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ABSTRACT A two-stage adaptive robust optimization is developed for pre-disturbance scheduling in
microgrids (MGs) for handling uncertainties associated with electricity market prices, renewable generation,
demand forecasts, and islanding events. The objective is to produce a reliable and optimal solution for
MG operation that minimizes operational costs and the risk/failure in islanding events. In the literature,
the uncertainty sets associated with islanding events cover a full scheduling period which results in a sub-
optimal solution. In this paper, uncertainty sets corresponding to islanding events are modeled based on
reliability/resiliency-oriented indexes of the MG/grid to achieve a more accurate/reliable solution. Besides,
the Benders decomposition algorithm which is used to handle uncertainties in solving the optimization prob-
lem is time-consuming. Therefore, the column-and-constraint generation (C&CG) decomposition strategy
is adopted to make the problem computationally tractable. Further, the uncertainty budget parameters are
clarified to balance the conservatism and optimality (cost minimization) of the robust solution in uncertainty
sets. The effectiveness of the proposed framework is evaluated and discussed by using a set of numerical
studies with different scenarios in an MG. The simulations show that the proposed framework reduces
operational costs by using the precise analysis of uncertainty budgets and a change in scheduling periods.

INDEX TERMS Energy management system, energy storage systems, microgrid, pre-disturbance schedul-
ing, renewable energy resources, robust optimization, uncertainty.

I. INTRODUCTION
A microgrid (MG) is a small-scale electric grid comprising
distributed energy resources (DERs) and local loads [1].
MGs operate in two grid-connected or islanded operating
modes [2]. The grid-connected MG exchanges power with
the main grid, which could be from the grid to the MG or
vice versa. Also, the MG should be able to be disconnected
from the grid to continuously support its local loads by DERs
within the MG [3].

The associate editor coordinating the review of this manuscript and
approving it for publication was Lei Wang.

A hierarchical control system is adopted in MGs to handle
dynamic performance and economic programs for the sta-
ble and efficient operation of the MG in different operating
modes. At the highest level of the MG control system, the
energy management system (EMS) runs optimization-based
programs to minimize costs of power production and maxi-
mize MG revenues.

Various optimization methods, either problem-based
or solver-based approaches, such as distributed stochas-
tic/robust optimization [4], multi-stage optimization [5], [6],
multi-objective optimization [7], fuzzy approach [8], [9],
heuristic and evolutionary methods [10], neural network [11],
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convex robust programming [12], bi-level robust optimiza-
tion [13], etc., are used to handle EMS problems [14], [15].

However, uncertainties associated with the generated
power by renewable energy resources (RESs), load profile,
and electricity tariffs cause tremendous challenges for EMS
to achieve amore optimal/reliable solution [16]. Optimization
approaches for managing uncertainties can be classified into
twomain categories: stochastic programming and robust opti-
mization. The stochastic programming approach is scenario-
centric and considers probability distribution function (PDF)
for uncertain parameters [17]. Then, the Monte Carlo method
is used to simulate scenarios based on the distribution func-
tion and the probability of each scenario is determined to
calculate the probability of occurrence of each scenario [18].
Robust optimization is practical when the uncertainty sets of
uncertain parameters/variables are available. This eliminates
the requirement of generating the corresponding probability
distribution to a parameter by accessing historic data. Also,
it is not necessary to define an unrealistic PDF [19], which
reduces the risk level.

Robust optimization can be implemented using single-
stage robust programming or through multi-stage robust pro-
gramming. In single-stage robust optimization, the optimal
values of the decision variables are obtained in one step and
are not adjustable based on the amount of uncertainty, which
may make them too conservative [20]. When the energy man-
agement system involves uncertainty, it becomes an NP-hard
problem and it is not possible to solve this problem in
the polynomial time. The optimal solution to the decision
variables can not be obtained at one stage, otherwise, the
solution would be too conservative and sub-optimal. Multi-
stage approaches are considered. The first stage is planned
to adjust the value of the problem variables and the second
stage is planned to obtain the optimal value of these uncertain
parameters. In each iteration, by specifying the values of the
second variables, it can be entered as a known parameter in
the first stage by the algorithm and the optimal values of
the variables in the first stage are obtained [5]. However,
multiple-stage robust optimization problems are difficult to
be programmed and computed.

For example, some of the advances in recent studies using
the robust optimization approach are reviewed as follows:
In [21], a multi-level robust optimization model for solving
the dispatching problem in microgrids is presented. In the
first level of this approach, the operating cost of the microgrid
and in the second level, the load shedding are minimized.
The novel nested reformulation-and-decomposition (R&D)
algorithm is used to solve the multi-level optimization prob-
lem. A hierarchical frequency control structure is presented
in the form of a two-level robust optimization approach [22].
At the first level, that approach seeks to minimize the oper-
ating cost of the microgrid. To solve the introduced model,
the column and constraint generation algorithm is used. The
power exchange programmed in multi- microgrids using the
two-level adjustable robust optimization approach is men-
tioned in [23]. In the first level, the generated and exchanged

power between buses AC and DC is obtained and the col-
umn and constraint generation algorithm is used to solve the
model.

To summarize, the significant shortcomings observed in
the existing works of energy management via robust opti-
mization in MGs are classified as follows:

1) One solution to make the robust optimization tractable
is to use approximation algorithms such as Benders
decomposition (BD) [24]. The strategy behind the BD
algorithm is to form a secondary objective function
through duality solutions. However, there are signifi-
cant issues with the BD algorithm such as a large num-
ber of iterations and computational time to achieve the
optimal solution. The column and constraint generation
(C&CG) algorithm [25] is more efficient than BD [26],
which has been less utilized in MGs EMS problems,
as it can solve the master problem with a higher num-
ber of variables and more constraints. The number of
iterations for this algorithm is much smaller than those
of the BD. The BD algorithm uses different methods
for achieving feasibility and optimality in terms of
cut generation, while in the C&CG algorithm, a uni-
fied approach is used for simultaneously generating
these cuts, which simplifies the computations. In the
BD algorithm, the sub-problem should be a linear
model, whereas, in the C&CG algorithm, it could be
arbitrary depending on the type of variables.

2) In adjustable robust optimization models, the worst-
case scenarios occur at the lower bounds (LB) or
upper bounds (UB) of uncertain parameters. Under
these circumstances, the resulting solution seems to be
more conservative than the stochastic approach [27].
To address this issue, uncertainty budgets are defined
in uncertainty sets to limit the number of hours that
an uncertain parameter value can approach its UB or
LB limit. By selecting the appropriate value of uncer-
tain parameters, the economic efficiency of the robust
optimization approach can be significantly improved.
In this sense, the drawback of previous studies in [6]
and [28] is the lack of using an efficient technique to
determine the more optimal amount of uncertainty bud-
get. Besides, the effect of the value of each uncertainty
budget on the optimal value of the objective function is
not clarified.

3) The uncertainties associated with theMG islanding can
be identified based on two indexes: i) reliability of the
local (micro) grid (such as maintenance and failure
rates, etc.), and ii) resiliency of themain grid as a global
index (e.g., due to climate events and natural disasters).
Also, the other difference between the two categories is
the time scale, which should be considered for uncer-
tainty sets modeling. In modeling the reliability-based
uncertainty, a full-time horizon (i.e., 24 hours) can be
considered. On the other hand, for modeling uncer-
tainties associated with resiliency-based islanding, a
shorter interval (e.g., 6 hours) can be considered based
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on the weather forecast. Taking these two sets of uncer-
tainties and bounding the resiliency-based uncertainty
interval can help to achieve more accurate and optimal
results. However, this issue has not been considered in
the existing works [16], [29].

4) In most robust optimization approaches, uncertain-
ties are modeled as interval, polyhedron, or discrete
uncertainty sets in the problem. Alternatively, in the
multi-stage approaches, these sets can be considered
as auxiliary decision variables in the second stage,
which result in a smaller number of iterations and
faster convergence. However, in the majority of rel-
evant works, the values of these parameters are not
indicated [31]–[33]. As a result, there is no guarantee
that the parameter values are in defined sets and thus
the obtained optimal solution is not reliable/valid.

To address the mentioned shortcomings, this paper pro-
vides pre-perturbation scheduling in microgrids to determine
the on/off status of the power resources (diesel generators),
charge/discharge profile of energy storage systems (ESSs),
and the amount of power purchased/sold from/to the main
grid in the day-ahead energy market. The problem objec-
tives are minimizing costs associated with fuel-based DERs,
maximizing revenues from RESs, and minimizing the risk
corresponding to islanding events.

To this end, a two-stage adjustable robust optimization
(ARO) approach is implemented to minimize the operational
costs of the MGs by considering uncertain parameters. The
robust optimization approach is used due to being more prac-
tical than the stochastic approach in handling uncertainties
in the scheduling state. Further, the column and constraint
generation algorithm is used to solve the problem to cope
time complexity of conventional methods such as Benders
decomposition.

The contributions of this paper are summarized as follows:
1) The problem of pre-perturbation energy management

in microgrids is formulated in the form of a two-level
adjustable robust optimization approach. We have
used three interval uncertainty sets models that have
been secured against the worst-case scenarios. The
microgrid operator can construct these uncertainty
sets without having an unrealistic probability distribu-
tion function. Expanding the proposed structure can
find robust solutions for first-level decision variables
and second-level uncertain parameters that are robust
against any realization of uncertainty sets andminimize
the undesirable consequences of islanding events.

2) For improving the optimality and accuracy of the opti-
mal solution, a more flexible and accurate model for
the uncertainty set associated with the binary parameter
indicating the MG islanding event is developed. To this
end, islanding uncertainty is set based on the combina-
tion of reliability/resiliency indexes of the MG/grid to
achieve a more optimal/reliable solution. By receiving
accurate information on weather maps and converting
the scheduling intervals to shorter intervals with more

accuracy, this set of uncertainty prevents further oper-
ating costs from being imposed on the microgrid.

3) Uncertainty budget parameters are defined in uncer-
tainty sets to adjust the conservative level of sets.
Selecting the appropriate value of these parameters
leads to the better economic efficiency of the robust
approach than the stochastic approach. We used a
different technique to select uncertainty parameters,
which have the possibility of occurring with the desired
conservative level, which results in a more efficient and
reliable solution.

4) To solve the proposed robust approach, the C&CG
algorithm is employed, which works based on a two
level decomposition. We have improved the conver-
gence speed of the algorithm by placing the energy
storage variables in the second level and providing
sufficient conditions for eliminating the binary variable
associated with the simultaneous charge and discharge
of battery through adding related auxiliary constraints
in each iteration.

5) Extensive numerical analysis has been done to demon-
strate the effectiveness of the two-stage ARO frame-
work. As a result, the analysis has led to the selection
of the more optimal and valid solution.

The remainder of this paper is organized as fol-
lows: Section II describes the methodology framework.
In section III, the modeling of uncertainty sets is discussed.
The problem of MG EMS in the framework of robust opti-
mization is modeled in section IV. The effectiveness of the
proposed approach is evaluated in Section V, by using a set
of numerical studies with different scenarios. Finally, conclu-
sions are drawn in Section VI.

II. METHODOLOGY FRAMEWORK
A. TWO-STAGE ARO MODEL
For the sake of brevity, this paper focuses on a linear model
and can be applied to nonlinear models. The functions and
decision variables at the first and second stages are consid-
ered linear and the uncertainty set model is assumed to be
polyhedron or discrete. Let y, x be the column vectors of the
first-stage and the second-stage decision variables, respec-
tively, and U be the uncertainty set. The general framework
of the two-stage ARO model is given as

min
y

(
aT y

)
+ max

u∈U

(
min

x∈ (y,u)

(
bT x

))
(1)

s.t. Ay ≥ d, y ∈ Sy (2)

(y, u) = {x ∈ Sx : Gx ≥ h− Ey−Mu} (3)

where Sy ⊆ R1×n and Sx ⊆ R1×m, aT is a matrix of coeffi-
cients of first stage variables; bT is a matrix of coefficients of
second stage variables; A and E are matrices of coefficients
of first stage variables in constraints, Gmatrix of coefficients
of second stage variables in constraints,M denotes amatrix of
coefficients of the uncertain parameter in constraints and,
d and h present fixed coefficient matrixes. The innermost
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maximum-minimum problem (max
(
min

(
bT x

))
) is known as

the recourse problem. In the above equation, includes all
the constraints of the second stage. In this section, a differ-
ent method than BD is used to solve the problem. In this
approach, the cutting planes are created by auxiliary variables
as a constraint on the auxiliary problem. The whole procedure
is a method of producing C&CG. It is initially considered that
the set of uncertain parameters is finite and countable. Let
equations U = {u1, . . . , ur } and x = {x1, . . . , xr } be the
corresponding recourse decision of r number of variables.
Similar to the BD algorithm, this approach is also used in
the master-subproblem framework. Then, the two-stage ARO
in the above equations can be reformulated as the following
equations:

1) MASTER PROBLEM

min
y,η

(
aT y

)
+ η (4)

s.t. Ay ≥ d (5)

η ≥ bT x l, l = 1, . . . , r (6)

Ey+ Gx l ≥ h−Mul, l = 1, . . . , r (7)

y ∈ Sy, x l ∈ Sx , l = 1, . . . , r . (8)

Therefore, solving a two-stage ARO problem becomes the
equivalent of a mixed-integer programming problem.

2) SUB-PROBLEM
The sub-problem leads to the extraction of the optimal
solution (u∗, x∗) with a finite value Q(y) or to find values
from the uncertainty set based on which the second-stage
decision variables are infeasible. Let Q(y) as the following
equation:

Q(y) =
{
max
u∈U

(
min
x

(
bT x

))
|Gx ≥ h− Ey−Mu, x ∈ Sx

}
(9)

B. SOLUTION METHOD
1) C&CG ALGORITHM
In practice, the sum of extreme points which is the prod-
uct of the members of three uncertainty sets is very high;
therefore, solving a model with such a scale would be highly
complicated. Solving the model per sub-set of the scenario
members will provide a stronger LB for the discussed two-
stage model. A stronger LB means that: in the first iteration,
the value of the LB is (−∞), and in each iteration, the value
becomes more optimal and reaches a positive number close to
theUB. Thus, by adding non-trivial scenarios in each iteration
in this sub-set, a stronger LBwould be obtained for themodel.
The C&CG algorithm adds the worst-case scenario to the
sub-set in each iteration and the solution process continues
until being converged into the optimal solution. The main
idea is to use the C&CG algorithm based on these three
steps:

• Start each iteration with a subset of the uncertainty sets;
• Add a significant number of non-repetitive scenarios to
achieve the optimal solution;

• Create auxiliary decision variables in each iteration
as auxiliary constraints and add them to the master
problem.

Here, above equations (6-7) model these three steps. The
BD algorithm uses different methods for achieving feasibility
and optimality in terms of cut generation, while in the C&CG
algorithm, a unified approach is used for simultaneously
generating these cuts; this simplifies the computations and
leads to economic efficiency.

The solution algorithm is as following equations:
1) Placing the initial values of the input parameters as

LB = −∞, UB = +∞ and, k = 0

2) Solving the master problem, obtaining the optimal
solution η∗k+1 and y

∗

k+1, and updating the LB as:

max{LB, aT y∗k+1 + η
∗

k+1} (10)

3) Solving the sub-problem, obtaining the optimal solu-
tion of the sub-problem and uncertain parameters to
create a new scenario, constructing the relevant con-
straints, adding them to the master problem in the next
iteration, and updating the UB as:

min
{
UB, aT y∗k+1+Q(y

∗

k+1)
}

(11)

4) Calculating a limit required for stopping the algorithm
solution process as:

Stop limit =

∣∣∣∣ (UB− LB)LB

∣∣∣∣ (12)

After satisfying the stop limit, the algorithm will end and
the optimal solution of the essential decision variables y is
recorded as the output. Otherwise, the number of algorithm
iterations will be increased (k + 1), and new constraints will
be made and added to the master problem; it will return to
step 2.

A summary of the optimization model presented above is
indicated in Fig.1. The basic model presented in section (II)
Included (1-3) is the unsolvable problem due to uncertainty.
To solve, the basic model is separated into two problems by
the optimization approach, which includes a master problem
including decision variables (4-8) and a sub-problem includ-
ing uncertain parameters equation(9).

In the first step, the master problem will be solved with
zero input equations (4 and 5), in the second step the cut-
ting plates will be applied by equations (6,7 and 8), In the
third step, the sub-problem equation (9) will be solved
with the results obtained from the master problem. In the
fourth step, the convergence boundaries will be updated by
equations (10 and 11) by the C&CG method. In the fifth
and sixth steps, the convergence conditions of the algorithm
will be checked to the specified value. If the stop condition
is not met, auxiliary constraints will be created to solve
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FIGURE 1. Flowchart of the two-stage optimization model.

the master problem in the seventh step and in the second
iteration.

III. MODELING UNCERTAINTY SETS
Uncertain parameters in the EMS problem are associated
with net inelastic load (d), power purchase and sale prices
in the electricity market (λ), and MG islanding event (I ).
The problem indices, parameters, and decision variables are
listed in Tables 22, 23, and 24 respectively see (Appendix A).
In this section, the modeling of uncertainty sets for uncertain
parameters is presented.

A. MG ISLANDING EVENT UNCERTAINTY SET
The parameter depicting the MG’s operation mode is an
uncertain binary parameter. When the parameter is 1, it indi-
cates the grid-connected condition and 0 denotes the islanded
condition. In this section, we consider that the distur-
bance in the main grid is observable earlier by using
forecast mechanisms and historical data. Determining the
time of islanding and duration of the islanding process is
highly challenging and has noticeable uncertainty. Similar
to the previously considered uncertainty set, an uncertainty
budget (0I ) is allocated. This budget helps the operator and
reduces the challenge of generating the worst scenario by

adding the number of additional uncertain hours during the
scheduling. Modeling the uncertainty set for islanding events
consists of the following terms.

i. For modeling uncertainty sets based on the reliability
index of the MG, the uncertain binary parameter is
considered to indicate the MG connection status during
the full scheduling period (24 hours) based on historic
data. To increase the level of conservatism, uncertainty
budget (0g) is considered. This parameter limits the
number of hours that the MG can become an island.
Themodel presenting the uncertainty set is as following
equations.

I :=
{
I :

T∑
t=1

(1−It ≤ 0g, It ∈ {0, 1} ,∀t

}
; (13)

where

0 ≤ 0g ≤ T (14)

ii. For modeling uncertainty sets based on the resiliency
index of the grid, the uncertainty of the parameter is
bounded to a certain interval based on the weather
forecast.

Therefore, steps of modeling the uncertainty set are consid-
ered as following equations:

1) Determine the number of islanding events in a schedul-
ing interval

I1 :=
{
I :
∑

t∈�T
(1− It) ≤ 0I + τ,∀t ∈ �T

}
.

(15)

2) Determine the interval when the MG is disconnected
from the grid

I2 :=
{
I : It+1 ≤ It ,∀t ∈

[
t1,T Isl1 − 1

]}
. (16)

3) Determine the time intervals based on the weather
information that the islanding event occurs as following
equation.

I3 :=
{
I : It = 0,∀t ∈

[
T Isl1 ,T Isl2

]}
. (17)

4) Determining the time interval of connecting the
MG to the grid after fixing the error and stabiliz-
ing the conditions until the end of the scheduling
interval

I4 :=
{
I : It−1 ≤ It ,∀t ∈

[
T Isl2 + 1,T

]}
. (18)

As a result, the model of the considered uncertainty set is
obtained from the sharing of relations (15-18).

B. NET INELASTIC LOAD AND ELECTRICITY MARKET
PRICES UNCERTAINTY SET
The relation of the uncertainty set considered for the uncer-
tain parameter of the net inelastic load is as following
equations.

djt = d̄jt + d̂
+

jt θ
D+
jt − d̂

−

jt θ
D−
jt , ∀j ∈ �D, t ∈ �T (19)
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where∑
t∈�T

(
θD+jt + θ

D−
jt

)
≤ 0Dj , ∀j ∈ �D, t ∈ �T (20)

θD+jt + θ
D−
jt ≤ 1 (21)[

d̄jt − d̂
−

jt , d̄jt + d̂
+

jt

]
(22)

where the value of the uncertain parameter (net inelastic
load) will change as an interval of specified numbers around
the nominal value. This interval is as above equation (22),
to balance risk and conservatism, the uncertainty budget (0)
is defined. This uncertainty budget limits the number of hours
that the net inelastic load in the intended bus can reach its UB
and LB limits. The values of this parameter fall within the
[0,T ] range. The relation of the uncertainty set considered
for the uncertain parameter of electricity market prices is as
following equations.

λ̄t
RT
− λ̂RTt θ3−t ≤ λRTt ≤ λ̄t

RT
+ λ̂RT+t θ3+t , ∀t ∈ �T ,

(23)

where

θ3+t + θ3−t ≤ 1, ∀t ∈ �T (24)∑
t∈�T

(
θ3+t + θ3−t

)
≤ 03, t ∈ �T , (25)

These parameters include the market prices related to pos-
itive and negative deviations from the power purchased off
the grid and sold to the grid. There is a strong correlation
(proximity) between these prices and the actual market price.
As a result, instead of defining four separate uncertainty sets
a general uncertainty set will be utilized to simplify the com-
putations. Finally, by specifying the value of the uncertainty
set and based on the coefficients of these four parameters with
the central market price, the powers of all these prices can be
obtained separately

(λRT ,s−t , λ
RT ,s+
t , λ

RT ,b−
t and λRT ,b+t ).

The relations between the prices and the main market
price are as following equation (26), where vector δ includes
known and constant coefficients. The approach to obtaining
the uncertainty budget amounts defined in the uncertainty sets
is outlined in (Appendix B).

λ
RT ,b+,b−,s+ and s−
t = δλRTt , ∀t ∈ �T . (26)

IV. MG EMS MODELLING
A. MG EMS
In this section, the problem of EMS in MGs is modeled in
the framework of robust optimization introduced described in
section II. First, the objective function and operational con-
straints of the MG components are written in compact matrix
form, and then, the model is mentioned in the framework of
the two-stage ARO.

1) 1st-STAGE OBJECTIVE FUNCTION

OF1 :
∑
t∈�T

∑
g∈�DG

(
λSUg ugt + λSDg vgt + αgχgt

)
+

∑
t∈�T

(
λ
DA,b
t Pbt − λ

DA,s
t Pst

)
, (27)

where the first stage decision variables includes on/off status
of diesel generator, power purchased and sold to the grid in
the day-ahead electricity market.

2) 2d -STAGE OBJECTIVE FUNCTION

OF2 :
∑
t∈�T

(
λ̄
RT ,b+
t 1b+

t + λ̄
RT ,s−
t 1s−

t

)
−

∑
t∈�T

(
λ̄
RT ,b−
t 1b−

t + λ̄
RT ,s+
t 1s+

t

)
+

∑
t∈�T

∑
g∈�DG

(
βgpDGgt

)
−

∑
i∈�E

∑
T at ≤t≤T

b
t

(
λEt p

E
it

)
−

∑
t∈�T

∑
j∈�D

(
λdt d̄jt

)
+

∑
t∈�T

∑
j∈�D

(
λshedjt d shedjt

)
+ cessm

(
ηchm P

ch
m,t1t + P

dch
m,t1t/η

dch
m

)
(28)

where bT , λT and C denote matrices of coefficients of
second-stage decision variables, z the second stage decision
variables (auxiliary variables) including purchasing/selling
power in the real-time electricity market, active power gen-
eration in the DGs, supply of elastic/inelastic loads, power
losses, and charge/discharge generation capacity of energy
storage systems. In this paper, the objective function consid-
ered is the type of minimization of operating costs, which in
essence seeks to minimize the cost of charge and discharge of
energy storage. Since sufficient conditions (e.g., lower charge
cost than discharge for maximizing profit) exists the binary
variable for avoiding simultaneous charge and discharge of
battery can be avoided [34], which improves the speed of
convergence of the function to the optimal solution.

3) CONSTRAINTS Fy ≤ f
Where F denotes the matrix of coefficients of first stage
decision variables and f is the fixed coefficient matrix.
Eqs. (29-35) pertain to the day-ahead electricity market
including on/off constraints of the DGs (29-30)

xg(t−1) − xgt + ugt ≥ 0, ∀g ∈ �DG, t ∈ �T ; (29)

xgt − xg(t−1) + vgt ≥ 0, ∀g ∈ �DG, t ∈ �T ; (30)

constraints on the minimum time of increasing and decreas-
ing the DGs’ power (31-32),

xgt − xg(t−1) ≥ xgτ , ∀g ∈ �DG, t ∈ �T ,
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t 6= t1, τ ∈
[
t + 1,min(t + TUg − 1,T)

]
;

(31)

xg(t−1) − xgt ≥ 1− xgτ , ∀g ∈ �DG, t ∈ �T ,

t 6= t1, τε
[
t + 1,min(t + TDg − 1,T)

]
;

(32)

decomposition of the day-ahead energy scheduling of theMG
to positive and negative parts (33),

Pt = Pbt − P
s
t , ∀t ∈ �T ; (33)

constraints on the maximum and minimum energy pur-
chase and sales power in the day-ahead electricity market of
the MG (34-35),

0 ≤ Pbt ≤ S, ∀t ∈ �T ; (34)

0 ≤ Pst ≤ S, ∀t ∈ �T . (35)

4) CONSTRAINTS Hz ≤ h
Where H denotes the matrix of coefficients of second-stage
decision variables, h is fixed coefficient matrix and includes
relationships (36-53): constraints on the power increase and
decrease rate of the DGs (36),

−RDg ≤ p
DG
gt − p

DG
g(t−1) ≤ R

U
g , ∀g ∈ �DG, t ∈ �T ;

(36)

modeling the energy storage system (ESS) (37-40),

Em,t+1 = Em,t + ηchm P
ch
m,t1t − P

dch
m,t1t/η

dch
m , ∀m, t

(37)

0 ≤ Pchm,t ≤ P
ch,max
m , ∀m, t; (38)

0 ≤ Pdchm,t ≤ P
dch,max
m , ∀m, t; (39)

Eminm ≤ Em,t ≤ Emaxm , ∀m, t; (40)

actual power exchanged between the grid and MG (41-43),

pt = pbt − p
s
t , ∀ ∈ �T ; (41)

1b
t = 1

b+
t −1

b−
t , ∀t ∈ �T ; (42)

1s
t = 1

s+
t −1

s−
t , ∀t ∈ �T ; (43)

constraints on the elastic load (44-45),

LEi =
∑T bi

t=T ai
pEit , ∀i ∈ �E ; (44)

0 ≤ PEit ≤ p
E,max
i , ∀i ∈ �E , t ∈ �T , T ai ≤ t ≤ T

b
i ;

(45)

AC power flow equations (46-50), where the generation-
consumption balance constraint helps the primary control
level to secure the dynamic stability of the microgrid.

pt =
∑

n∈�N
pCnt , ∀t ∈ �T ; (46)

qt =
∑

n∈�N
qCnt , ∀t ∈ �T ; (47)

f Plt =
∑

n:(l,n)∈MD0

pCnt , ∀l ∈ �L , t ∈ �T ; (48)

f Qlt =
∑

n:(l,n)∈MD0

qCnt , ∀l ∈ �L , t ∈ �T ; (49)

The constraint related to the voltage drop of the buses in the
AC power flow equations is as follows.∑

n:(l,n)∈MFT

vnt −
∑

n:(l,n)εMt0

vnt =
Rl f Plt + Xl f

Q
lt

V0
,

∀l ∈ �L , t ∈ �T ;

(50)

maximum/minimum constraints on the buses’ voltage (51),

Vmin
n ≤ Vnt ≤ Vmax

n , ∀n ∈ �N , t ∈ �T ; (51)

maximum active and reactive power passing through the
lines (52), and constraints on the maximum re-feeding of the
active power in the buses (53),(

f Plt
)2
+

(
f Qlt
)2
≤

(
SLl
)2
, ∀l ∈ �L , t ∈ �T ; (52)

0 ≤ d shedjt ≤ d shed,maxjt , ∀j ∈ �D,

t ∈ �T . (53)

5) My + Nz ≤ w
Where M matrix of coefficients of first stage decision vari-
ables, N matrix of coefficients of second-stage decision
variables, w fixed coefficient matrix and includes relation-
ships (54-57): constraints on the active and reactive power
generation in the DGs (54-55),

pDG,ming xgt ≤ pDGgt ≤ p
DG,max
g xgt ,

∀g ∈ �DG, t ∈ �T ; (54)(
pDGgt

)2
+

(
qDGgt

)2
≤

(
SDGg xgt

)2
,

∀g ∈ �DG, t ∈ �T ; (55)

actual power exchanged between the grid and MG (56-57),

1b
t = pbt − P

b
t , ∀t ∈ �T ; (56)

1s
t = pst − P

s
t , ∀t ∈ �T . (57)

6) CONSTRAINT Kz ≤ I
Where K denotes the matrix of coefficients of second-stage
decision variables, I is the uncertain parameter and includes
the following equation,

(pt)2 + (qt)2 ≤
(
S × Īt

)2
, ∀t ∈ �T (58)

7) CONSTRAINT Qz = d
Where Q denotes the matrix of coefficients of second-stage
decision variables, d uncertain parameter and includes the
following equations.

pCnt =
∑

j:(j,n)∈MD

(
d̄jt − d shedjt

)
+

∑
i:(i,n)∈ME

pEit

+

∑
m:(m,n)∈Mstg

(
Pchmt − P

dch
mt

)
−

∑
g:(g,n)∈MDG

pDGgt ,

∀n∈ �N , t ∈ �T ; (59)
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qCnt =
∑

j:(j,n)∈MD

(
d̄jt − d shedjt

)
× tan

(
ϕj
)

+

∑
i:(i,n)εME

pEit × tan (ϕi)−
∑

g:(g,n)∈MDG
qDGgt ,

∀n ∈ �N , t ∈ �T (60)

B. MIXED-INTEGER LINEAR PROGRAMMING (MILP)
The MG EMS model proposed in the previous section is
non-linear due to equations (52), (55), and (58). In other
words, to simplify the calculations and accelerate the
problem-solving process, an appropriate linear approxima-
tion approach is adopted. This approach is inspired by
Euclidean ball [35]. The linearization equation and its equiv-
alent equations are as following equations:

r21 + r
2
2 ≤ r

2 (61)

The above second-order equation can be linearized by using
the following three equations.

−
√
3 (r1 + kr) ≤ r2 ≤ −

√
3 (r1 − kr) (62)

−

√
3
2
kr ≤ r2 ≤

√
3
2
kr (63)

√
3 (r1 − kr) ≤ r2 ≤

√
3 (r1 + kr) (64)

Here, k is the linearization coefficient. The error resulting
from the approximations can be reduced by increasing the
number of unequal linear relations.

C. MG EMS IN TWO-STAGE ARO FRAMEWORK
The framework of the two-stage ARO model is given by
following equations

min
y

(
aT y

)
+ max

d,λ,I

(
min

z∈ (y,d,λ,I )

(
bTz + λ

TCz + eT d
))
(65)

s.t. Fy ≤ f (66)

(y, d, λ, I ) =
{
z : Hz ≤ h,My + Nz ≤ w,

Kz ≤ I ,Qz = d} (67)

This model is a complex model that can not be solved using
existing software. By breaking it down into the master prob-
lem and sub-problem it becomes computationally tractable.

1) SUB-PROBLEM
The innermost maximum-minimum problem is a linear
model and, therefore, has strong duality. Therefore, the dual
problem is presented as the following equations. The dual
calculation process of Equations (65-67) is described in
(Appendix C).

R (y, d, λ, I )

= max
πς,ϑ,ρ

(
ςTMy + eT d − πT h− ςTw− ϑT I − ρT d

)
(68)

s.t. πTH + ςTN + ϑTK + λTC + ρTQ+ bT = 0

(69)

∀π ≥ 0, ς ≥ 0, ϑ ≥ 0, ρ free (70)

where ϑ , π , ρ, and ς present the problem variables. The
obtained dual equation which is of the maximum type can be
combined with the previous maximum problem. As a result,
the objective function and the constraint obtained for the sub-
problem are in the form of equations (71-73) relations.

X (y)

= max
π,ς,ϑ,ρ,d,λ,I

(
ςTMy + eT d−πT h−ςTw−ϑT I−ρT d

)
(71)

s.t. πTH + ςTN + ϑTK + λTC + ρTQ+ bT = 0

(72)

∀π ≥ 0, ς ≥ 0, ϑ ≥ 0, ρ free, d ∈ D,

λε3, I ∈ I (73)

The sub-problem is nonlinear due to the multiplication of
a binary parameter in a continuous variable (ϑT I and ρT d).
The big-M linearization method (see Appendix D) is used.

2) MASTER PROBLEM
The objective function of the problem is of theminimum type.
In the following equations, is the vector of recourse variables
related to scenario (s) also all the scenarios are executable.
The master problem is modeled as following equations,

min
y,ψ,zs

(
aT y

)
+ ψ (74)

Fy ≤ f (75)

ψ ≥ bT zs + λTs Cz + e
T ds, ∀s ∈ G (76)

Hzs ≤ h, ∀s ∈ G (77)

My + Nzs ≤ w, ∀s ∈ G (78)

Kzs ≤ Is, ∀s ∈ G (79)

Qzs = ds, ∀s ∈ G (80)

The optimal solutions of the problem are obtained at
extreme points by multiplying the members of the three
uncertainty sets. Accordingly, the number of solutions, or the
number of existing scenarios, is a finite and countable value.
The set of scenarios is as following equation,

(s ∈ G = {s1, s2, . . . , sN }) (81)

As a result, the problem of EMS can be solved by using the
C&CG algorithm.

D. SUMMARY OF PRE-PERTURBATION SCHEDULING
IN THE MG
A summary of the pre-perturbation scheduling scheme in
MGs is shown in Fig. 2. The first step is to determine the
uncertainty sets based on historical and predicted data. At this
stage, the MG operator must identify the uncertainty bud-
gets with the introduced approach. Once the uncertainty sets
are identified, the next step includes a proposed scheduling
scheme that solves the problem using the C&CG algorithm.
In each iteration, auxiliary variables (second stage variables)
are created and added to the first stage, and this process will
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FIGURE 2. Outline of the proposed scheme for the pre-perturbation
scheduling in the MG.

TABLE 1. Technical data of the DG unit.

TABLE 2. Technical data of the ESS.

TABLE 3. Parameters.

continue until the stop criterion is reached. As a result, the
optimal values of the first-stage variables (y) are obtained.

V. NUMERICAL RESULTS
All the numerical tests are performed on a personal computer
with a core i5@1.60 GHz and 4 GB RAM. The C&CG
algorithm and the MILP master and recourse problems were
solved with IBM ILOG CPLEX 12.4 solver [36].

A. THE STUDIED SYSTEM DESCRIPTION
The components of this MG include inelastic loads, elastic
loads, RES, DG, ESS, distribution transformer, and the main
grid. The numerical data for the DG, ESS, parameters, day-
ahead electricity market price chart, and elastic load is given
in Tables 1, 2, and 3 and Figs. 3 and 4, respectively. The
MG structure is presented in Fig. 5. The scheduling period
includes four 6-hour intervals. One-hour scheduling interval

FIGURE 3. Day-ahead market electricity price.

FIGURE 4. Elastic energy load.

FIGURE 5. MG structure.

and uncertain inelastic load are placed in bus 4. Uncertainty
is considered for the uncertain inelastic load, and the actual
market cost coefficient is assumed to be 30%. The duration
of using elastic loads is as the following vectors:

T a (i) =
[
i1 1. i2 1. i3 2. i4 2. i5 3

]
;

T b (i) =
[
i1 5. i2 5. i3 6. i4 6. i5 6

]
.

B. SIMULATION RESULTS
Several scenarios are tested to assess the effectiveness of the
proposed method in finding the optimal solution. The prob-
lem is solved by considering one uncertain parameter (net
inelastic load), two uncertain parameters (net inelastic load
and electricity market price), and then three uncertain param-
eters. The final report includes the results of three uncertain
parameters scenarios with different uncertainty budgets in the
first scheduling period as well as the results of other schedul-
ing periods. First, we discuss the process of reaching the
result for optimal output of the first stage decision variables,
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uncertain parameters, and the optimal stop limit for the algo-
rithm, for the first scheduling interval (IV-XIX). The results
of all scheduling intervals are in the form of table 20 and
Figs. 6 to 8. Figure 9 shows the comparison between the
C&CG and Benders algorithms for all scheduling intervals.

The simulated scenarios are as follows: Simulation results
of net inelastic load with budget 5 (scenario A); net inelastic
load with budget 6 (scenario B); net inelastic load and elec-
tricity market price with budget 5 (scenario C); net inelastic
load and electricity market price with budget 6 (scenario D);
net inelastic load and electricity market price with budget 6
and islanding with budget 0 (scenario E); net inelastic load
and electricity market price with budget 6 and islanding with
budget 1 (scenario F); net inelastic load and the electricity
market price with budget 6 and islanding with budget 2
(scenario G); second period (electricity market price and net
inelastic load) with uncertainty budget 5 (scenario H); third
period (electricity market price and net inelastic load) with
uncertainty budget 5 (scenario I) and fourth period (electricity
market price and net inelastic load) with uncertainty budget 6
(scenario J).

TABLE 4. The first iteration for one uncertain parameter with budget5.

In the first iteration, the optimal solution of the decision
variables (on/off status of the DG (x), power exchanged with
the grid in the day-aheadmarket (p)), and the optimal value of
the uncertain parameter of net inelastic load (d) are given in
table (4). In the first iteration, the microgrid is in the mode
of selling power to the main grid and off DG during the
scheduling period. The algorithm stop condition is calculated
in table (5):

TABLE 5. Stop limit in the first iteration for one uncertain parameter.

Based on the result of the stop limit of the C&CG algorithm
(table 5), in the first iteration, the algorithm stop condition
(stop limit ≤ 0.005) is not met; therefore, it enters the second
iteration with new auxiliary variables. The second iteration of
the algorithm is given in table (6):

Based on table 6, the DG is on at 5:00 and 6:00, and at 6:00,
the microgrid has purchased 0.11 (MW) of power from the
grid. Then, the algorithm stop limit is examined in table 7.

In this iteration, the algorithm stop limit (stop limit ≤
0.005) is met and the solution process stops.

TABLE 6. The second iteration for one uncertain parameter with budget5.

TABLE 7. Stop limit in the second iteration of uncertain parameter with
budget 5.

TABLE 8. The optimal state of decision variables and uncertain
parameters in scenario B.

In the optimal solution, the microgrid is in the mode of sell-
ing power to the main grid and off DG during the scheduling
period. The algorithm stop condition is calculated in table 9.

TABLE 9. Stop limit and optimal boundaries in scenario B.

The algorithm stop limit (stop limit ≤ 0.005) is met and
the solution process stops.

In the optimal solution, the microgrid is in the mode of
selling power to the main grid and the diesel generator is on
at 5 and 6 o’clock during the scheduling period. The optimal
values of the uncertain parameters of net inelastic load(d) and
electricity market prices(λ) during the scheduling period are
based on the above table. Net inelastic load in 5 hours and
electricity market price in 2 hours have changed from the
nominal values.

The algorithm stop limit (stop limit ≤ 0.005) is met and
the solution process stops.

In the optimal solution, the microgrid is in the mode of sell-
ing power to the main grid and off DG during the scheduling
period. The optimal values of the uncertain parameters of net
inelastic load (d) and electricity market prices(λ)during the
scheduling period are based on the table above. Net inelastic
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TABLE 10. The optimal state of decision variables and uncertain
parameters in scenario C.

TABLE 11. Stop limit and optimal boundaries in scenario C.

TABLE 12. The optimal state of decision variables and uncertain
parameters in scenario D.

TABLE 13. Stop limit and optimal boundaries in scenario D.

load in 6 hours and electricity market price in 2 hours have
changed from the nominal values.

The algorithm stop limit (stop limit ≤ 0.005) is met and
the solution process stops.

Based on table 14, the DG is off during the schedul-
ing hours and, in six hours, the microgrid sells the power
of 5 (MW) to the grid. The uncertain parameter (d) in six
hours and the electricity market prices in two hours change
from their nominal values. The connection of the micro-
grid (I) is stopped at 3:00 and it is islanded.

The algorithm stop limit (stop limit ≤ 0.005) is met and
the solution process stops.

Based on table 16, the DG is off during the schedul-
ing hours and, in six hours, the microgrid sells the power
of 5 (MW) to the grid. The uncertain parameter (d) in six
hours and the electricity market prices in two hours change
from their nominal values. The connection of the micro-
grid (I) is stopped at 3:00, 4:00 and it is islanded.

TABLE 14. The optimal state of decision variables and uncertain
parameters in scenario E.

TABLE 15. Stop limit and optimal boundaries in scenario E.

TABLE 16. The optimal state of decision variables and uncertain
parameters in scenario F.

TABLE 17. Stop limit and optimal boundaries in scenario F.

TABLE 18. The optimal state of decision variables and uncertain
parameters in scenario G.

The algorithm stop limit (stop limit ≤ 0.005) is met and
the solution process stops.

Based on table 18, the DG is off during the schedul-
ing hours and, in six hours, the microgrid sells the power
of 5 (MW) to the grid. The uncertain parameter (d) in six
hours and the electricity market prices in two hours change
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TABLE 19. Stop limit and optimal boundaries in scenario G.

TABLE 20. Simulation results of all scheduling intervals.

from their nominal values. The connection of the microgrid
(I) is stopped at 3:00, 4:00 and 5:00 and it is islanded.

The results of the uncertain parameters obtained for
the second to fourth scheduling intervals are in the form
of Figures 6-8.

Fig.9. shows the advantages of the C&CG method
compared to the Benders algorithm, which includes fewer
iterations and shorter solving times to achieve the opti-
mal solution. According to this fig 9(a), where the C&CG
algorithm reaches the optimal solution after 29.45 (s) and
115 (s) for the Benders algorithm. Another comparison
is the iteration numbers that takes to reach the optimal
solution figure 9(b), for scenario (E) the C&CG algo-
rithm reaches the optimal solution in 2 iterations, but the
Benders algorithm reaches the optimal solution in 21 itera-
tions. In both algorithms, the value of the obtained objec-
tive function is the same. The comparison results between

FIGURE 6. Uncertain parameters obtained in the second time interval:
(a) Net inelastic load values; (b) Electricity market price values.

FIGURE 7. Uncertain parameters obtained in the third time interval:
(a) Net inelastic load values; (b) Electricity market price values.

the two algorithms for the other scenarios are shown in the
figure.
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FIGURE 8. Uncertain parameters obtained in the fourth time interval:
(a) Net inelastic load values; (b) Electricity market price values.

FIGURE 9. Comparison between C&CG and Benders algorithms:
(a) Solution Time(seconds); (b) Iteration.

C. FINAL REPORT
The final result of the considered scenarios is shown in
Table 21. In the first scheduling interval, it is assumed that
an islanding event has occurred and that all three uncertain

TABLE 21. The final results of the simulated scenarios.

parameters have values. The criterion for selecting each sce-
nario is the minimum value of the objective function and the
operating cost.

VI. CONCLUSION
In this paper, pre-perturbation scheduling in MGs was pro-
posed to minimize operational costs and the damaging out-
comes of islanding events. The optimal scheduling mode of
the DGs and the optimal energy exchange in the day-ahead
market were obtained with an two-stage adaptive ARO and
by using the C&CG algorithm. First, this framework was
formulated as a MILP problem; then, to create a practical
approach for large-scale MGs, it was decomposed into a
master problem and a solvable sub-problem.

Based on the results obtained in the simulation section, the
general results of this paper can be written as follows:

1) Using the C&CG algorithm, rapid convergence of the
optimal solution was achieved. The number of itera-
tions of the model solution in the C&CG has been
reduced compared to the Benders algorithm for the
first scheduling interval 21 to 2, the second inter-
val 28 to 2, the third interval 25 to 2, and the fourth
time period 33 to 2 number reduced.

2) Modeling the uncertainty associated with the MG
islanding events due to resiliency-oriented indexes
based on weather information in a scheduling period
reduced operating costs. For the first period from
834.378$ to 808.53$, the second period from 953.248$
to 953.152$, the third period from 852.868$ to
840.251$, and the fourth period from 986.34$ to
964.982$ reduced.

3) Using the C&CG algorithm and appropriately select-
ing the number of uncertainty budgets and quanti-
tative examination of their impact on the optimal
solution reduced the time complexity of the solution.
Problem-solving time by the C&CG algorithm has
been reduced compared to the Benders algorithm for
the first scheduling interval 115 to 29.45 seconds, the
second interval 136 to 29 seconds, the third interval
127 to 29.5 seconds, and the fourth time period 151 to
30 seconds reduced.

APPENDIX A
See Tables 22–24.

APPENDIX B UNCERTAINTY BUDGET
By determining a proper uncertainty budget, a robust solu-
tion will have higher economic efficiency than the stochastic
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TABLE 22. List of indices, sets, and symbols.

TABLE 23. List of parameters.

approach. Based on the boundary defined in the following
equation, the uncertainty budget can be determined with
each level of probability. In the following equations, n is
the number of random variables in the equation, and 8(x)
is a function of the cumulative distribution. By considering
95% probability and six random variables, the budget of
uncertainty 5 and 6 is obtained [37]. The resulting budgets are
also used for real-time electricity market price uncertainty.

0Dj ≥ 8
−1 (0.95)

√
n (82)

APPENDIX C DUAL PROBLEM
The internal minimum function and its constraint are as
follows.

min
z∈ (y,d,λ,I )

(
bTz + λ

TCz + eT d
)

(83)

(y, d, λ, I )

=
{
z : Hz ≤ h,My + Nz ≤ w,Kz ≤ I ,Qz = d

}
(84)

TABLE 24. List of variables.

To obtain the duality of (83), since the objective function is of
the minimum type, all constraints must be written as (≥ 0).

min
z∈ (y,d,λ,I )

(
bTz + λ

TCz + eT d
)

(85)

− Hz ≥ −h (86)

− Nz ≥ My − w (87)

− Kz ≥ −I (88)

Qz ≥ d (89)

− Qz ≥ −d (90)

By considering the dual variables that include (ϑ , π , ρ,
and ς ) and multiplying by the above constraints, the dual
function of the maximum type can be obtained.

R (y, d, λ, I )

= max
π ς,ϑ,ρ

(
ςTMy + eT d − πT h− ςTw− ϑT I − ρT d

)
(91)

s.t. πTH + ςTN + ϑTK + λTC + ρTQ+ bT = 0

(92)

∀π ≥ 0, ς ≥ 0, ϑ ≥ 0, ρfree (93)

APPENDIX D BIG-M METHOD
The non-linear terms in equation (71) include ρT d and ϑT I .
The defined recourse continuous variables are given as fol-
lowing equation

ρntθ
D+
jt = σ

+
nt , ρntθ

D−
jt = σ

−
nt and ξt , ϑt It (94)

The general relation of the inelastic load is given as the
following equation

djt = d̄jt + d̂
+

jt θ
D+
jt − d̂

−

jt θ
D−
jt , ∀j ∈ �D, t ∈ �T (95)

By applying the following equations (96-101), the recourse
innermost maximum-minimum problem is converted into a
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MILP problem.

−M I It ≤ ξt ≤ M I It , ∀t ∈ �T (96)

−M I (1− It) ≤ ξt − ϑt ≤ M I (1− It) , ∀t ∈ �T

(97)

−M θ+θD+jt ≤ σ
+
nt ≤ M

θ+θD+jt ,

∀n ∈ �T , t ∈ �T , j : (j, n) ∈ MD

(98)

−M θ+
(
1− θD+jt

)
≤ σ+nt − ρnt ≤ M

θ+(1− θD+jt ),

∀n ∈ �T , t ∈ �T , j : (j, n) ∈ MD

(99)

−M θ−θD−jt ≤ σ
−
nt ≤ M

θ−θD−jt ,

∀n ∈ �T , t ∈ �T , j : (j, n) ∈ MD

(100)

−M θ−
(
1− θD−jt

)
≤ σ−nt − ρnt ≤ M

θ−(1− θD−jt ),

∀n ∈ �T , t ∈ �T , j : (j, n) ∈ MD

(101)
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