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ABSTRACT This study offers an adaptive dynamic sine cosine fitness grey wolf optimizer (ADSCFGWO)
for optimizing the parameters of two types of antennas. The two types of antennas are metamaterial and
double T-shape monopoles. The ADSCFGWO algorithm is based on an adaptive dynamic technique and
two recently developed and powerful optimization techniques: a modified grey wolf optimization (GWO)
based on fitness value and a sine cosine algorithm (SCA). The suggested approach utilizes both algorithms’
capabilities to better balance the exploration and exploitation responsibilities of the optimization process
while achieving rapid convergence. First, a new feature selection approach is proposed to choose the
most significant features from the metamaterial dataset using the suggested ADSCFGWO-based ensemble
model for optimal performance. The ADSCFGWO algorithm also optimizes a bidirectional recurrent neural
network (BRNN) to estimate the double T-shapemonopole antenna characteristics. Several experiments were
undertaken to demonstrate the superiority of the suggested algorithms by comparing their results to those of
existing optimization algorithms, feature selectors, and regression models. In addition, a statistical analysis
is offered to evaluate the algorithm’s effectiveness and stability. The findings demonstrate the suggested
method’s efficacy and superiority over numerous competing algorithms.

INDEX TERMS Grey wolf optimizer, sine cosine optimizer, feature selection, ensemble model,
metamaterial antenna, double T-shape antenna.

I. INTRODUCTION
Optimization of the design parameters of antennas is an
active research field that has been addressed recently
by many machine learning researchers and professionals
[1]–[3]. A great deal of interest is paid to this field due
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to the advances achieved by the currently running fourth
industrial revolution and the prevalence of advanced machine
learning techniques, and the emergence of a large set of freely
available open-source libraries. This enables researchers to
customize various machine learning algorithms to realize the
ideas inspired by meta-heuristics [4]–[6]. Modern antenna
structures are often electromagnetically and topologically
complicated, with many design parameters resulting from
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the more demanding specifications required to achieve better
performance. The fine-tuning of the material and geometrical
aspects of the design structure of antennas to achieve
these goals became a common practice in the field of
communication [7].

The most common approaches to fine-tune antenna
parameters are still based on sweeping few design parameters
using the experience-based approaches. This approach, which
is often a trial and error process used in designing modern
antennas with numerous sensitive parameters, could take
a long time with no guarantee of success. As a result,
optimization-based design automation is required. Local
and/or global numerical optimization approaches are mostly
used to increase the performance of antennas through
optimization. Even though numerical optimization is superior
to parameter sweeping using experience-based approaches,
there are still obstacles to overcome [8]–[12].

To get effective results, local optimization approaches
frequently necessitate a suitable initial design or starting point
for modern antenna designs; this is typically not accessible in
practice. On the other hand, global optimization approaches
are more appealing due to their resilience and lack of
the need for a starting design, but they sometimes need a
huge (can be expensive) number of electromagnetic (EM)
simulations to get sub-optimal design parameters. Full-wave
EM simulations are computationally costly by definition.
Full-wave EM simulations based on numerical techniques are
unavoidable for comprehensive antenna characterization. The
characterization of the design, which is performed once using
the standard simulation, is not an issue; the real challenge
is that the global optimization approaches usually require
a huge number of EM simulations; which represent an
unsustainable processing burden [13]–[16].

Machine learning approaches are frequently utilized to
enhance numerical optimization methods by including them
a priori and/or a posteriori in the optimization kernel to
reduce the computing burden of antenna synthesis. Surrogate
modeling is one of the most often utilized machine learning
tools for assisting numerical optimization methods in antenna
synthesis. Surrogate modeling works primarily in the opti-
mization process using computationally inexpensive approxi-
mationmodels instead of computationally expensive function
evaluations (i.e., EM simulations with high computations).
Surrogate models are a type of approximation modeling
that is often built using statistical learning approaches.
A variety of surrogate modeling approaches are effective
for EM design optimization using modern machine learning
techniques [43]–[46].

The high dimensional search space of the current
real-world optimization problems makes solving these prob-
lems a real challenge [34]. Therefore, heuristic optimiza-
tion offers a very efficient alternative to the traditional
approaches in solving this problem. This results in the
prevalence of heuristic optimization as a preferred technique
in many research fields such as mechanics, engineering,
business processes, machine learning, and many other

fields [20], [47]. In general, the main target of optimization
is to search the feasible solutions and select the most
acceptable one. In specific, the task of optimization becomes
a search problem in the space of multi-dimensions that selects
the solution with min/max value of a specific objective
function [48]. The family of meta-heuristic optimization
techniques focuses on finding the best solution quickly and
efficiently [49], [50].

The simple concepts of meta-heuristic optimization repre-
sent the main factor in making them simple to implement
and understand. The main advantages of meta-heuristic
optimization algorithms are the flexibility and simplicity
that make them superior to other exact and classical
optimization techniques such as local search and greedy
search. An important feature of meta-heuristic is that they
are usually capable of avoiding the local optima due to their
search behavior that explores the search space extensively in
a stochastic manner that avoids the local optima stagnation.
On the other hand, the flexibility of these algorithms makes
them convenient to various applications and fields without
the need for critical changes in their implementation and
design.

Grey Wolf Optimizer (GWO) algorithm is one of the most
interesting optimization algorithms that emerged recently
in the literature based on a meta-heuristic that mimics
the natural behavior of grey wolves [20], [51]. The main
characteristics of the GWO algorithm include simplicity,
versatility, and the ability to avoid local optima. Much
recent research employed the GWO algorithm to train
multi-layer perceptron (MLP) network for handling several
tasks such as feature selection, solving the optimal reactive
power dispatch problem, and financial crisis prediction [52].
As the GWO algorithm is based on many variables in
the optimization process, this causes a degradation in its
performance. In addition, the algorithm convergence is
premature. However, it has a significant advantage that the
balance between exploration and exploitation is satisfying.
Therefore, the GWO algorithm is adopted in the proposed
algorithm to exploit this advantage.

Sine Cosine Algorithm (SCA) is another powerful opti-
mization algorithm that has a greater exploitation rate than
other meta-heuristics as it uses a single optimum solution to
guide other candidate solutions [23]. Due to its efficiency
in memory consumption and convergence time, SCA is
employed in a variety of applications [24], [25]. Despite
the simplicity and high balance between exploration and
exploitation of SCA algorithm, it still has a few drawbacks
such as low exploration rate, dependency on a single
best solution during the search process, and performance
degradation when a large number of local optimal solutions
exist. Therefore, in this research, this algorithm is utilized to
benefit from its strengths while coping with the drawbacks by
utilizing the grey wolf optimizer.

The No-Free-Lunch theorem mentioned that no single
meta-heuristic could achieve the best solution for all the
optimization problems [53]. Therefore, there is still room
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TABLE 1. Review of the popular meta-heuristic optimization for antenna.

for developing new optimization algorithms with more
generalization capability. This results in several meta-
heuristics that can perform better on some optimization
problems than others. A summary of the most popular meta-
heuristic-based optimization techniques for the antenna is
presented in Table 1. This table shows each algorithm’s main
idea, strengths, weaknesses, and applications.

This paper proposes an optimization algorithm that
can handle the improper balance between the exploration
and exploitation tasks and the low convergence of some
existing optimization algorithms, such as GWO and SCA.
An adaptive dynamic sine cosine fitness grey wolf opti-
mizer (ADSCFGWO) algorithm is proposed based on an
adaptive dynamic technique and two recently developed
and powerful optimization techniques: a modified grey wolf
optimization (GWO) based on fitness value and a sine cosine
algorithm (SCA). The new optimization algorithm employs
adaptive the modified GWO and SCA algorithms in an

adaptive dynamic hybrid and unified framework for the
antenna. The main contributions of this work are listed in the
following:
• A novel adaptive dynamic sine cosine fitness grey
wolf optimizer (ADSCFGWO) algorithm for feature
selection and optimized ensembles is proposed.

• A new binary ADSCFGWO algorithm is proposed.
• Application of the ADSCFGWO algorithm to the
metamaterial and double T-shape antennas.

• A new ensemble model for robust prediction of the
metamaterial antenna parameters is presented.

• Improving the performance of the bidirectional recurrent
neural network using the proposed ADSCFGWO for
accurate estimation of the parameters of a double
T-shape antenna.

• A one-sample two-tailed t-test and ANOVA test are
employed to assess the statistical significance of the
proposed optimization techniques.
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FIGURE 1. Typical process of meta-heuristic optimization for antenna.

• Statistical analysis is performed to evaluate the perfor-
mance of the proposed ensemble model.

• The proposed algorithm can be generalized to other
datasets.

The organization of this research comes as follows.
The materials and methods employed in this research
are presented in section II. The proposed methodology is
explained in section III, followed by a discussion of the
achieved results in section IV. The conclusions and future
perspectives are presented in section V.

II. METHODS AND MATERIALS
This section presents the main methods and materials
employed in the proposed methodology. Figure 1 presents
the typical process of antenna optimization based on meta-
heuristics. As shown in the figure, the process starts with
feature engineering, followed by applying meta-heuristic
optimization techniques in an iterative way for achieving the
best results. The next sections discuss these steps, focusing
on the utilized methods and materials.

A. FEATURE ENGINEERING
Feature engineering is a vital process for all machine
learning techniques. This process entails the selection and
extraction of the relevant features that are necessary for
machine learning pipelines. The words feature selection and
feature extraction are used interchangeably in the literature.
However, there is a distinction between them in essence.
The feature extraction process focuses on processing the
raw data to extract additional variables that can help the
algorithms of machine learning work properly. On the other
hand, the process of feature selection is interested in selecting
and identifying the relevant features from the dataset that
fulfill certain conditions, such as uniqueness, consistency,
and meaningfulness. To realize the feature selection process,
binary values (0 and 1) are used to constrain the search space.
Consequently, an update must be applied to the continuous
values-based optimizers to allow them to work properly with
this issue.

The feature selection is the most significant step in feature
engineering as it selects the most appropriate features that
enable optimizers to achieve the best performance. The
Feature selection task can be defined as a binary vector
of n-features, with each feature having a value of 1 or 0,
depending onwhether it is included in the solution or not [21].
A random population of vectors with random features is
usually the starting point for the meta-heuristic algorithms
that is followed by a series of exploration and exploitation
to find the optimum collection of features [22].

B. GREY WOLF OPTIMIZER
The behavior of the grey wolf optimizer (GWO) is inspired
by the movements of the real wolves while searching for
prey and hunting. The nature of wolves is based on living
in groups of varying sizes. The minimum size of a group
is five wolves, and the maximum group size is 12 wolves.
Based on each wolf’s role in the group, they are categorized
into four different types. These types are referred to as alpha,
beta, omega, and delta [17]. The decision-making regarding
the time to walk, the hunting decision, and the sleeping place
is usually the role of the alpha-type wolves, whose decisions
are usually supported by the beta-type wolves in the group.
The alpha wolves are considered the dominant wolves, and
the beta wolves are considered the subordinates of the alpha-
type wolves. When the alpha wolves pass away, the beta
wolves are the best candidate to replace them. The main
role of the beta wolves is to reinforce the decisions made
by the alpha wolves throughout the group and give feedback
to the alpha group. Delta-type wolves usually submit to the
alpha and beta-type wolves, but they dominate the omega-
type wolves. There are five different delta wolves categories:
scouts, sentinels, elders, hunters, and caretakers. Each
category has a specific role in the group. The omega-type
wolves are considered the group’s scapegoats, and they
have to submit to all the previous types of wolves in the
group.

In the grey wolf optimizer, the first fittest solution of the
optimization problem is referred to as the alpha solution.
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FIGURE 2. Grey wolf position updating process.

However, the second and the third fittest solutions are denoted
by the beta and delta solutions. The other solutions are
referred to as the omega solutions. In the grey wolf optimizer,
the hunting of the best solution is usually guided by alpha,
beta, and delta agents, and the omega agents follow these
three agents.

From the mathematics perspective, the first fittest solution
is denoted by (Sα). The second and third fittest solutions are
denoted by (Sβ ) and (Sδ), respectively. The other solutions
are denoted by (Sγ ). Figure 2 depicts the updating process of
the grey wolves while catching prey. As shown in the figure,
the alpha, beta, and delta wolves guide the gamma wolves
and other hunters to efficiently hunt their prey. The position
updating is performed as follows.

S(t + 1) = Sp(t)− A.|C .Sp(t)− S(t)| (1)

where S denotes the position of the wolf, and t refers to the
current iteration of the search algorithm. Sp(t) refers to the
prey position and A and C are vectors of coefficients that are
defined as follow.

A = 2a.r1 − a (2)

C = 2r2 (3)

where the values of vectors r1 and r2 are randomly selected
from the range [0, 1], and the values of the vector a are
selected from the range [0, 2] in a linearly decreasing manner.
The balance between the exploitation and exploration pro-
cesses is controlled by the updated values of the vector a [17].

The update of this vector is calculated as follows.

a = 2− t.
2
Mt

(4)

where the number of available iterations is referred as Mt .
The estimated positions of the three fittest solutions, Sα ,
Sβ , and Sδ , are used to guide the other solutions, denoted
by Sγ , to update their position in the direction of the prey
position that is estimated during the search process as shown
in Figure 2.

The position updating process of the wolves is described
using the following equations by substitution of Sp(t) in
equation 1 by Sα , Sβ , and Sδ .

S1 = Sα − A1.Dα, Dα = |C1.Sα − S|

S2 = Sβ − A2.Dβ , Dβ = |C2.Sβ − S|

S3 = Sδ − A3.Dδ, Dδ = |C3.Sδ − S| (5)

The calculations of A1-A3 and C1-C3 are performed by
equation 2 and equation 3, respectively. The population’s new
position is calculated as follows.

S(t + 1) =
S1 + S2 + S3

3
(6)

C. SINE COSINE OPTIMIZER
The first introduction of Sine Cosine Algorithm (SCA) was
in [23]. The oscillation functions of the sines and cosines form
themain factor in identifying the locations of the best solution
as shown in Figure 3. A set of random variables are utilized
by SCA to denote the following operations [26]:
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FIGURE 3. Sine cosine position updating process.

• Swapping between the sine and cosine components.
• Emphasizing/de-emphasizing the destination effect.
• The movement location.
• The motion direction.
The update process of the candidate solutions is performed

using the following equation.

S(t + 1) =

{
S(t)+ r1.sin(r2).|r3P(t)− S(t)| r4 < 0.5
S(t)+ r1.cos(r2).|r3P(t)− S(t)| r4 ≥ 0.5

(7)

where t refers to the iteration number of the search process.
P and S refer to the current and destination solutions,
respectively. The random variables r2-r4 are assigned values
in the range [0 − 1]. It can be noted from this equation that
the position of the current solution is updated based on the
positions of the best solution, which allows the algorithm
to reach the optimal solution efficiently. During the running
iterations of SCA, the value of r1 is updated as follows.

r1 = a−
a× t
tmax

(8)

where a is a constant, t and tmax represent the current and
maximum iterations, respectively.

Due to the utilization of a single best solution to guide
the other solutions in the SCA algorithm, this makes it
more robust than a wide variety of meta-heuristic techniques
in the literature [26]. In addition, the convergence speed
and memory consumption of this algorithm are minimal
when compared to other competing algorithms. However, the
efficiency of this algorithm decreases when the number of
local optimal solutions increases. Therefore, in our proposed
algorithm, we employed the SCA optimizer to benefit from
its fast convergence and memory efficiency properties along
with the GWO algorithm to avoid the stagnation in the local

optima and to provide a proper balance between exploration
and exploitation tasks of the optimization process.

D. BIDIRECTIONAL RECURRENT NEURAL NETWORK
(BRNN)
The typical structure of BRNN usually combines RNN that
moves forward through time and starts from the beginning of
a sequence with another RNN that moves backward through
time starting from the end of the sequence [54], [55]. For
clarification, Figure 4 depicts the typical structure of a BRNN
at three time steps, t − 1, t , and t + 1. The information flows
in the bottom part from left to right to represent the past
information, whereas the information flows from right to left
in the top part to represent the future information. Therefore,
the result at time t , denoted byOt is based on the future output
denoted by hbt in addition to the past output denoted by hft .
The training of BRNN uses all available input information in
the past and future of a specific time frame.

To train BRNN, the algorithms used in training the
conventional RNN can be used in this case since the two
types of neurons in the architecture of BRNN have no
direct interaction. This results in unfolding the structure
of BRNN into a feed-forward structure. However, when
the back-propagation is used, the forward and backward
steps become more complex as the state and output updates
cannot be performed one at a time. Therefore, when the
back-propagation through time (BPTT) is employed, the
process of forward and backward updates can be performed
the same as in the multi-layer perceptron (MLP) network.
As the inputs at the forward (t = 1) and backward (t = T )
states are unknown, their values are set arbitrarily to (0.5).
On the other hand, the values of the local state derivatives of
the forward (at t = T ) and backward (at t = 1) states are
set to zero, with an assumption that beyond this point, the
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FIGURE 4. Structure of a typical bidirectional recurrent neural network
shown at three time steps (i.e. t − 1, t and t + 1).

FIGURE 5. The structure of a metamaterial antenna.

information is not significant for the update performed at the
current state.

In this research, we employed a proposed optimization
algorithm to optimize the parameters of a BRNN for
predicting the design parameter of a double T-shape antenna.

E. METAMATERIAL ANTENNA
Rather than the traditional material used in designing anten-
nas, the metamaterial has unusual characteristics that enable
manufacturers to design antennas with novel properties. The
performance of antennas designed using metamaterial can
be improved by setting certain design parameters in addition
to providing the antenna substrate with one or more layers
of the metamaterial. Figure 5 depicts a sample metamaterial
antenna Split Ring Resonator (SRR) unit cell. The surface of
the radiation box has a perfect magnetic conductor (PMC)
of metamaterial antenna, which is represented by the
y-axis [56].

To prove the effectiveness of the proposed optimization
algorithm, an ensemble model is proposed, in this research,
for estimating the bandwidth of metamaterial antenna based
on five regression models. The proposed ensemble model

FIGURE 6. The structure of a double T-shape antenna.

is optimized using the proposed optimization algorithm
method to identify the optimum values of the antenna
bandwidth. More details about the proposed ensemble
model are presented in the next sections. The metamaterial
dataset, publicly available on Kaggle [57], employed in
the experiments consists of 10 features (namely, Return
loss (S11), Standing wave ration voltage (VSWR), Gain, cell
distance (Xa), Array-patch distance (Ya), Number of cells
(SRRnum), ring width (Tm), ring distance (Dm), ring gap
(W0m), dimensions of the resonator (Wm), and bandwidth)
with their values recorded from EM simulators.

F. DOUBLE T-SHAPE ANTENNA
The structure of double T-shape antenna is based on five
design parameters referred as w, w1, w2, wf , l1, l21,
and l22, as shown in Figure 6. The function of the T-shape
antenna depends mainly on the specified values of these
five parameters. On the other hand, there is another set
of design parameters (consists of L, h1, and h2) whose
values are usually retained while varying the values of the
aforementioned parameters to fit specific antenna behavior
as indicated in [2], [27], [58]–[60]. For instance, a maximum
bandwidth can be achieved by removing the amount of
value of figure-of-merit (FOM) specified for the antenna
performance. The calculation of FOM is performed using the
following equation.

FOM =
h=3.0∑
h=2.3

|S11(h)| +
h=5.3∑
h=5.15

|S11(h)| (9)

where the frequency is denoted by h and the value of its
reflection coefficient is referred as S11(h).
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Algorithm 1 : The Proposed Adaptive Dynamic Sine Cosine Fitness Grey Wolf Optimization (ADSCFGWO) Algorithm
1: Initialize ADSCFGWO population Xi(i = 1, 2, . . . , n) with size n, maximum iterationsMaxiter , fitness function Fn, a, A1,
A2, A3, C1, C2, r1, r2, r3, r4

2: procedure DynamicSearch(Fn)
3: if (Best Fn is same for three iterations) then
4: Increase solutions of exploration group (n1)
5: Decrease solutions of exploitation group (n2)
6: end if
7: end procedure
8: Calculate fitness function Fn for each Xi
9: Find first, second and third best solutions as Sα, Sβ , Sδ

10: Set t = 1
11: while t ≤ Maxiter do
12: Update r1 by r1 = a

(
1− t

Maxiter

)
13: for (i = 1 : i < n1 + 1) do

(exploration group update)
14: DynamicSearch(Fn)
15: Update Fitness Fα = Fα

Fα+Fβ+Fδ

16: Update Fitness Fβ =
Fβ

Fα+Fβ+Fδ
17: Update Fitness Fδ = Fδ

Fα+Fβ+Fδ
18: Calculate D = |C1.(Fα ∗ Sα + Fβ ∗ Sβ + Fδ ∗ Sδ)− X (t)|
19: Calculate T1 = Sα − A1.D
20: Calculate T2 = Sβ − A2.D
21: Calculate T3 = Sδ − A3.D
22: Update positions as X (t + 1) = T1+T2+T3

3
23: if (r4 < 0.5) then

X (t + 1) = X (t) + r1 × sin(r2)× |r3Sα−X (t)|
24: end if
25: end for
26: for (i = 1 : i < n2 + 1) do

(exploitation group update)
27: DynamicSearch(Fn)
28: Update Fitness Fα = Fα

Fα+Fβ+Fδ

29: Update Fitness Fβ =
Fβ

Fα+Fβ+Fδ
30: Update Fitness Fδ = Fδ

Fα+Fβ+Fδ
31: Calculate D = |C2.(Fα ∗ Sα + Fβ ∗ Sβ + Fδ ∗ Sδ)− X (t)|
32: Calculate T1 = Sα − A1.D
33: Calculate T2 = Sβ − A2.D
34: Calculate T3 = Sδ − A3.D
35: Update positions as X (t + 1) = T1+T2+T3

3
36: if (r4 ≥ 0.5) then

X (t + 1) = X (t) + r1 × cos(r2)× |r3Sα−X (t)|
37: end if
38: end for
39: Update the fitness function Fn for each Xi
40: Update Xα,Xβ ,Xδ , a, A1, A2, A3, C1, C2, r2, r3, r4
41: Find best individual X∗

42: Set t = t + 1
43: end while
44: Return X∗

In this research, we adopted the double T-shape monopole
antenna for verifying the effectiveness of the proposed

methodology through estimating its design parameters using
optimized BRNN.
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FIGURE 7. The balance between the exploitation and exploration processes.

III. THE PROPOSED METHODOLOGY
This section presents and discusses the proposed adap-
tive dynamic sine cosine fitness grey wolf optimizer
(ADSCFGWO). This algorithm is a new hybrid algorithm
based on both sine cosine and grey wolf algorithms in
an adaptive framework that exploits the advantages of
both algorithms. The details of the proposed algorithm are
presented in Algorithm 1, and more details are explained in
this section.

A. MOTIVATION
In optimization problems, a population refers to a collection
of individuals representing the potential solutions to a
problem being solved by an algorithm. These individuals
usually have parameter vectors for each one of them. The
individuals in the candidate solution are divided into two
groups, namely, exploitation and exploration groups. The
task of the exploitation group is to improve the best solution
quality using an objective function. At the same time, the
task of the exploration group is to utilize the search space
for exploring new areas at which the potential best solution
can be found. In the proposed optimization algorithm, these
two groups collaborate to exchange duties and necessary
information that can help fast retrieve the best solution.
The benefits of this collaboration are the efficient avoidance
of the local optima and the accurate exploration of the
search space. There are two distinct features of the proposed
optimization algorithm, firstly, proper control of the balance
between the exploitation and exploration groups is main-
tained by the proposed algorithm; secondly, the avoidance
of steady regions in the search space through a dynamic
mechanism.

B. BALANCE BETWEEN EXPLORATION AND
EXPLOITATION
The proposed algorithm ADSCFGWO automatically bal-
ances exploration and exploitation among the population’s
subgroups. The proposed algorithm employs a 70/30 scheme,
where 70% of the population is split into two groups, namely,
exploration and exploitation groups. The discovery of fresh
and interesting search regions is aided by having a large
number of participants in the exploration group early in the
optimization process. When more exploitative individuals
can boost their fitness values, the overall fitness of individuals
rises, but the number of individuals in the exploration
group reduces rapidly from 70% to 30%. Using an elitism
method ensures convergence by retaining the process leader
in succeeding populations if a better solution cannot be found.
As long as the leader’s fitness hasn’t significantly improved
over the course of three consecutive iterations, ADSCFGWO
can increase the number of members in the exploration group
at any time.

Figure 7 shows the dynamic change in the the number
of individuals in exploitation and exploration groups over
a set of iterations. The top plot of Figure 7 depicts the
convergence curve of the best fitness as an example of
finding a point in 2D space in a sample optimization problem.
On the other hand, the bottom plot of Figure 7 depicts the
number of exploitation and exploration of individuals over
the optimization iterations.

C. COMPLEXITY ANALYSIS
The computational complexity of the proposed ADSCFGWO
algorithm can be expressed as follows. For population n and
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iterations tmax , the time complexity will be defined as in the
following.
• Initialization Xi(i = 1, 2, . . . , n), Maximum iterations
Maxiter , Fn, tmax , c, A1, A2, A3, C1, C2, r1, r2, r3, r4,
t = 1 : O(1).

• Calculate objective function Fn for each solution Xi :
O(n).

• Finding best solutions Xibest : O(n).
• Updating position of current grey wolf by fitness:
O(tmax × n).

• Updating position of current individual by Sine Cosine:
O(tmax × n).

• Updating objective function Fn for each Xi : O(tmax)×n.
• Finding best fitness Xibest : O(tmax).
• Updating a, A1, A2, A3, C1, C2, r2, r3, r4 : O(tmax).
• Updating iterations: O(tmax).
• Producing the best fitness Xibest : O(1).
From this analysis, the complexity of computations is

O(tmax × n) and O(tmax × n× d) with d dimension.

D. BINARY ADSCFGWO ALGORITHM
The search space of the feature selection problems is limited
to the binary values (0 and 1) to decide whether the
corresponding feature is significant or not. Therefore, in this
section, we propose a binary ADSCFGWO algorithm that
converts the continuous values resulting from the continuous
ADSCFGWO algorithm into binary [0,1] to match the
process of feature selection. The conversion to binary values
is performed in terms of the Sigmoid function, which is
represented by the following equation.

X (t+1)
=

{
1 if Sigmoid(Xbest ) ≥ 0.5
0 otherwise

,

Sigmoid(XBest ) =
1

1+ e−10(XBest−0.5)
(10)

where Xbest refers to best solution solution at iteration t . The
main goal of the sigmoid function is to scale the continuous
values achieved by Algorithm 1 to become in the range [0-1].
The sigmoid function is shown in Figure 8 and the steps of the
proposed binary ADSCFGWO are presented in Algorithm 2.

E. OBJECTIVE FUNCTION
The quality of the retrieved solution based on the the proposed
optimization algorithm is measured using the following
equation.

Fn = αError(P)+ β
|S|
|A|

(11)

where P refers to the model parameters. The values of α ∈
[0, 1], β = 1 − α reflect the importance of the selected
features in the population. |S| is the number of the selected
features, and |A| is the total number of all features in the
dataset. The best solution is the one that can employ the
minimum number of selected features to achieve the lowest
prediction/classification error.

FIGURE 8. Sigmoid function of Eq. 10.

Algorithm 2 : The Proposed BinaryADSCFGWOAlgorithm
1: Initialize Set ADSCFGWO population, parameters,

configuration.
2: Convert solutions to binary [0,1].
3: Calculate objective function and select best solutions.
4: Train k-NN and calculate error
5: while t ≤ Maxiter do
6: Apply ADSCFGWO algorithm
7: Convert solutions to binary using Eq. (10)
8: Calculate Fitness
9: Update Positions

10: end while
11: Return X∗

IV. EXPERIMENTAL RESULTS
The conducted experiments are divided into three scenarios
to evaluate the proposed algorithms. In the first scenario,
the proposed ADSCFGWO algorithm is tested for seven
benchmark functions, from F1 to F7 [61], and on the
CEC2017 benchmarkswith ten dimensions [62]. The Conver-
gence curves, Mean and standard deviation (StDev), T-test,
and ANOVA test results over the benchmark functions are
shown in Appendix A. For the CEC2017 benchmark, there
are 29 problems across ten dimensions with a 5 percent
significance level. The statistical results and the best and
standard deviations of error from the optimal solution of the
ADSCFGWO and state-of-the-art algorithms over 51 runs for
all 29 benchmark functions are shown in Appendix B. The
results based on benchmark functions show the performance
of the proposed algorithm. The second scenario targets
optimizing the parameters of the metamaterial antenna.
In contrast, the third scenario is established to optimize
the parameters of a double T-shape antenna. The following
sections present the details of these scenarios and discuss the
achieved results.
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A. METAMATERIAL ANTENNA SCENARIO
The set of experiments is conducted in this scenario to
measure the effectiveness of the proposed feature selection
and optimization algorithms in predicting the bandwidth
of metamaterial antenna. In this scenario, the performance
of the proposed algorithm is measured in terms of several
performance metrics, as presented in the next section.

1) PERFORMANCE METRICS
To measure the effectiveness of the proposed algorithm for
predicting the design parameters of metamaterial antenna,
we utilized the metrics listed in the following equations.
In these metrics, M refers to the number of runs of an
optimizer for the process of feature selection. In addition, the
best solution at the run number j is denoted by g∗j , and the
number of tested points is referred to as N .
• Average Error is calculated to measure the error in
predicting the design parameters of the metamaterial
antenna. This metric is calculated as follows.

Avg Error = 1−
1
M

M∑
j=1

1
N

N∑
i=1

mse(Ci,Li) (12)

where mse refers to the mean square error of the
prediction of the antenna parameters. Ci is the predicted
value of the design parameter at point i, and Li is the
corresponding actual value at same point i.

• Average Select Size is the average size of the features
selected by the feature selection process to the total
number of features in the dataset (D). This metric is
measured as follows.

Avg Select Size =
1
M

M∑
j=1

size(g∗j )

D
(13)

where the vector g∗j has a size denoted by size(g∗j ).

• Average Fitness is the average of the resulting predic-
tions generated by the proposed optimizer for M times
of running. This metric is measured as follows.

Avg Fitness =
1
M

M∑
j=1

g∗j (14)

• Best Fitness is a metric that refers to the minimum
fitness measured afterM runs of the proposed optimizer.
This metric is measured as follows.

Best Fitness = Min(j in [M ])g∗j (15)

• Worst Fitness is a metric that refers to the worst fitness
measured after M runs of the proposed optimizer. This
metric is measured as follows.

Worst Fitness = Max(j in [M ])g∗j (16)

• Standard Deviation (STD) is the variation of the best
predicted values afterM runs of the proposed optimizer.
This metric is measured as follows.

STD =

√
1

M − 1

∑
(g∗j − Avg Fitness)2 (17)

TABLE 2. Performance evaluation metrics.

TABLE 3. Configuration parameters of the proposed bADSCFGWO.

where Avg Fitness refers to the average fitness measured
by equation 14, andM refers to the number of tuns of the
optimization algorithm to select the feature subset.

On the other hand, additional metrics are used to mea-
sure the performance of the regression models employed
to predict the bandwidth of metamaterial antenna. These
metrics include root mean error (RMSE), mean absolute
error (MAE), mean bias error (MBE), Pearson’s correlation
coefficient (r), coefficient of determination (R2), Relative
RMSE (RRMSE), Nash Sutcliffe Efficiency (NSE), deter-
mine agreement (WI), where N is the number of observations
in the dataset; (V̂n) and (Vn) are the nth estimated and observed
bandwidth, and ( ¯̂Vn) and (Vn) are the arithmetic means of
the estimated and observed values. The evaluation of these
metrics is performed using the equations presented in Table 2.

2) CONFIGURATION PARAMETERS
The configuration parameters of the proposed algorithm are
shown in Table 3. As shown in this table, the values of α
and β for the employed objective function in Eq. (11), are
set to 0.99 and 0.01, respectively. On the other hand, the
configuration parameters of the other competing algorithms
included in the conducted experiments are shown in Table 4.

3) METAMATERIAL ANTENNA DATASET
To evaluate the proposed algorithm, we adopted the meta-
material dataset that is publicly available on Kaggle [57]
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TABLE 4. Configuration parameters of the competing algorithms.

for the experiments of the second scenario. This dataset
consists of a set of 10 features (namely, Return loss (S11),
Standing wave ration voltage (VSWR), Gain, cell distance
(Xa), Array-patch distance (Ya), Number of cells (SRRnum),
ring width (Tm), ring distance (Dm), ring gap (W0m),
dimensions of the resonator (Wm), and bandwidth) with
their values recorded from EM simulators. The bandwidth
in this dataset is considered one of the most relevant
parameters. Therefore, the proposed algorithm is employed
to predict the values of the bandwidth based on the
features selected using the proposed bADSCFGWO. The
correlation among the features of the dataset is depicted in
Figure 9.

4) THE PROPOSED ENSEMBLE MODEL
In this section, we proposed a new ensemble model for
predicting the bandwidth of metamaterial antenna. The pro-
posed model consists of three main steps: data preprocessing,
training base models, and training the proposed ensemble
model. In the first step, the given metamaterial dataset is
preprocessed to remove the null values and scale the features
in the range of [0, 1]. The preprocessed features from the
first step are then fed to the proposed bADSCFGWO, shown
in Algorithm 2, to select the most significant features. The
selected features are used to train a set of five base models
to predict the bandwidth of the metamaterial antenna. These
base models are support vector regression (SVR), multi-layer
perceptron (MLP), decision tree (DT), random forest (RF),

FIGURE 9. Correlation between the features of the metamaterial antenna.

FIGURE 10. The predicted (red color) and actual (green color) values
based on the proposed ensemble model.

and k-nearest neighbors (KNN). The training of these base
models is performed in terms of the proposed ADSCFGWO
algorithm shown in Algorithm 1. On the other hand, The
contribution of each base model in the final prediction result
is optimized using the proposedADSCFGWOalgorithm. The
predictions using the proposed ensemble model are shown in
Figure 10. The detailed steps of the proposed ensemblemodel
are depicted in Figure 11. This ensemble model is compared
with the average ensemble and KNN based ensemble models
for the same task, and the results are presented and discussed
in the next section.

5) ANALYSIS AND DISCUSSION
This section presents and discusses the achieved results based
on metamaterial antenna. These results include evaluation
of the proposed feature selection algorithm, evaluation of
the optimization of the proposed ensemble model using the
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FIGURE 11. The proposed ensemble for optimizing the parameters of metamaterial antenna.

FIGURE 12. Convergence curves of the proposed algorithm and the other competing algorithms.

proposed ADSCFGWO and other optimization algorithms,
evaluation of the proposed ensemble model, and finally,
statistical analysis of the achieved results.

The feature selection applied to the metamaterial
antenna features is performed using the proposed binary
ADSCFGWO. The achieved results are compared with
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TABLE 5. Performance of the proposed feature selection algorithm compared to other competing algorithms.

TABLE 6. Statistical analysis of the achieved results based on the proposed feature selection algorithm and other competing algorithms.

TABLE 7. Results achieved by the proposed ensemble models and other regression and ensemble models.

TABLE 8. The results of the ANOVA test based on the achieved results on the metamaterial antenna.

TABLE 9. Two-tailed t-test of the achieved results using the proposed algorithm and other algorithms for the metamaterial antenna.

other state-of-the-art binary optimization techniques, namely,
Firefly Algorithm (FA) [63], Genetic Algorithm (GA) [37],
Satin Bowerbird Optimizer (SBO) [64], Particle swarm

optimization (PSO) [28], Stochastic Fractal Search (SFS)
[65], Whale optimization algorithm (WOA) [36], Mul-
tiverse Optimization (MVO) [66], Grey Wolf Optimizer
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FIGURE 13. Evaluation results of the proposed algorithm for optimizing metamaterial antenna parameters.

TABLE 10. The results of the ANOVA test based on the achieved results on the T-shape antenna.

(GWO) [29], Modified binary grey wolf optimizer
(MbGWO) [67], hybrid GWO and PSO (bGWO_PSO) [68],
hybrid GWO and GA (bGWO_GA). The evaluation results
are presented in Table 5. As shown in this table, the proposed
bADSCFGWO achieves an average error of (0.6475), which
is the best among the values achieved by the other algorithms.
In addition, other metrics such as achieving better values
of average select size, average fitness, best fitness, worst
fitness, and standard deviation, the proposed algorithm
achieves the best values when compared to the other
competing algorithms. Moreover, the convergence speed of
the proposed algorithm, shown in the last column of the

figure, is the smallest among the average time spent by the
other algorithms in selecting the appropriate features from the
metamaterial dataset. These results confirm the effectiveness
of the proposed algorithm in selecting the proper features that
are used to predict the parameters of themetamaterial antenna
accurately.

On the other hand, four optimization algorithms, namely,
SFS, PSO, GWO, and GWO_PSO, along with the proposed
ADSCFGWO, are used to optimize the parameters of
the proposed ensemble model to prove the efficiency of
the proposed ADSCFGWO algorithm in optimizing the
ensemble parameters. The results of this evaluation are
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TABLE 11. Two-tailed t-test of the achieved results using the proposed algorithm and other algorithms for optimizing the parameters of double T-shape
antenna.

presented in Table 6. This table presents a statistical analysis
of the achieved results when compared with the other
algorithms. As shown in this table, the minimum value
achieved by the proposed algorithm is (0.0034), which is
smaller than that of the corresponding metric achieved by the
other algorithms. In addition, the mean, standard deviation,
and standard deviation error of the mean achieved by the
proposed algorithm are better than those values achieved by
the other algorithms.

Moreover, the proposed ensemble model is evaluated
and compared with other ensemble and regression models,
namely, average ensemble and KNN-based ensemble, along
with the separate application of regression models. The
results of these models are presented in Table 7. These
results are measured in terms of the eight evaluation
criteria, presented in Table 2, to examine the performance
of the proposed ensemble model with comparison to the
other models. The presented results in Table 7 show the
efficiency and superiority of the proposed ensemble model
in predicting the bandwidth of metamaterial antenna when
compared to the other ensembles and separate regression
models.

The one-way analysis of variance (ANOVA) test results,
based on the proposed ensemble models and other models,
is presented in Table 8. In this table, it can be noted
that the proposed algorithm and other competing algo-
rithms are statistically similar. However, deciding which
algorithm is better is not obvious in the results of the
ANOVA test. Therefore, we conducted another test between
every two approaches. The results of a one-tailed t-test at
0.05 significance level are shown in Table 9 for eleven
values. In this kind of testing, when the p-value has a
value <0.05, this represents a significant superiority of the
approach and vice versa. As shown in Table 9, the measured
value of p-value between the proposed approach and the
other approaches is <0.05, which indicates the superior-
ity of the proposed approach and proves it’s significant
statistically.

On the other hand, the plots shown in Figure 13 depict
an in-depth investigation of the performance of the proposed
optimization algorithm. This figure shows the seven types of
plots, namely, residual plot, homoscedasticity plot, QQ plot,
heatmap, ROC curve, root-mean-square-error (RMSE) plot,
and histogram of RMSE values.

The residual plot in Figure 13a shows themapping between
the predicted values of the metamaterial antenna parameters
and the prediction error values. As shown in the figure, the
prediction errors are within the range of (0.002) to (-0.002),
which indicates the accuracy of the proposed algorithm in
predicting the parameters of the metamaterial antenna. These
results are also confirmed by the homoscedasticity shown in
Figure 13b. In addition, the QQ plot depicted in Figure 13c
shows the mapping between the predicted and actual values
metamaterial antenna parameters. In this figure, the mapping
approximately fits a straight line, which emphasizes the
effectiveness of the proposed algorithm. A comparison
between the proposed feature selection algorithm other
algorithms is presented in Figure 13d. The white-green color
in the figure refers to better performance, which is shown in
the figure with the proposed algorithm.

In addition, the results presented in Figure 13e and
Figure 13f confirm the superiority of the proposed feature
selection algorithm and the achieved prediction results. The
ROC curve shows promising performance of the proposed
feature selection algorithm. In addition, the RMSE plot
shows the smallest value of the objective function for
the proposed algorithm compared to other existing feature
selection algorithms that have been recently published in the
literature. Figure 13g depicts the histogram of the RMSE
values achieved using the proposed algorithm and other
algorithms. In this figure, the majority of the predicted values
have the smallest RMSE values among the corresponding
predictions using the other feature selection algorithms. Most
of the achieved RMSE values are in the range of (0.0034)
to (0.004), which outperforms those achieved by the other
algorithms. These results prove the proposed algorithm’s
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TABLE 12. Statistical analysis of the achieved results based on T-shape antenna and using the optimized BRNN.

TABLE 13. Estimated parameters of the double T-shape antenna.

TABLE 14. Unimodal benchmark functions (F1 to F7).

effectiveness for predicting the bandwidth of metamaterial
antenna.

B. DOUBLE T-SHAPE ANTENNA SCENARIO
The third scenario of the conducted experiments targets
optimizing the parameters of a double T-shape antenna.
In this scenario, we employed the proposed ADSCFGWO
algorithm to optimize the bidirectional recurrent neural net-
work (BRNN) parameters to estimate the design parameters
of a double T-shape monopole antenna. The performance of

the proposed approach is compared with the performance
of four other machine learning and optimization models,
namely, MLP, KNN, SCA BRNN, and GWO BRNN. More
details about the achieved results are presented in the
following.

1) ANALYSIS AND DISCUSSION
The results of the ANOVA test based on the proposed
optimized BRNN, in comparison with other algorithms, are
presented in Table 10. As shown in the table, the proposed
approach and other approaches are statistically significant.
To clearly show the superiority of the proposed approach,
we conducted another test between every two algorithms
in terms of the two-tailed t-test. The results of this test at
0.05 significance level are shown in Table 11 for 21 samples.
When the p-value has a value <0.05, this reflects the
significance of the algorithm and vice versa. As shown in
Table 11, the measured value of p-value matches the condi-
tion and reflects their significance. However, the proposed
approach could achieve the minimum discrepancy among
the experimented models, which indicates the superiority
of the proposed algorithm and proves its greater statistical
significance.

Another statistical analysis is presented in Table 12 for
comparing the accuracy of the estimated parameters of
T-shape using the proposed optimized BRNN and other
approaches for 21 runes. As shown in the table, the proposed
approach achieves a minimum error of (1E-100) based on
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TABLE 15. Mean and standard deviation (StDev) of the suggested and compared algorithms over the benchmark functions (F1 to F7).

FIGURE 14. Evaluation of the proposed ADSCFGWO algorithm in optimizing the parameters of a double T-shape antenna.

the fitness score concerning the global optimizer, which is
the minimum value among the results achieved by the other
algorithms. In addition, all other metrics in the table show the
superiority of the proposed algorithm for the task of T-shape
antenna parameter optimization.

Table 13 shows the estimated parameters using the
proposed optimized model and the other models. In this
table, the time consumed by the proposed approach (233.1)
to find the estimated values of T-shape antenna parameters is
the smallest while accurately estimating these values. This
reflects the accuracy of the proposed model and its fast
convergence, which indicates the superiority and efficiency
of the proposed approach.

On the other hand, the plots shown in Figure 14 depict
an in-depth investigation of the performance of the proposed
optimization algorithm in terms of estimating the parameters
of a T-shape antenna. This figure shows five types of
plots, namely, residual plot, homoscedasticity plot, QQ plot,
heatmap, ROC curve, RMSE plot, and histogram of RMSE.
The residual plot, in Figure 14a, shows the mapping between
the predicted values of the T-shape antenna parameters
and the prediction error. As shown in the figure, the residuals
are close to the x-axis, which indicates the accuracy of
the proposed algorithm in predicting the parameters of a
T-shape antenna. This finding is also confirmed by the
homoscedasticity shown in Figure 14b. In addition, the QQ

74466 VOLUME 10, 2022



D. S. Khafaga et al.: Solving Optimization Problems of Metamaterial and Double T-Shape Antennas

TABLE 16. ANOVA test over the benchmark functions (F1 to F7).

TABLE 17. T-test for the benchmark functions (from F1 to F7) based on the suggested algorithm against the compared algorithms.

plot depicted in Figure 14c shows the mapping between the
predicted and actual values of T-shape antenna parameters.
In this figure, the mapping approximately fits a straight
line, which emphasizes the effectiveness of the proposed
approach. A comparison between the proposed feature
selection algorithm and other algorithms is presented in
Figure 14d. The dark regions in the figure refer to better
performance. Most of these regions are associated with
the proposed ADSCFGWO BRNN approach. Moreover, the
histogram of RMSE values is shown in Figure 14e. It is
clearly shown in the figure that most of the achieved RMSE
values using the proposed approach are approximately close

to zero. These results prove the accuracy of the proposed
approach when compared to the other approaches.

V. CONCLUSION AND FUTURE WORK
In this research, we proposed a new optimization algorithm
referred to as adaptive dynamic sine cosine fitness grey wolf
optimizer (ADSCFGWO) algorithm. The main motivation
of this algorithm is to achieve a better balance between the
exploration and exploitation tasks of the optimization process
and achieving fast convergence. To verify the effectiveness
of the proposed algorithm, two sets of experimental results
were conducted based on two types of antennas. The publicly
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FIGURE 15. Convergence curves of the proposed algorithm and the other competing algorithms for F1, F2, F3, and F4 benchmark functions.

TABLE 18. Results of ADSCFGWO in 10D.

available metamaterial antenna dataset was employed for
the first set of experiments. Meanwhile, the second set
of experiments targets utilizing the proposed algorithm to
optimize the design parameters of a double T-shape antenna.
We proposed a new ensemble model based on five regression
models for the first set of experiments, namely SVR, MLP,
DT, RF, and KNN. The parameters of this ensemble model

are optimized using the proposed ADSCFGWO algorithm.
In addition, we proposed a new binary optimizer for selecting
the significant features for classification and regression
tasks. This binary optimizer is employed for selecting the
significant features in the metamaterial antenna dataset to
boost the prediction accuracy of the antenna bandwidth.
The proposed ensemble model and the proposed feature
selection algorithm were tested and compared with other
competing approaches to verify their effectiveness, and the
results confirmed our expectations.

On the other hand, the second set of experiments targeted
optimizing the parameters of a BRNN that was used to
classify the design parameters of a double T-shape antenna.
Moreover, additional experiments were conducted to verify
the stability and robustness of the proposed algorithm.
The results achieved by the proposed algorithm were also
compared with the results of other optimization algorithms
to prove their superiority. The future perspectives of this
research can be testing the proposed algorithm in other
optimization problems in different domains.

APPENDIX A
In this appendix, the proposed ADSCFGWO algorithm is
tested for seven benchmark functions, from F1 to F7 [61] as
shown in Table 14. Figure 15 shows the Convergence curves
of the proposed algorithm and the other competing algorithms
for F1, F2, F3, and F4 benchmark functions. Table 15 shows
the T-test for the benchmark functions (from F1 to F7) based
on the suggested algorithm against the compared algorithms.
Table 16 shows the ANOVA test results over the benchmark
functions (F1 to F7). Table 17 presents the mean and standard
deviation (StDev) of the suggested and compared algorithms
over the benchmark functions (F1 to F7). The results show
the performance of the proposed algorithm.
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TABLE 19. Experimental results of GWO, PSO, SFS and ADSCFGWO over 51 independent runs on 29 test functions of 10 variables with 100,000 FES.

APPENDIX B
The proposed ADSCFGWO algorithm is tested for the
CEC2017 benchmarks with ten dimensions [62]. For the
CEC2017 benchmark, there are 29 problems across ten
dimensions with a 5 percent significance level. Table 18 sum-
marizes the statistical results of the proposed ADSCFGWO
algorithm on the CEC2017 benchmarks with ten dimensions.
Table 19 presents a statistical results of the benchmark com-
parisons with ten dimensions, best and standard deviations of
error, from the optimal solution of ADSCFGWO and other
state-of-the-art algorithms over 51 runs for all 29 benchmark
functions. The results based on CEC 2017 also show the
performance of the proposed algorithm.
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