radar
with a similar RF range at 2.4 GHz RF range.

The Doppler radar receives the reflected signal through
the receiver antenna, while radar outputs are through
in-phase (I) and quadrature-phase (Q) signals (channels) [11].
Fig. 2 represents how the elastic movement generated by the
human subject is collected by two configured transmit (Tx)
and receiver (Rx) antennae.

FIGURE 2. A sample of how Doppler radar detects the chest wall elastic
movement by directional antennae.

B. HARDWARE SETTINGS
Our laboratory experiment was comprised of theDoppler sen-
sor configuration and used standardised 2.4GHz Industry Sci-
ence and Medical (ISM) frequency ranges [23]. The Doppler
sensor antennae circuit emits a single-tone signal obtained
from Year One LLC, as given in Fig. 3, to detect the contrac-
tions of human subjects’ near-skin vessels and the respiratory
muscles and measure the elasticity of the movement. The
readings of vascular and breathing activities are in the form
of voltage changing as amplitude in 60 seconds, converted to
Microsoft Excel format as the final dataset ready for analysis
and plotting. The setup includes a 2.4 GHz Doppler radar
circuit board, two patch antennae, a four channel-equipped
DATAQ Model DI-1100 data acquisitor and a four AAA
battery box or 6-DC voltage.

C. VITAL SIGNS SENSING METHODS
To support the empirical research goals of the article, we only
focus on collecting human subjects near-skin vessel and torso
displacement activities. After a number of radio wave reading
methods have been carried out over the research duration,
we identify two methods that can be used to maximise the
ability to detect whether there is a possible sign of human
object entrapment under rubble during a period of fewer
than 60 seconds. These two reading methods are tested when
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FIGURE 3. Doppler sensor components are mounted on a wooden stick,
making it easier to maneuver and create random variation datasets rather
than placing the sensor on the actual surface.

FIGURE 4. a) Doppler sensor is move-free in any direction and not
contact the surface. b) Regular antennae-to-surface contact configuration
when collecting radio wave.

TABLE 1. Brick, Soil, and Concrete-mix materials used in radio wave
propagation comparison results.

the sensor positions are in ‘contact’ with the rubble surface
(b) and ‘non-contacted’ or randomised (a) with an agreed
angle and dimensions, as illustrated in Fig. 4.

The first method is to detect and validate the collected
signal against the trained vascular label, as shown in Table 2,
to see whether or not periodic vascular activities can be
identified in a human subject.

Based on the research scope mentioned above, we aim
for the near-skin vessel regions shown in Fig. 5. This
experiment will not investigate deeper closed-blood ves-
sel systems beneath the skin such as major arteries and
veins [24] that are usually analysed by human subject with
touch-based ultrasound techniques for blood flowmeter or
scanner [25], [26] or the traditional medical contact-based
physiological monitor devices.

The second method is to collect radio waves and challenge
pre-trained pulmonary labels (Table 3) for a human subject’s
breathing activities or torso’s nonstop displacement as if the
subject were still alive. Positions of human subjects during
real disaster scenarios may be far more varied. Therefore,
multiple positions and angles to the sensor antennae were

FIGURE 5. Detectable blood vessel activities and regions using
noncontact Doppler sensors for living subjects.

designed, and the human subjects were positioned in the
laboratory so that a range of variations could be reflected in a
dataset. The assumption is that the estimated object position is
unknown to the sensor when a human subject is trapped under
rubble and not visible to the naked eye. Thus, a breathing
dataset from four different angles was collected as samples
presented in this paper, and each position was rotated by
90-degree, as shown in Fig. 6.

FIGURE 6. Difference of victim position samples in rescue relief events.

D. PARTICIPANTS INFORMATION
Participants in the laboratory environment were volunteers
who had read the information sheet and signed the consent
form as per the terms and conditions of the ethics approval
for this research project. Ethics approval was obtained with
approved protocol number 200201755 for research involving
human participants; refer to compliance with ethical stan-
dards at the end of the paper for details.

III. CARDIOPULMONARY RESULTS AND ANALYSIS
The actual laboratory dataset results and wave signal plotted
below were produced from the regular and irregular activ-
ities of human subjects’ artery vascular system and strong
artery near-skin regions. The diaphragm’s contraction and
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TABLE 2. Acceptable ranges of heart rates [27] and labelled as contacted
or pre-trained heart rate or beat in this paper.

TABLE 3. Acceptable ranges of respiration rates [30] and labelled as
contacted or pre-trained respiration or pulmonary in this paper.

relaxation are shown when the 2.4 GHz Doppler sensor
is contacted and situated on the top of the surface, as in
Fig. 7 andwhenmoving randomly over the surface of interest,
as in Fig. 15. Thus, this paper aims to detect the possible
inverted wave signal from entrapped subjects of interest not
visible to the naked human eyes.

Once the reader collects the wave signals, the next phase
is to compare these against the predefined cardiopulmonary
labels and show whether there is any possible match with the
human heartbeat and breathing rates listed in Tables 2 and 3
(collected by traditional contact instruments such as electro-
cardiography for heart rate and impedance pneumography
or capnography methods for breathing rate collections) [27].
For a more manageable comparison for the remainder of
this paper, we labelled heart and respiration rate datasets in
these two tables as contacted or trained heart rate or beat and
respiration or pulmonary rate, respectively.

In comparison, dog and cat heart rates are approximately
70-220 and 120-240 beats per minute [28] respectively, while
dogs’ breathing rate is 15-30, and cats 15-40 breaths per
minute when at rest [29]. As the research focuses on human
subjects’ vital signs, we did not obtain ethical approval to
work and experiment with animals. However, the method
implied in this paper could detect any living subject with suit-
able inverted cardiopulmonary wave rhythm reflected from
regions of interest.

Heartbeat and Living humans’ heartbeat rate patterns of
living human age, activity, illness, and emotion are affected
by drugs [27], [30]. In scenarios of subject entrapment, there
are additional factors such as temperature conditions, differ-
ent degrees of injury, emotional stress, anxiety, fear, hunger,
etc., to be considered when projecting and accessing the
subject’s state. However, the goal of this study is to detect
any sign of a living subject beneath the surface of debris
and display the results in the shortest possible time. Here,

the analysis from both vessel system and respiration signals
employed quick detection at 30 and 60 seconds intervals.

FIGURE 7. Sample of Doppler sensor’s antennae situated on the top and
in contact with the surface when reading vital sign.

A. ANTENNAE CONTACTED THE SURFACE
1) PULMONARY RESULTS
The samples for the breathing dataset were collected in this
experiment from two patch antennae penetrating through
50 mm solid building grade bricks placed on top of a 5 mm
thick wooden board and a 2 mm wooden board, as in Fig. 9,
mimicking physical entrapment of a human subject under
building materials. Participants were instructed to breathe
normally within 0 to 30 seconds and abnormally within 30 to
60-second intervals to generate a variety of datasets for one
minute. We further simulated a rescue relief operation to
detect the breathing across four different positions of a human
subject as shown in Fig. 8, a), b), c), and d), the naming
convention is listed in Table 4. C2A - chest to antennae –
was simulated with Fig. 2, where Tx and Rx are directional
antennae for transmission and reception.

Following is a random dataset representative of six partic-
ipants at four different estimates of 90-degree angles and the
position of the torso to antennae to detect the displacement
of the intercoastal muscles generated when in- and exhaling.
Each result illustrates a plot to virtualise the vital sign graph-
ically ranging from 0 to 30 seconds. Fig. 10 accounts for
normal breathing, while the abnormal breathing is displayed
in Fig. 10, which calculates the mean of all collected outliers
and skewed points and projects the results in a scatter plot
allowing comparison with the respiration rates per 30 sec-
onds in Tables 6 and 7. For example, human subject (HS)
participant 1 was in a resting state. Five respiration-related
displacements were detected with chest faced to antennae
(C2A) position or 0◦ angles as pre-labelled in Table 4.

In this laboratory-based pulmonary signal reading sample,
human subjects were positioned at four different 90-degree
angles to the stationary Doppler antennae right above the
subject to create positional datasets, as in Tables 5. and 6.
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TABLE 4. Positions convert to a degree for plotting purposes.

FIGURE 8. Participant position samples aim at the torso for breathing
signal.

TABLE 5. Doppler sensor collected 0 to 30 seconds – Normal or at resting
breathing for a human subject (HS).

The normal breathing rate plotted in Fig. 9 is between
0 to 30-second intervals. Data in Fig. 10 reflects deeper in-
and exhalation by participants to simulate abnormal breath-
ing, reading the results for approximately 30-60 seconds.
Noting that the differences in the level of direct current (DC)
voltage vertical axis are due to the distance between the
human subject and the patch Tx for transmission and Rx for
the receiving antennae, the actual voltage input is positive.
If the human subject is closer to the sensor, output power
consumption falls but increases with greater distance. File-
name.xlsx is a Microsoft Excel file format converting voltage
changes for 60 seconds of input from the Doppler reader.
To trace multiple datasets more efficiently for each partici-
pant across four different positions, the naming convention
was used. For instance, S1.R2A.xlsx is labelled for the first

TABLE 6. Doppler sensor collected 30 to 60 seconds – of deep abnormal
breathing.

FIGURE 9. 90◦ (R2A) of six participants plot in 0-30 seconds normal
ventilation or at rest breathing.

participant right side faces the sensor antennae, and the left
side is on the floor, as named in Table 4 and illustrated in
Fig. 9.

The population mean (1) was used to calculate the com-
plete data set recorded in Tables. 5 and 6 for 0 to 30 and 30 to
60-second intervals to produce complex datasets and results.

µ =
1
N

∑N

r=1
HSr (1)

where,
µ = population mean
N = size of the population
6 = the total of all sample
HSr = respiration samples collected
Apply (1) to the Table. 5 dataset and result as (2)

µ0−30 sec =
1
24

∑24

r=1
(24 results in Table 5) = 7.08 (2)
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FIGURE 10. 90◦ (R2A) of six participants plot in 30-60 seconds with
intended deep abnormal breathing than first 30 seconds.

Figs. 12 and 13 show that the population means are the
same regardless of angle or human subject. The population
meanµ is the same in bothmethods and falls into the standard
contact respiratory monitor from 0 to 30 seconds. The result
is 6≤µ0−30 ≤ 9, whichmatches the standard clinical data for
an adult’s breathing rate movements during a 0 to 30 second
period.

Apply (1) to the Table 6 dataset and result as (3)

µ30−60 sec =
1
24

∑24

r=1
(24 results in Table 6) = 6.98 (3)

When producing abnormal readings, participants were
instructed to make random moves with their hands and legs
and take deep and sharp breaths for both in- and exhala-
tion in the trapped position, as shown in Fig. 10 during the
30-60 seconds.

However, the results remained the same. The estimated
population mean resulting from (2) and (3) also fell
within the standard invasive respiration range for an adult,
6 ≤ µ30−60 ≤ 9. In contrast to the actual clinical dataset from
Table 3 [30] for acceptable ranges of respiration rates, the
collected result falls well within the adult breathing rate for a
30-second duration. According to Figs 11 and 12, the Y-axis
represents the breathing rate, and the X-axis the six read-
ings across four different positions. It is noted that standard
breathing patterns can vary with age, activity, illness, emo-
tions, depressive thoughts, drugs, and state of amusement.

FIGURE 11. Population mean of normal breathing result of six time series
collected when sensor contact with the surface.

FIGURE 12. Population mean of abnormal breathing result of six time
series collected when sensor contact with the surface.

To simulate the complexity of behaviours of trapped objects,
a variety of outputs was producedwith results shown in Fig. 9,
with all participants breathing normally and did not move for
0 to 30 seconds. Fig. 10 reflects that the participants had been
instructed to move their body parts slightly, including hands
and legs. The respiration results fell between adults’ standard
invasive respiration range, Table 3 in 30 seconds, 6 ≤ µ0−30
or µ30−60 ≤ 9 regardless of the object’s position and the
angles at which the Doppler radar antennae was face.

2) VASCULAR OR NEAR-SKIN VESSEL RESULTS
Fig. 8 shows sample positions with a distance of fewer than
0.5 metres from the Doppler sensor and the nearest vascular
populated region (Fig. 5); hands were used in this case. The
sensor is in contact with the surface (Fig. 7), and blood
vessel-related signals are collected. Three samples plotted
as Figs. 13, 14 and 15 are based on 5 seconds of sensing
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FIGURE 13. Hand area 1 - both near-skin vascular and breathing signals
coexist.

FIGURE 14. Hand area 2- mainly near-skin vascular, and no significant
breathing signal detected.

FIGURE 15. Hand area 3 - mainly near-skin vascular, and no significant
breathing signal detected.

operation and 500 samples collected from the hand/palm
areas while the Doppler sensor antennae had contact with the
surface during the reading of the vital signs.

Discussion part V contains the analogy result between the
stationary and mobile Doppler sensor (i.e., not touching the
obstacle surface). The contrast for both near-skin vascular
detection methods and breathing signals indicated that the
objects of interest were less than 0.5 metres from the Doppler
sensor. Aligned with the vital sign detection study in this
paper, the three experiments above test whether there are
differences in blood-related vessels and activities between
the sensor that touches and does not touch the surface and
whether both methods provide a sign of life signal. With
the current hardware setting used in the paper, no blood
vessels or near-skin displacement activities were detected

FIGURE 16. Doppler sensor randomly moving on the top of the earth’s
surface sample.

FIGURE 17. Actual simulation of Fig. 16. configuration when sensing
radio wave while Doppler radar move randomly in any direction.

if the object exceeded 0.5 meters in the distance from the
antennae.

B. ANTENNAE RANDOM MOVEMENT ON THE SURFACE
Most recent empirical research into noncontact detection
of vital sign cardiopulmonary-related signals has been con-
ductedwith sensors firmly in contact with the obstacle surface
[31]–[33]. The purpose of this data collection design is to
create a variety of datasets with the same duration to identify
if there are significant outliers and variations in one time
series from a collection of time series when the Doppler
sensor antennae are in contact with the surface of interest
(Fig. 7) or mobile and not in contact (Fig. 16). Here, instead
of locating the Doppler radar so that it touches the surface
of interest, the data collection design allows free movement
to the Doppler antenna within 5-10 degrees from a fixed
point above the surface of interest. Results were plotted in
Figs. 18 and 19 for the pulmonary and near-skin vessel.
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1) PULMONARY RESULTS
Fig.16 simulates free sensor movement above the target of
interest until the input wave is no longer recognisable and
identifiable by the pre-defined cardiopulmonary algorithm
compared to clinical threshold values from Tables 2 and 3.
Fig. 18 plotted different datasets for three different positions
and Fig. 17 for 30 seconds of time-space. The signal anal-
yser shows only pulmonary and no near-skin vessel signals
co-existing, see Fig. 13.

FIGURE 18. Plots collected datasets from Figure 17 sample positions
where the sensors were moved around from the center point.

Fig. 18 shows the Doppler being subjected to shaking pos-
sibly caused by nervousness, also producing a slight deviation
from the centre-point by less than 10 degrees with the object
being no more than 1 meter in the distance. The breathing
signal is still recognisable. The experiment recorded that
when the angle of the random movement was approximately
10 degrees, the reflection of the breathing wavelength reading
was getting weaker and eventually disappeared completely.

2) VASCULAR OR NEAR-SKIN VESSEL RESULTS
Similar manoeuvres and settings were used for pulmonary
signal collection for a non-stationary sensor above the surface
(Figs. 17, 18). The comparison was drawn between results of
the near-skin vessel when the sensor was in contact and freely
moved above the detection area of interest. Fig. 19 projected
results from 5 seconds of sensing operation and 500 samples
and aligned with (Figs. 13, 14 and 15) the near-skin vessel
when the sensor was in contact with the surface during data
collection.

FIGURE 19. Near skin-vessel detection when a sensor is freely movement
on the top of the neck, leg areas.

Fig. 19 shows no sign of near-skin vessel or vascular
wavelength being detected on the left and right neck areas,
but pulmonary activities appeared strongly from the reading
result. The Doppler sensor indicated the blood-related vessel
but detected no displacements caused by breathing from the
leg region.

FIGURE 20. Flowchart of the proposed cardiopulmonary noncontact
detection in 60 seconds interval.

IV. PROPOSED ANOMALY ALGORITHM USE IN
CARDIOPULMONARY NONCONTACT DETECTION
In this section, we proposed a learning anomaly detection
algorithm based on the collected dataset from empirical [16]
laboratory results [16] produced from the setting of a
Doppler radar sensor at 2.4 GHz RF spectrum explained in
Section III – Cardiopulmonary results showed a significant
deviation from the trained mean, Figs. 11 and 12 have been
classified anomalous [17]. In a scenario where humans are
trapped under debris during disaster events, it is likely that
potential rescuers on the surface would experience states
of high anxiety, which may cause their hands to shake and
cause tremors to the small palm-size device, likely to increase
with the lengths of sensing time. Hence, a shorter time in
holding still such a device would be logical and also lead to
better device battery utilisation. We used 30- and 60-second
timespans to collect, observe, and plot the vital sign signals
throughout the project. The same time-series strategy was
also reemployed in the algorithm. The main objectives to
be addressed from this learning anomaly detection algorithm
include:
• Phase I: From 0 to 30 seconds, establish whether there
are any likely signs of living objects entrapped under
rubble.
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TABLE 7. Model-based anomaly detection in time series proposed
algorithm: model-based anomaly detection in time series.

• Phase II: From 30 to 60 seconds a) to read pulmonary
and vascular signals b) predict the age group of trapped
object c) display the estimated distance between the
sensor and object d) read the state of health of the object
e) determine if the object is non-human (i.e., cat, dog
etc.).

Applying the basic geometrical principles of calculus, with
reading signal time from 0 to 60 seconds as x and for the
entire signal or voltage collected using theDoppler sensor and
variation of x, f (x), a single inspiration or expiration forms a
set of f ′(x) > 0 as positive or when the object is inhaling.
In this case, the distance between the Doppler antennae and
the chest wall would be short. f ′(x) = 0 as stationary points
and f ′(x) < 0 negative or when object exhaling. The first
derivative of f (x) or f ′(x) < 0 or concave downward, shown
as Fig. 21, indicates that air is flowing into the lungs from
the atmosphere and f ′(x) > 0 or concave upward, shown as
Fig. 22, indicates that airflow from lungs is expelled into the
atmosphere.

Explanations of Table 7. Model-based Anomaly Detection
in Time Series

FIGURE 21. Inspiration with concave downward and voltage values
recorded at f’(x) for stationary would be the smallest.

FIGURE 22. Expiration with concave upward and voltage values recorded
at f′(x) for stationary points would be the biggest.

Step 1: Taking in-phase and quadrature (I/Q) continuous
wave (CW) Doppler radar at 2.4 GHz signal spectrum for the
maximum 60 seconds timeslot per reading [13], [34].
Step 2: Using for loop to collect the number of times

positive and stationary point negative (PSN) or negative and
stationary point then positive (NSP) fall within the range
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of human breathing and pulse datasets [27], [30], there is
a match with human vital signs which potentially indicates
whether breathing or pulse related signals are present or no
vital signs detected.
Step 3: if the reading falls within the range of 6< $result<

30 in 60 seconds, it indicates there is a possible breathing or
pulmonary signal of all ages and an object less than one metre
from the sensor according to the empirical laboratory results
of this experiment.
Step 4: if the reading falls within the range of 6< $result<

80 in 60 seconds, it indicates a possible near-skin vessel or
pulse related signal of all ages has been detected, and the
object’s position is less than s 0.5 metres from the sensor as
per empirical laboratory results for this experiment.
Step 5: if the reading falls within the range of 6> $result>

80 in 60 seconds, that shows there is a possibility the object
could be injured or in an unstable condition with either
breathing or heartbeat-related issues.
Step 6: There is no trace of vital signs from the direction

and area in which the Doppler sensor is pointing.

V. DISCUSSION
With human cardiac activities, a closed blood circulation
system requires veins and a capillaries network to carry
blood towards the heart and arteries that convey blood away
from the heart [24]. With live subjects, blood flow back and
forth from and to the heart generates significant movement
mainly created by veins, right beneath human skin layers and
readable by noncontact sensors [35]. When blood flows from
high-pressure areas to regions with lower pressure through a
closed vessel network, this displacement activity is measured
as 0.2 mm to 0.5 mm around the chest region when the human
chest faces directly toward a noncontract sensor antenna [36].
Apart from concentrated research on vessel displacement
around the chest region, which has the highest wavelength
reading generated from the living subject near-skin vessels,
for the neck, arms, and legs shown in Fig. 5 wavelength can
also be detected by noncontact sensors in various frequency
spectrums [37]–[40].

In this study, we have described and evaluated twomethods
of noncontact detection of vital signs, particularly breath-
ing and near-skin blood vessel activities. The first method,
i.e., the sensor touches the surface of the debris, is used in
related research on noncontact vital sign detection; however,
themost valuable contribution of this study has been to collect
cardiopulmonary datasets whilst, second method, the sensor
is not touching the surface of the target of interest. To the
best of our knowledge, this method has not been investigated
at the time of the paper submission. This method simulates a
real disaster event where individuals have just escaped being
trapped, maybe hurt themselves, but are desperate to find
loved ones. They would be operating the device under solid
psychological stress, which may include trembling and shak-
ing. For the result from the first method of data collection,
we found the breathing signal can be correctly detected up to

1meter from the sensor antennae, which reduces to 0.5meters
for near-skin vessel activity.

FIGURE 23. Breathing results of different sample obstacles collected in
60 seconds.

The paper compared the results of two different data col-
lection methods for impulses from pulmonary and near-skin
blood vessels of trapped objects. Regardless of the method
used, the accuracy of the breathing-related wave remains at
the same level of accuracy. However, with the near-skin blood
vessel activity, results are different for different areas of the
object’s body. See Figs. 12, 13 and 14 for hands or palm for
touch-based and Fig. 19 for leg, neck areas for non-touch-
based methods. We have conducted and validated pulmonary
signal detection through different obstacle materials, and the
result (Fig. 23) showed that there is no significant signal
output.

VI. CONCLUSION AND FUTURE WORK
In this paper, we have evaluated a range of obstacle materials
between trapped human objects in various positions and the
distance to the sensor at which signals can still be read.
This empirical research shows pulmonary and near-skin ves-
sel activity readings in relation to the Doppler sensor. Both
near-skin vessel and breathing activity can be read when
the object is positioned approximately 0.5 metres from the
sensor (Fig. 13). In contrast, only pulmonary activities pro-
vide readable signals when the object is positioned between
0.5 to 1 meter away from the Doppler sensor. The paper also
proposed a theoretical model for a simple anomaly detection
algorithm used for time-series applications. It could use a
similar approach for empirical data collection to form an
anomaly algorithm.
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TABLE 8. Cardiac and ventilation activities in millimeters [36] contrast
with actual Doppler’s lambda, and frequency is used.

Future work will include further study of IEEE
802.11b/g/n/ax operated at 2.4 GHz spectrum with 11 chan-
nels in day-to-day nonstationary communication devices [41]
with evaluation focusing on the wavelength of each spec-
trum’s channel for results from pulmonary and near-skin ves-
sel activities and compare with previous research result from
Table. 8. Furthermore, future work may also see the imple-
mentation of the pseudo algorithms for active deployment.
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