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ABSTRACT The growth of software techniques for implementing applications must go hand in hand with
the growth of computer system hardware in the design of multi-core and multi-processor systems; otherwise,
we cannot expect to be able to use maximum hardware capacities. One of the most important and challenging
techniques for running applications is to run them in parallel with a focus on loop parallelism to reduce
execution time. On the other hand, in recent years, many algorithms have been working on volumetric data,
i.e., three-dimensional spaces; therefore, parallelization must be possible for all types of two-dimensional
and three-dimensional loops. Uniformization is an important part of loop parallelism, and also the present
paper’s focus. The proposed algorithm in the present paper performed uniformization with a combination
of the frog leaping algorithm and the fuzzy system for two- and three-dimensional loops on a wide range of
input dependence vectors and achieved a considerable variety of results in the desired time. The results of
this study can be used to facilitate the development of parallel codes.

INDEX TERMS Frog leaping algorithm, artificial intelligence, parallelization, loops, uniformization,

parallel compilers.

I. INTRODUCTION

In various fields of study such as engineering, medicine,
etc. parallelization of sequential programs is one of the most
challenging research areas which helps increase program
efficiency through reducing runtime. The purpose of paral-
lelizing programs is to develop a method that runs a wide
range of sequential programs in parallel while staying in
line with the development of hardware facilities [1]. One
view classifies parallelism methods into two categories: auto-
matic parallelism and programmer-assisted parallelism [2].
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In automatic parallelization, the compiler parallelizes the
sequential program without the intervention of the program-
mer. But in the programmer-assisted type, the programmer
provides tips or instructions to the compiler, based on which
the compiler executes the parallelization steps. OpenMP [3]
and Cilk [4] are two well-known approaches that use instruc-
tions for extracting parallel codes. Another classification,
the one in [5], classifies parallelism into three categories.
The first is parallel programming which greatly challenges
programmer skills. The second category is semi-automatic
parallelism, which can be equated with programmer-assisted
parallelization in the previous classification. Finally, the third
category is to automatically translate sequential programs
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into parallel versions of themselves without any modification,
which is equivalent to the first category of the previous clas-
sification. However, the fact is that although many years have
passed since the invention and use of multi-core systems,
programmers still write codes sequentially, meaning that they
are actually reluctant to use the first and second methods men-
tioned above [6]. This is firstly because parallel programming
requires a high level of specialized skills, and secondly, there
are problems such as deadlocks and so on that have to be
dealt with. Perhaps this is why automated application paral-
lelization has been a long-standing and prominent research
topic back from 1990 [5], [7]. In recent years, the issue of
automatic parallelization of programs with irregular struc-
tures has widely been considered [8]-[10]. Most programs
that have irregular structures use different levels of data.
This feature reduces the parallelization of sequential codes to
the same degree that it increases efficiency because reliably
determining independent parts for compilers and program-
mers is not easy. But in practice, most of these approaches
lead to semi-automatic parallelization. These techniques can
generally be classified into two categories: non-speculative
parallelism and speculative parallelism [6]. Non-speculative
parallelizing compilers divide the sequential code into inde-
pendent tasks but there is no guarantee that two tasks are
independent at compiling time. The use of Polyhedral com-
pilers [11], [12] is to parallelize loops that have regular
accesses into arrays and similar structures but most programs
are irregular, and for such programs, compilers have limited
visibility when invoking codes, a fact that impedes non-
speculative parallelization. On the other hand, speculative
parallelism [13]-[15] is a technique that increases memory
usage and keeps more processors busy at runtime but suffers
from costly speculation and makes parallelism unprofitable in
practice for applications with frequent conflicts. For example,
[6] proposed a compiler called t4. This compiler parallelizes
the whole program and does not only focus on a specific
structure of the program; however, it cannot be called a fully-
automatic parallel compiler because it suffers from successive
failures stemming from order violations, and more precisely,
because these failures allow the programmer to annotate
code areas to be divided into tasks, which actually makes it
semi-automatic parallelization. Since researchers are mainly
focused on generating tools that perform parallelization in
a fully automated way, they try to perform parallelism by
transforming the source-to-source code of the loop. But most
of them have one thing in common: they often have to stop
parallelization without any explanation to the programmer,
like the case of Pluto [11]. For this reason, researchers have
subsequently developed a compiler [16] that reduces these
compulsions and notifies the programmer when something
goes wrong. So, it is still not clear to these compilers how
close they are to the goal of auto-parallelizing sequential
programs, and they actually have to create a tradeoff between
“fully automatic parallelism’ and “loop type”.

However, in order to achieve fully-automatic parallelism,
this paper slightly narrows the scope of research so that its
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result is closer to reality. Thus, based on the aforementioned
issues, although it is not clear how close we are to the
goal of fully auto-parallelism of sequential applications, it is
clear that we are still at the beginning, and research efforts
must continue in this regard considering the great impact
of parallelization on the reduction of application runtime.
Because of all the limitations mentioned in the above para-
graphs, researchers often focus on loop parallelism [17]-[21].
In fact, rather than parallelizing the entire program, which
is unable to fully auto-parallelism, the idea is to focus on
parallelizing parts of the program that have longer runtime.
In applications, most of the runtime is spent on loops [22],
[23] and thus the automatic parallelization of loops greatly
reduces applications’ runtime and increases efficiency. Loop
parallelization is performed in four steps [24], namely data
dependence analysis, loop tiling, parallel loop generation, and
loop scheduling. In the data dependence analysis step, the
type of loop dependency is determined; this may be uniform
dependent and non-uniform dependent. If the non-uniform
structure of the iteration space can be converted to a uniform
one using a set of basic dependence vectors, parallelism can
be performed with one of the simplest methods available, i.e.
the Wavefront method [25]—[28]. Despite the many investiga-
tions on loop optimization techniques, Wavefront parallelism
is still one of the simplest methods for loop parallelism, and in
recent years, it has led to the presentation of code generators
that are actually based on uniform dependencies [29]. In this
method, none of the iterations of the same Wavefronts are
not dependent on each other and depend only on the previous
Wavefronts’ iterations. In [30], one of the latest research
papers on the presentation of parallel compilers is presented.
When dependencies are non-uniform, time tiling constraints
are also nonlinear and usually increase in size and compu-
tational complexity after becoming linear. For this reason,
to directly detect dependency constraints, DAPT proposed a
way to approximate the original non-uniform dependencies to
uniform ones and proved that it is simpler than Pluto. In fact,
it has normalized non-uniform dependencies to uniform ones.
In addition, Pluto only generates codes that merely provide
two-dimensional tiles, but DAPT generates codes that also
provide three-dimensional ones. The important point, how-
ever, is to use the uniformization method in DAPT, reminding
us that uniformization is very important. In addition, in recent
years, the lack of research in the field of uniformization
has led to the presentation of solutions based on a lack of
optimal techniques for uniformization. For example, in [31],
which is one of the most recent research studies on the tiling
and scheduling of loops, it is clearly stated that the existing
methods for parallelization of loops use uniformization, but
because of the failure in determining the base dependence
vectors, they require a lot of execution time. For this reason,
the study proposed an approach that performs tiling directly
on non-uniform loops, which, of course, has its limitations,
including the fact that it only applies to two-dimensional
loops while its complexity is very high for higher-level
loops. This paper focuses on the uniformization of two- and
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FIGURE 1. Loop model in TLP.

three-dimensional perfect nested loops, which is one of the
important steps in parallelizing loops. The following are some
important terms used in the paper to better understand the
problem and the proposed method:

e Perfect Nested Loop: consider a two-dimensional loop
in Fig. 1 adapted from [32], where [(I) and u(I) are linear
functions of the variable / and N is the upper bound of the
outermost loop and constant. in addition, the Si, S2, ..., S;,
are computation statements so that among them, Sy and S;
have accessed the same array A and fi(1, J), fo(L, J), f3 (1J),
and f4(I, J) are subscript expressions [32].

Loop model in Fig. 1 called a perfect because all the
statements S; fo S; are in the innermost loop. There is a
similar definition for three-level loops.

¢ Uniform Dependence Loop (UDL): A vector v = (i, j)
is an iteration vector if I'v €, where I' = {(i,j) |1 < i <
N,I(G) <j < u(@),i,j € Z} is the iteration space and
Z is a set of integers. If two vectors (i1, ji) and (i, j») can
be found such that fi(i1, j1) = f3(i2, j2) and f2(i1, j1) =
fa(iz, j2), the nested loop has cross-iteration dependences.
in fact, if we can find four integers (i, ji, i2, j2) that satisfy
equations (1) and (2), we can say that the loop has cross
dependencies and vice versa [32].

S (g1 = f3 (2, j2)
Ja (i, j1) = fa iz, j2)
1<ii <N

L@ <j1 < u(iy)
1<ih <N

L(2) <j2 < u(iz)

ey

@

Assuming that x and y are the two free variables, The
general solution of (1) as shown in Equation (3).

(i1, J1, 02, j2) = (@1 (x, ), g2 (x, ), g3 (x,y), g4 (x,))
3

where coefficients of g;, x and y are integers. The Dependence
Vector Function of L is defined as (h (x, y) , h2 (x, y)), where
hi(x,y) = g3(x,y) — g1 (x,y) and hp (x,y) = g4 (x,y) —
g2 (x,y) which is called DVF(L). If integer constants are
obtained for A (x,y) and hj (x, y), then the L is Uniform
Dependence Loop or UDL. There is a similar definition
for three-level loops. To better understand this definition,
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FIGURE 2. An example of a two-level loop.
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FIGURE 3. The dependence graph of the example in Fig. 2.

consider an example of a loop in Fig. 2 which is adapted from
[32] and described bellow.

The corresponding system of Diophantine Equations is
shown in Equation (4).

“

iI1+ji=i+j2+1
3xi1+j1+3=i+2x%xjr+4

The general solution (g1, g2, 83,84) is equal to (x,y,
—x+y—1,2x),and (hy, hy) is (—2x +y — 1, 2x — y) where
(x,y) € Z. Obviously, this example is not a UDL, as shown
in Fig. 3, because some are dependent on others. Some details
are not explained [32].

e Dependence Cone Size: is abbreviated as (DCS). It is
to be considered as the vector of dependency set D =
{d1,d>, ..., dy,}. Furthermore, the dependence cone C(D)
can be explained as follows defined by the Equation (5).

CD)={X eR":% = \id;

+dady + -+ Ay A1a Aas o A =0} (5)

The DCS is defined as in Equation (6) which is the area of
the intersection of C(D) with x? + x3 + - - +x2 = L.

/ dx (6)
¥eCD) 2 +x3++xli=1

In fact, the C(D) as an smaller value for cone maintains
all the loop’s dependence vectors. The second step in the
uniformization process is to create a schedule that can run that
nested loop in parallel. The solution space for such an optimal

linear schedule is in the form of {rr : n.gli > 0, ;Z,- e D in
which D is the set of dependence vectors which is another

VOLUME 10, 2022



S. Mahjoub et al.: New Combination Method for Improving Parallelism in Two and Three Level Perfect Nested Loops

IEEE Access

Solution Space

i j

= 1 .-i

() ()

Dependence Cone

FIGURE 4. The dependence cone and solution space of the linear
schedule vector. (a) Larger dependence cone which is smaller solution
space (b) Smaller dependence cone, which is larger solution space.

Z

FIGURE 5. The dependence cone for three vectors corresponding to a
three-level loop.

dependent cone whose size depends on the dependent cone
constrained by the d;. As shown in Fig. 4 adapted from [33],
a smaller DCS leads to a larger solution space. A larger solu-
tion space also leads to more choices. Therefore, in this larger
solution space, it is more likely to choose the optimal linear
schedule than to choose from a smaller solution space [33].
For this reason, in the method proposed in this paper, we are
looking for results with the least DCS.

The DCS in a two-dimensional space exactly corresponds
to the angle between those vectors. But in a three-level iter-
ation space, it is equal to the volume of the area between the
spheres with a unit radius (x2 +y2 +z2 = 1) and those
vectors. For example, Fig. 5 which was adapted from [24]
shows the dependence cone for three vectors corresponding
to a three-level loop. Section III describes the details of the
DCS calculation for both types of loops.

e Basic Dependence Vector Sets (BDVS): The basis of
all uniformization methods is based on vector decomposition
so that the set of BDVSs which can represent any vector in
the loop iteration space as a nonnegative linear combination
of these vectors can be found. To clarify the term, given a
two-level nested loop L, a set of vectors B = {1_51 , Z)z, A Z)h}
is defined as a BDVS of L, if for any d e C , there is
€1, €y s Ch € Z+, suchthatd = ¢y % by +cy%by+---+
¢p * bp, where C is the dependence cone of L.

There are many options for the BDVS, but there may
be disadvantages to selecting a number of them in the
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parallelization of programs. For example, vectors may be
created with artificial dependence between two points while
not at all being related before uniformization. In this paper,
the aim is to keep the number of these vectors to a minimum
because a smaller number of dependence vectors leads to less
constraint in choosing the optimal linear scheduler, as well as
in the implementation of hardware for the interconnection of
the fundamental dependence vectors. In addition, a smaller
number of these vectors leads to a smaller number of arti-
ficial dependence vectors after uniformization and reduces
uniformization damages.

A. SHUFFLED FROG-LEAPING ALGORITHM (SFLA)

The shuffled frog-leaping algorithm (SFLA) is a population-
based meta-heuristic for discrete optimization in which deter-
ministic and random approaches are combined and were first
developed by Eusuff ez al. [34]. In fact, SFLA can take advan-
tage the benefits of two genetic-based memetic algorithm and
Particle Swarm Optimization (PSO) at the same time. In the
conducted studies [35], SFLA has a higher calculation speed
compared to other evolutionary-based algorithms. Depending
on the type of application, both two- and three-dimensional
loops can be used. Processing of 3D data are very important
areas that have been considered in recent years [36]. Working
with this type of data requires a lot of memory and high
computing power [37]. So far, little work has been done on the
uniformization of two- and three-dimensional iteration spaces
in a separate manner [24], [38]. But the problem is that for
a 2D space, the size of the dependence cone is proportional
to the size of the angle between the BDVS, while in a 3D
space, it is proportional to the volume enclosed between the
BDVS, and the same mechanism cannot therefore be used for
uniformization of both types of loops. This paper proposes a
single algorithm for the uniformization of both 2- and 3-D
loops. It addresses the issue of uniformization for all types
of loops since the issue has not been sufficiently addressed.
Transforming a non-uniform structure to a uniform one is
an NP-Hard problem [24], so evolutionary methods can be
used to achieve the optimal result at the desired time. In this
paper, among the available evolutionary methods, the Frog
Leaping Algorithm (FLA) has been selected. Compared to
other similar methods, this algorithm has a higher ability to
find the optimal solution in the shortest time due to having a
combination of local and global searches. On the other hand,
three important factors affect the determination of the fitness
function, which are the length of the BDVS, the cone size
limited to the BDVS, and the number of vectors that can be
decomposed by the BDVS. In the proposed algorithm, instead
of considering constant coefficients, these factors are used as
inputs of the fuzzy inference system to increase the accuracy
and variety of the obtained results. The main contributions of
this article are as follows:

o Combination of fuzzy and evolutionary methods for
uniformization of loops in the shortest possible time with
high result variability, no main vectors, and minimum
DCS
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« A single algorithm for uniformization of both two- and
three-dimensional loops

The rest of this paper is organized as follows: in Section 2,
the related studies are described. In Section 3, the proposed
algorithm is described in detail, while in Section 4, the results
of the implementation of the proposed method on different
data sets are expressed and evaluated. Also, in this section, the
proposed algorithm is compared with other methods and the
reasons for its superiority are explained. Finally, in Section 5,
conclusions and future directions will be presented.

Il. RELATED WORKS

At all levels of automatic parallelization, including com-
piler, runtime, and source [39]-[42], parallelism focuses on
the entire application, and since it often fails to search for
anonymous internal classes, it needs to be combined with
other methods to improve in practice and has consequently
shifted toward semi-automatic parallelization. For this rea-
son, parallelization of parts of the program that have a longer
execution time than others, i.e., loops, is more appropriate in
practice. On the other hand, for automatic parallelization of
applications, the goal is parallelization by the compiler with-
out programmer intervention. Therefore, parallelism at the
compiler level has been more largely considered, the existing
methods of which can be classified into two categories [5]:
loop parallelization and non-loop parallelization. Among the
methods based on non-loop parallelization, in [41], the data
is analyzed on reads and writes at the local level, and in
[43], the program complies into a speculative C program. The
interaction between threads is checked at runtime but does not
support I/O instructions. Optimizations that have been made
in recent years to automatically modify the parallelization
of Java applications [8], [10], [44] either cannot adapt with
common multi-core processors, or have poor speed, or need
high programming skills. Although several mechanisms have
been studied for parallelize to irregular programs [45], [46],
no recommendations have been made for their use, as they
depend heavily on the details of the program. Among the
various parallelization methods at the instruction-level of the
loops are the open-loop technique [17], [47], the iterating and
checking technique [20], [19], parallel inspection [48], [49],
transforming the loop [50]-[52] and so on, most of which cre-
ate a lot of memory overhead and are not suitable for complex
codes. In some methods, parallelization is done on the binary
code [53], [54]. But it is very difficult to understand at higher
levels. Another method is called Wavefront. In this method,
iteratio ns that have the same wavenumber can be executed
simultaneously. In [55], a method is presented in which a
table is created specifying the number of data iterations in
which reading and writing are performed. The results of the
experiments obtained in the optimizations performed on the
Wavefront method show that the parallelization process is
faster and less memory is consumed. This method is the most
common, while it is also the simplest for running parallel
loops. It highlights the importance of uniformization because
the uniform structure of the loops facilitates the detection
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and execution of parallel codes. The first investigation on
uniformization was in [32], after which only few studies
were done on it [33], [56], whose main problem was the
large DSC and the presence of at least one main vector. The
previous study of the authors of the present paper proposed
the first approach based on a genetic algorithm to solve this
problem [24] on three-level perfect nested loops. However,
it still suffered from the problem of high runtime and lack of
practicality. In [38], which uses the approach based on FLA,
three effective factors in the problem of fixed coefficients
were considered, greatly limiting the final results. In addi-
tion, experiments and evaluations have been performed on
limited data sets that are only parallel to a maximum of two
known vectors. In this paper, a single algorithm is presented
for uniformization of both two- and three-dimensional loops
based on a combination of evolutionary and fuzzy methods to
overcome the limitations of previous methods.

Ill. THE PROPOSED ALGORITHM
This section details the implementation of the FLA and how

it is combined with fuzzy with the aim of obtaining optimal
BDVS.

A. RESTRICTIONS OF CREATING THE INITIAL
POPULATION (FROGS)

Since the algorithm proposed in this paper is used to uni-
formize both two- and three-dimensional loops, the loop
studied in this paper is a perfect nested loop with the structure
given in [22], the only difference being that it can be both two-
and three-leveled. In the two-level mode, U; and U, are the
upper bounds of the first and second loops, respectively, and
for the three-level mode, Ujs is the upper bound of the third
nested loop. In the proposed method, each frog represents
a set of basic dependence vectors that use two-dimensional
arrays for two-level loops and three-dimensional arrays for
three-dimensional ones, so that for two dimensions, each
member has (x, y), and for three dimensions, each of its
members (x, y, z) represents a vector in that space. Suppose
(i1, j1, k1) and (@2, ja, kp) are two iterations of a three-level
nested loop. The dependence vector obtained from these
iterations must be i, > iy, orif iy = ip, jo > ji, orif iy = i
and ji = ja, kp > k;. For two-level loops, the dependence
vector is ip > i1, or if iy = ip, it is jo > ji. If vectors
do not have such conditions, they are called invalid vectors.
In the proposed method, such vectors will not exist in the
population, and during the implementation of the program,
if generated, they will be removed and replaced by other
vectors that are in the problem space. The number of BDVS
also varies between two and three for two-level loops, and
between three and five for three-level ones. These numbers
are the optimal lengths for the BDVS for two-level and three-
level loops. In addition, the vectors of each set are linear
and independent. Note that in a two-dimensional space, for
example, a maximum of two separate vectors can be defined
to be independent, so not all sets with three members can be
independent. But here, the independence of vectors means
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FIGURE 6. Values of vectors in spherical coordinates after rotation.

that not only can vectors not be multiples of each other,
but for more than two numbers in a two-dimensional space,
no vectors of the other two combinations will be obtained.

B. HOW TO CALCULATE DCS FOR EACH MEMBER (DCS(i))
The size of the cone limited to the BDVS in a two-
dimensional space exactly corresponds to the angle between
those vectors. Therefore, for two vectors, the angle between
them is calculated by internal multiplication. For a larger
number, first the size of the angle of each vector with the
y-axis, i.e., vector (0, 1) is calculated, and the largest and
smallest of them are determined, and finally the difference
of these two values determines the DCS. But in a three-level
iteration space, it is equal to the volume of the area between
the spheres with a unit radius (x2 + y2 +2 = 1) and those
vectors. Assuming that BDVS consists of the terms vy, vy,
and v3, it is obvious that for such a volume to exist, the
three vectors vi, v2, and v3 must be linear and independent.
Otherwise, the three vectors would be on the same plane, and
DCS = 0. To calculate this volume, the coordinate system
can be changed so that one of the vectors matches one of the
main axes. In the proposed algorithm, as shown in Fig. 6, the
vectors rotate in a three-dimensional space so that one of them
coincides with the z-axis.

0 re1 rl
V = / / / pzsimpd,odwde @)
o Jo Jo

—r0)=2206_9¢ 8
<P—f()—E( —01)+ ¢ ®)

0, pfO) pl
des(i) = / / / p2sinpdpdepdd 9)
01 0 0

Assume that «; is the angle of the vector’s image v; on the
plane xy with the positive direction of the x-axis, and f; is the
angle of the vector with the positive direction of the z-axis.
Also, assume that the smallest o (;) in terms of absolute
value and its corresponding S (B;) belongs to v;. If Rz and
Ry are rotation matrices around the z-axis and y-axis with «;
and B; sizes respectively, these rotation matrices can rotate
the vector v; to match the z-axis. Rz and Ry are obtained by
Equation (10).

cos(ej) —sin(ej) 0
Rz = | sin(a;) cos(a;j) 0
0 0 1
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cos(B;)) 0 sin(B))
R, = 0 1 0 (10)
—sin(B;)) 0  cos(B))

In fact, the volume of the area enclosed between these
three vectors and the spheres with a radius equal to 1 remains
constant by changing the coordinate system and the rotation
of the vectors so that one of the vectors coincides on the
z-axis. After the rotation of the three original vectors, new
vectors are obtained which, instead of cartesian coordinates,
their spherical coordinates can be used to calculate DCS using
Equations (7) to (9) [38]. The vector that matched the z-axis
after rotation (v2) has ¢ = 0. Also, because the volume of the
area enclosed in the sphere is calculated with a radius equal to
one, p can be considered equal to one for each of the vectors.
Therefore, only calculating ¢ and 0 is sufficient for the other
two vectors.

To calculate the DCS for basic vectors with more than
three members, the members are divided into sections so that
the generalization of the three-vector method can be used
for their calculation. To do this, it is enough to consider
a vector as the head vector, and since in the absence of a
vector corresponding to the z-axis, it is necessary to perform
rotation, from the very beginning, this is done for all vectors,
and the vector aligned on the z-axis is considered as the head
vector. After this step, for BDVSs with a length of four, three
vectors, and for BDVSs with a length of five, four vectors
remain, the position of which should be specified relative to
each other and to the head vector. In so doing, the angle of
the image of each vector on the xy-plane with the negative
direction of the x-axis is used as the weight (wf). Since the
same value may be obtained for two vectors, this angle is
considered to vary from 0 to 360. The vectors are arranged
in ascending order based on w#, and the vector matched on
the z-axis has a weight of 1, while the other vectors take on a
weight of 2, 3, and so on, respectively. By calculating the size
of the dependence cone for two or three times, the total DCS is
calculated. Since during the implementation of the algorithm
the comparison between frogs is done by calculating the
fitness function, and it is not possible to compare the angle
values (for two-level loops) with the volume (for three-level
loops) at the beginning of the algorithm, depending on the
type of loop, one of the two aforementioned methods is used
to calculate the DCS.

C. COMBINING FLA AND FUZZY TO DETERMINE THE
OPTIMAL BDVSs

As described earlier, the FLA is used to determine the optimal
BDVSs due to has more ability in finding the optimal result
in the shortest time compared to other similar methods. The
number of memeplexes is denoted by m, and the number of
frogs in each memeplex is denoted by n, all received from the
input, and we thus have a total population of F = m X n.
When generating the initial population of frogs for each
member, the fitness function amount is calculated by fuzzy
parameters, and the proposed algorithm finds the optimal
result in both global and local searches. In the algorithm
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presented in this paper, the classical fuzzy logic method is
used, and it is obvious that having complete basic rules that
cover all possible cases is a necessity. In fact, the proposed
system uses a complete set of rules for all cases that may
occur (this number is limited for the proposed algorithm).
Therefore, there is no need to use Fuzzy Rule Interpolation
(FRI) methods. Three important factors affect the value of
each member i: the length of the dependence vector (L(7)), the
size of the cone limited to the dependence vectors (DCS(7)),
and the number of vectors that can be decomposed by that
member (M(i)). To calculate M(i), one of the Diophantine
Equations of Equation (11) or (12) must be computed for each
member i for a two-dimensional or three-dimensional loop,
respectively. Details for solving such Equations are given
in Equation (12). For three-dimensional loops, (X, Y, Z) is
one of several input dependence vectors used by members
(x1,¥1,21) to (X, Yn, zn) in the ith member which is decom-
posed through non-negative . The same parameters are used
for the two-dimensional loop in Equation (11).

a1 (1, y1) + o (x2, y2)

ot dy (oY) = (X, Y) (11)
a1 (x1, 1, 21) + @2(x2, y2, 22) + 03(x3, ¥3, 23)
4+ anxg, e ) = X, Y, Z) (12)

These factors are considered as inputs to the fuzzy infer-
ence system. Given that the algorithm is used to uniformize
both two- and three-level loops, for this factor (M(i)), for
two-level loops, since the optimal length is between 2 and 3,
the three linguistic variables with triangular membership
functions of “excellent”, “good” and “bad” are used with
parameters [02 3], [234] and [4 6 6], while for three-level
loops, since the optimal length is between 3 and 5, three
linguistic variables with triangular membership functions of
“excellent”, “good” and “bad” are used with the param-
eters [334], [345] and [456]. For DCS, three linguistic
variables with triangular membership functions “excellent”,
“good” and “bad” are used depending on the type of the
input loop. Depending on whether the loop is a two- or
three-level one, the angle between the vectors or the volume
enclosed between them is used respectively. For the M, the
three linguistic variables “low”, “medium” and “high” are
considered, depending on how many input vectors they can
decompose. Finally, for the fuzzy output based on the inputs,
9 linguistic variables from “very weak” to ‘““very strong” are
used. A summary of the if-then rules is given in Table 1.
The best case is when L(i) is “excellent”, M(i) is “high”
and DCS(i) is “‘excellent”, which leads to a ‘““very strong”
output, while the worst case is when L(i) is “bad”, M(7)
is “low” and DCS(i) is “bad,” resulting in a ‘““very poor”
output. In general, out of the 27 cases available, if M(i) is
“low” or “medium”, even with desirable DCS(i) and L(i),
the output of one of the three modes will still be poor because
the goal is to ultimately decompose the input vectors, and this
set i is not close to the goal. But in the states where M(7) is
“high”, depending on the values of DCS(i) and L(i), it can
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TABLE 1. Summary of if-then rules for calculating the fitness function for

each frog.

L DCS M Fitness

Bad, good or bad, good or Medium or Very weak, little

excellent excellent low weak, weak

Bad or good bad high Less than
average

excellent bad high Average

bad good high More than
average

bad excellent high Little strong

excellent good high

good excellent high Strong

good good high

excellent excellent high Very strong

have one of the “medium” to “high” states. These general
rules are independent of the number of loop dimensions, that
is, these apply to both two- and three-level loops.

Algorithm 1 shows the details of the proposed method,
in which in a global search repeated at global_iteration, P
frogs are randomly selected and sorted in descending order
and categorized in m memeplexes. For each memeplex, with
a local_iteration number, each time g frogs are randomly
selected; the best (Pp) and worst (Py ) frogs are selected. The
worst frog leaps as much as § to get closer to the best.

To calculate S for three-level loops, first the average angles
of the vectors in (Pp) with the positive direction of the z-axis
(S«) and the mean angles of their image on the xy-plane with
the positive direction of the x-axis (Sg) are calculated. Then,
they are rotated using the matrix Ry as large as Sg around the
z-axis and using the matrix Ry as large as S, around the y-axis
according to Equation (13).

i cos(Sg) —sin(Sg) 0
Rz = | sin(Sp) cos(Sg) 01,
| 0 0 1|
[ cos(Sy) 0 sin(Sy) |
Ry, = 0 1 0 (13)
| —sin(Se) 0 cos(Sq) |

But for two-level loops, S is the amount of the frog’s leap,
which is equal to the value of the angle with respect to the
y-axis, and the worst frog must rotate as much as it; it is con-
sidered equal to S = mean(Pp, Pw). The allowable amount
of rotation for each numerical member is between —180 and
180. For both types of loops, if the new position is based
on what was described in section 3.1, and also if the vectors
are not invalid and the new member fitness is more than the
previous value, the new member replaces the previous one.
Otherwise, a new frog will be randomly created and will
replace the worst one. Subsequently, the fitness amount of
it in the current population is updated. Finally, the member
with the highest fitness will be obtained as the optimal result.
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Algorithm 1: Pseudo Code of the Proposed Algorith

INPUT:
L1, Uy, Ly, Uy, Ly and Us: lower and upper bound in
three-level loops
Ly, Uy, Ly and Uy: lower and upper bound in two-
level loops
Dependence vectors for loops
n: number of frogs per memeplex
m: Number of memeplexes
local_iter: number of local searches
global_iter: number of global searches
1. Generate F initial population as F=m*n
2. If loop=2D, calculate FUZZY_Fitness_2D(i) for each frog i in
population
or else,calculate FUZZY_Fitness_3D(i) for each frog
i in population
3. Iterate global search to number of global_iter
3.1 Generate population P randomly
3.2 If loop=2D, calculate FUZZY_Fitness_2D for P
or else, calculate FUZZY _Fitness_3D for P
3.3 Sort P in descending order
3.4 Partition P into m memeplexes
3.4.1 Iterate local search to number of
local_iter
3.4.1.1 Generate population q
randomly
3.4.1.2 Determine the best and worst
frog (Pp and Pyw)
3.4.1.3 Update the worst frog with S
(Based on formulas for 2D and 3D loops)
OUTPUT:
Optimal BDVS

IV. EVALUATION AND EXPERIMENTAL RESULTS

In this paper, it has been assumed that loop dependencies
are predetermined in the form of dependence vectors, and
the main focus is on uniformization. The proposed algorithm
was tested on a wide range of input datasets with a variety of
positive and negative second and third components, both on
two- and three-dimensional loops.

The results of the implementation of this algorithm using
C-based MATLAB software promise good performance in
compilers that are generally implemented in C language.
Table 2 shows the details of these tests. In each test, kK number
of vectors parallel to the vectors written in the input column
were given to the algorithm as input dependencies. In this
table, memeplexes indicates the number of memeplexes, frogs
the number of frogs in each memeplex, g the number of global
and / the number of local searches. In the output column,
DCS indicates the size of the dependent cone limited to the
optimal BDVS and the fitness value. Each test was performed
10 times with different parameters to finally achieve optimal
BDVS. The average execution time of these tests is also given
in the time column. The first to seventh tests were performed
on the dependence vectors of two-dimensional loops, and
the eighth to tenth tests were performed on the dependence
vectors of loops that are three-dimensional. To test the cor-
rectness of the proposed algorithm, it was first run on vec-
tors that had positive second and third components. In this
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circumstance, the expectation is that in the worst case, the
main vectors, i.e., {(0, 1), (1, 0)} for two-dimensional and
{(1, 0, 0), (0, 1, 0), (0, O, 1)} for three-dimensional loops
would be obtained. But the results obtained from the imple-
mentation of the proposed algorithm show that a BDVS is
obtained whose DCS is much less than the DCS of the main
vectors (0.52 for 3D and 90 for 2D). The first, second and
seventh experiments confirm this.

In addition, in many results obtained due to the use of the
fuzzy system in calculating the amount of fitness (instead
of using fixed coefficients), a good variety was obtained.
In the first experiment, two sets of BDVS were obtained
as the optimal response, from which the set {(1, 1), (3, 2)}
had a better result than the latter due to its smaller DCS.
Also, in the seventh experiment, three sets of results were
obtained as optimal, all three of which could decompose all
input vectors well, but set {(1, 2, 1), (1, 2, 3), (1, 0, 0)},
due to its having a smaller DCS, can be a more appropri-
ate choice. Other tests have been performed on dependence
vectors parallel to vectors that had a second or third negative
component (y or z). For the two-dimensional loop, the third
experiment was performed on 400 vectors, among which
only one of the second components was negative and parallel
to the sets {(1, —2), (2, 1)}, and finally, the same set with
DCS =90, and an average run time of 143.12 seconds for
10 runs. Also, in the fourth, fifth, and sixth tests, all the
second components of all vectors were negative. For the fifth
test, two sets of vectors were obtained as the optimal BDVS,
and since both decomposed all 120 input vectors and had
equal DCS, they can be selected as the optimal BDVS. For
the sixth experiment, three sets were obtained as results that
had equal DCS, and all decomposed all 400 vectors, but
since set {(1, —2), (1, 1), (1, 0)} had a main vector, it is
recommended to use two other sets to uniformize the loop.
Fig. 7 shows the mean fitness of the first to sixth tests corre-
sponding to the implementation of the proposed algorithm on
two-dimensional loops. The increasing trend of fitness with
increasing iterations shows that the frogs in each iteration are
closer to the optimal location than in the previous iteration,
which means that at the end of the iterations, we can expect
results that are very close to optimal.

Tests eight to ten were performed on dependence vec-
tors parallel to vectors that had at least one second or third
negative component. In the eighth experiment, two sets of
vectors were obtained as the result. Among these two, the set
{,1,1),(,-1,0), (0, 1, —1)} had low DCS, and there was
no main vector in it. Therefore, it was selected as the optimal
result.

Since most of the previous methods were time-consuming,
low-input algorithms were tested to keep runtime low. The
tenth experiment was performed to test the speed of the pro-
posed algorithm. This algorithm was executed on 500 parallel
vectors with set {(1, 2, 1), (2, —1, 1), (2, 1, —1)} for ten
times and three sets of results with an average execution
time of 172.35 seconds were obtained. Among the results
obtained, the set {(1, 2, 1), (2, —1, 1), (2, 1, —1)} with
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TABLE 2. Results from the implementation of the proposed algorithm on two- and three-dimensional loops.

Input parameters

Output parameters

Input dependence k memeplexes frogs g 1 DCS fitness time BDVS
vectors parallel to
50 50 20 10 11.3099 291.3783 {(1,1),(3,2)}
Test 1 {(1, 1), (3,2)} 300 112.36
30 30 20 10  18.4349 290.001 {(1,1), (2, 1)}
Test 2 {(1,2),(1,1),33, D} 70 50 50 10 10 45 64.4548  136.22 i, 2)’1()1}’ DG,
Test 3 {(1,-2), (2, 1)} 400 20 20 20 10 90 383.4868  143.12 {(1,-2), (2, D}
Test 4 {(1,-1), (2, -1)} 100 20 30 20 10  18.4345 98.4549 84.42 {(1,-1),(2,-1)}
100 40 10 10 45 109.4514 @ _2)1 (1,-2). G,
Test 5 {3,-1),(2,-2),(1,-2)} 120 245.13
30 30 20 20 45 109.4514 i, _1)12()3}’ -D. (1,
40 40 20 20 108.4349 359.79 {a, _2)’1()2}’ -2). (1,
Test 6 {(3,-1),(1,-2), (1, 1)} 400 10 10 10 10 108.4349 359.79 265.34 ta, _2)65;’ D. (@,
20 20 10 10 108.4349 359.79 (G _1)’1()1}’ -2, (1,
{1,2,1),(1,2,3),
50 50 40 20 0.114 975.0295 (,0,0))
Test 7 {1,2,1),0,2,3), 3,2, 20 30 20 30 20 0.523 816.1039  267.04 10,0, . O, 1,-1),
1)} (1,0, )}
{(1,0,0), (0, 1, 0),
40 30 20 18 0.523 816.1039 0,0, 1)}
L LD 0. L-1). (L -1 20 20 20 20 0.698 1035.93 ta, 1(61)1’ (_11’);1’ 0,
Tests QLT ),(0,)},->,<,-, s s O
50 50 10 12 1.078 840.0786 ©,1,-1)}
{(1,2,-2),(1,-2,2), (0, 1, {(1,2,-2),(1, -2,
Test 9 ) 50 20 20 20 20 0.741 1028.80 84.23 2,00, 1, 1)}
{(0,0, 1), (0, 1, 0),
20 20 6 6 1.0196 1200.10 (1,-1, -1y}
Test 10 {@,2,1), (_21’ il’ D@1, 500 20 20 12 12 1.2910 1199.90  172.35 o, ?1’ 1_)1’ (?1’)1}’ -1,
{(1,2,1),(2,-1, D),
20 20 20 10 0.2670 1479.40 2, 1.-1)

DCS = 0.267 and a lack of a main vector can be selected as
an optimal result. Fig. 8 shows the mean fitness of the seventh
to tenth tests corresponding to the implementation of the pro-
posed algorithm on three-dimensional loops. After ensuring
the correctness of the proposed algorithm, we also consider
performance and correctness on real application loops. For
this purpose, the proposed algorithm was run separately on
the two-level loop of Fig. 1 (eleventh test) and three-level
loop of Fig. 9 adapted from [56]. The proposed algorithm was
performed on 13 dependent vectors corresponding to the two-
dimensional loop in Fig. 1 for more than ten times. The best
response was {(0,1), (1, —2)} with DCS = 153.4349 with an
average execution time of 47.13 seconds.
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The same result was obtained in all ten runs, and therefore
the stability of the proposed algorithm for this test was found
to be very high. For the three-dimensional loop of Fig. 9, after
running ten times on 24 input dependence vectors, the two
sets {(1, 1,0), (0, 1, —=1), (0,0, 1)} and {(2, 3, =3), (1, 2, 1),
(1,2,0)} with an average execution time of 142.56 were
obtained as the result, between which the second set was a
more appropriate result due to the lack of a main vector and
DCS = 0.0087.

V. COMPARISON WITH OTHER METHODS

In uniformization methods that are not based on evolution-
ary algorithms [32], [33], [56], although they do not have
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TABLE 3. Comparison of uniformization methods.

Methods Tvpe of loops Average Attention to three important Considering the Variety in the number of
ype_ol_loop run time input parameters direction of vectors  optimal results obtained
Non-evolutionary
methods [32], [33], all - no yes
[56]
UTLEA [24] 3D high yes yes no
UTFLA [38] 2D low yes yes no
The proposed
algorithm all low yes yes yes
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FIGURE 7. Mean fitness of the first to sixth tests on two-dimensional
loops.
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FIGURE 8. The mean fitness of the seventh to tenth experiments on
three-dimensional loops.

an average execution time, in practice, their computational
complexity is so high that strong mathematical knowledge is
required to achieve the result. On the other hand, the existence
or non-existence of main vectors is not considered at all.
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For i=1:15
For j=1:15
For k=1:15
A(3i+7-1, 4i+33j-3, k+1)-=..
=A(i+1, F+1, k)
EndFor
EndFor
EndFor

FIGURE 9. Three-dimensional loop corresponding to the twelfth tests.

Moreover, in none of these methods is the direction of vectors
considered, while in considering the implementation of loops
and dependencies, it is quite necessary to pay attention to this
parameter. Another important point is not paying attention to
the three effective parameters in calculating BDVS, which has
made the obtained results practically unusable in real parallel
compilers; however, in the method proposed in this paper, all
these shortcomings have been eliminated. Nevertheless, these
shortcomings had already been eliminated by a number of
solutions that need to be compared with the proposed method.

The first algorithm which is based on the evolutionary
algorithm and had previously addressed these shortcomings
is called UTLEA, which pays attention to both the three effec-
tive parameters and the direction of the vectors. However, due
to its use of genetic algorithms, it has a very high execution
time and cannot be used in practice for a large number of
input vectors. For example, in the same hardware conditions,
the average execution time for tests 7 to 10 is between twenty
minutes and half an hour. UTFLA was subsequently proposed
and was the first algorithm to use the FLA for uniformiza-
tion. Although this algorithm solved many problems of its
previous methods, because of its use of fixed parameters,
most of the results obtained through it were not accurate
enough, and the DCS remained high for many tests. For a
more accurate comparison, all tests performed in the previous
methods with the same datasets and similar hardware features
were re-performed by the proposed algorithm in this paper,
the details of which are given in Section 3.4. By comparing
the results obtained in this paper with UTFLA, the following
conclusions are evident:
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1. The variety of results obtained is much greater due
to avoiding the use of fixed coefficients to calculate
fitness, along with the use of a fuzzy system.

2. In this paper, to check the low run time, most of the
tests were performed on a large number of datasets
to be closer to real loops, while in previous methods,
the number of datasets was often kept low so that the
average run time did not increase.

3. This algorithm can be used for all types of two- and
three-dimensional loops, while each of the previous
methods focuses on only one type of loop (two- or
three-dimensional).

Comparing the results obtained in this paper with those
of UTFLA, it can be concluded that with the same input,
the present study obtained smaller DCS, a wider variety of
results, and higher mean run time with regard to the quality
of results. Table 3 summarizes the comparison of all the
proposed uniformization algorithms so far.

VI. CONCLUSION AND IMPLICATIONS

There is no doubt that application parallelization is a good
way to reduce application runtime. But the idealistic view
of full-program parallelism by researchers in recent years
has led to solutions that result in aborts when used in real-
world applications, deviating from the main purpose of par-
allelism, which is to reduce runtime. For this reason, many
researchers have focused on parallelization of loops rather
than parallelization of the entire sequential program, as most
applications’ runtime is spent in loops. On the other hand,
among the various steps of parallelization, most of the work
is on tiling and scheduling; a smaller amount is on the
method of uniformization. If a suitable solution is provided
for uniformization, parallelization can be done using one of
the most common methods of parallelization, namely the
Wavefront method. On the other hand, in recent years, 3D
data-processing has received much attention. These algo-
rithms work with three-dimensional data spaces that require
a lot of memory and high computing power due to their
handling of three-dimensional loops, and only little work
has been done on the uniformization of these loops. In this
paper, a single algorithm was proposed for uniformization
of both two- and three-dimensional loops, which, with a
combination of evolutionary algorithms and a fuzzy system,
achieves a considerable variety of results with very low DCS
and average runtime. The results of this paper can be very
attractive for HPC purposes because they can facilitate the
development of parallel codes. Improving the uniformization
of the parallelization process can have a significant impact on
improving the performance of other steps. In fact, with proper
uniformization, there will be no need to use algorithms with
high computational complexity in later steps such as tiling,
and only using one of the simplest methods available, namely
Wavefront, parallelism can be performed. Suppose we could
estimate how much the next steps would improve as the
performance of the data dependence analysis step improved.
In that case, we could use Amdahl’s law to estimate how
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much the system as a whole had improved. Therefore, as a
future implication, this algorithm can be used to propose and
implement a parallel compiler.
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