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ABSTRACT Population aging is a global trend, and the highest proportion of elderly people in the
workforce per unit of population is found in agricultural areas. However, few systematic studies have been
conducted on farmer falls in the field of agricultural machinery. This study focuses on the application
of classification methods for monitoring devices to detect fall/nonfall movements of farmworkers, where
agricultural biomechanical factors are considered in detecting activities of daily living. In this study,
we recorded and analyzed original acquisition datasets of signals obtained from two accelerometers and
one gyroscope for 40 healthy individuals who performed various falls and activities of daily living (ADLs).
Spatial characteristics were used to train the machine-learning classifiers to distinguish between fall and
non-fall events. Supervised machine learning experiments evaluated the effectiveness of the proposed
approach: the k-nearest neighbors (kNN) and support vector machine (SVM) algorithms achieved roc
auc-scores of 0.999 in distinguishing falls and ADLs (binary-class classification). Moreover, an artificial
neural network (ANN) classifier showed the highest performance in terms of classification roc auc-scores
of 1.0. The evaluation metric demonstrated the highest performance in the analysis and evaluation of the
signal obtained from the S2 acceleration sensor with a measurement range of ±16 g. The proposed SVM
classifier evaluations showed a 0.988 roc auc-score for sensor tests in multi-class classification, along with
the highest performance in terms of the F1-score and Matthews Correlation Coefficient (MCC) over 84%
in the multi-class classification model for distinguishing each of ADLs and Fall using ±16 g acceleration
sensor.

INDEX TERMS Agricultural worker, fall-detection, human behavior recognition, machine learning, wear-
able sensor.
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I. INTRODUCTION
United Nations (UN) has predicted that the world population
will increase by 2.2 billion by 2050, from 7.5 billion to
9.7 billion [1]. This is approximately 1.3 times the current
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population. More food must be supplied as the number of
people increases. However, the agricultural population that
conducts agricultural production will continuously decrease
and drop to 30% of the total population by [2], [3]. According
to the World Bank (WB), the proportion of the world’s rural
population was 43.85% in 2020, representing a decrease of
22.53% since the start of the count in 1960. In contrast,
the proportion of the aging population is rapidly increasing,
particularly in these areas. Among the world’s population, the
proportion of the population aged 65 or older was 9.3% as
of 2020, which is expected to steadily increase in the future
to reach up to 16% [4]. In Korea, the number of elderly
people is growing rapidly. Currently, the proportion of people
aged over 65 years in the rural population is 42.5%, and is
expected to exceed 60% within the next five years [5]. Social
problems are emerging because of a lack of labor because of
the decrease in population and rapid aging of society in rural
areas.

According to a survey by the World Health Organization
(WHO), older agricultural workers may be vulnerable to
work-related injuries such as chronic musculoskeletal disor-
ders or fractures, and the frequency of falls also increases
from 28% to 42% as age increases from 65 to 70 years old [6].
The bone fracture in elderly caused by a fall showed the
slowest healing rate. Furthermore, secondary complications
such as pneumonia and bedsores can occur which can lead to
death in the worst case. Elderly people who have experienced
a fall may have difficulty in independent daily life due to the
fear and psychological atrophy they feel in response to the
fall accident, which can significantly reduce their quality of
life [7].

As social problems of aging are emerging, interest in the
activities of daily living (ADLs) of elderly people is increas-
ing, and research in the healthcare field that targets elderly
people is also rapidly increasing. ADLs encompass variety of
daily movements performed by elderly people (e.g., dressing,
eating, moving, and hygiene activities). In addition, the ADL
index of elderly people is used as an analysis index to evaluate
each subject’s dependence on others during daily activities
[8]–[10]. In early ADL studies, data were collected using
questionnaires, which showed several limitations in collect-
ing and analyzing numerous samples. To resolve these prob-
lems, a simple and automated systemwas used to collect ADL
data of elderly people. The system is designed to be worn by
the elderly in their daily life, and data is collected based on
a simple ADL classification a sensor network. A Bayesian
networkmodel was used as the feature extractionmethod, and
a hidden Markov model (HMM) was proposed as the classi-
fication method [12]. In this study, we have included falling
as the one of the movements in ADLs. Several experiments
have focused on distinguishing fall out of other various ADL
movements.

Machine learning-based FDS (Fall Detection Systems)
research refers that monitors observation targets in real-time
and automatically warns people during an emergency [13].
In several European countries, research is underway to create

a fall database based on a vast amount of metadata col-
lected from elderly care facilities or living environment of
the elderly [14]. A representative example is a study by
the Farseeing Consortium [15], in which actual fall data
were collected using an FDS based on inertial sensors in
the living environments of elderly inpatients. The falls were
photographed with the help of a caregiver or nurse using
CCTV cameras installed in their environments. A total of
300 fall data points were collected from six institutions
over three years, and the number of verified data points
was 208. Currently, public access to only some of the data
is restricted. Because these data correspond only to the
motion that caused the fall, their application to algorithm
research is limited; for example, they cannot be applied to
machine learning-based fall detectionmodels because of their
unbalanced composition and non-separation from ADLs, and
they cannot be utilized in many subsequent studies. How-
ever, other research teams have designed new ADL tests
and fall simulation experiments to address these problems.
Casilari et al. published the UMAFall dataset using data col-
lected from the sensor of a smartphone and an inertial sensor
attached to the body of the research participant. A study
that classified falls by applying Bayes classification and four
decision tree machine-learning models was performed [16].
Sucerquia et al. developed a fall detection system based
on wearable sensors (an accelerometer and gyroscope) and
released a new dataset. A threshold-based algorithm has been
proposed [17], [18]. Giuffrida et al. attempted to detect falls
using fall-mimicking experimental data published in the Sis-
Fall dataset. This study achieved higher accuracy compared
to threshold-based fall classification studies [19].

Systematic approaches have received considerable atten-
tion in recent years. In addition, FDS research based on
ambient sensors that can detect the residential environment to
automatically detect falls in the elderly is increasingly being
conducted. A multimodal sensor-based FDS is an interface
system that considers the user environment, in which the
computer receives, combines, and analyzes various informa-
tion. This system can measure a user’s specific environment,
such as the user’s voice and movement pattern, at the same
time [20]. Droghini et al. proposed a technique for measuring
people’s motion data using floor speakers installed indoors
and classifying them into daily movements and falls. In this
regard, the fall detection system uses the development of floor
acoustic sensors and machine-learning technology. It also
presents an improved classification performance compared to
previous studies [21].

The 4th industrial revolution technologies, such as the
Internet of things (IoT), artificial intelligence (AI), and big
data, are making a significant progress in research on rural
environments. Recently, in the biosystems engineering field,
the efficiency of farm operations and production has been
promoted through the application of new technologies, such
as machine learning and artificial neural network technology
[22], [23]. Aiello et al. proposed a method of mapping the
vibration risk using a machine learning algorithm with the
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signal measured from the IMU sensor for the purpose of
farmer safety [24]. Patalas-Maliszewska et al. proposed an
object recognition algorithm that automatically recognizes
the work activities of manufacturing workers using a con-
volutional neural network model [25]. The research subjects
of agricultural engineering technology are being expanded
through the application of artificial intelligence systems, such
as machine learning using data-based sensing technology
and artificial neural networks, along with a new paradigm
change. Moreover, the scope and scale of research are being
greatly enlarged via the application of real-time monitoring
technology, which is widely used in the health care field,
to agricultural technology. Despite these paradigm shifts,
few studies have been conducted on safe agricultural work
activities of daily living that can directly affect agricultural
workers.

FIGURE 1. Schematic flow of the classification algorithm.

Accidental falls and ADLs that may occur during
agricultural activities were mimicked and classified in agri-
cultural simulation experiments using a supervised learning-
based machine learning approach. Forty participants who
were selected for distinguishing falls from nonfalls were
assumed to be farmworkers, and seven types of falls and
eight types of ADL movements, including possible motions,
were performed repeatedly during agricultural work in a
controlled environment. As the sensor, an inertial sensor
that was capable of measuring two acceleration and one
angular velocity signal was used. The sensor system was
attached to each study participant’s waist. The raw data
were calculated using a benchmarked model and feature
extraction method, and the model was trained by dividing
the data into training and testing sets. The fall and ADL
classification performance was assessed in terms of roc
auc-score, accuracy, F1-score, and MCC using kNN, SVM,
and ANN.

II. MATERIAL AND METHODS
Figure 1 is a schematic flow of the classification algorithm
in this study. Our proposed dataset has been compared with
a benchmark dataset (SisFall). Both datasets (Proposed and
benchmark) were pre-processed with feature extract. TheML
classifiers used kNN, SVM, and ANN. These are frequently
used machine learning fall detection systems. And then we
evaluated performance criteria using roc auc-score, accuracy,
f1-score, and MCC.

FIGURE 2. A device that was used for signal acquisition. The coordinates
and force directions of the device when attached to the participant’s
waist are specified.

A. ORIGINAL DATA ACQUISITION
Fall and agricultural work ADL-mimicking experiments
(fall &Ag_ADL_M_E) were performed on 40 subjects who
provided signed consent. The age range of the subjects
was 22-51 years, with 25 male subjects (age: 29.4 ± 6.5,
height: 175.6 ± 5.6 cm, and weight: 77.2 ± 12.6 kg) and
15 female subjects (age: 25.5 ± 4.7, height: 161.4 ± 4.4 cm,
and weight: 53.2 ± 3.6 kg). None of the subjects had
problems with the musculoskeletal system or underlying
diseases. The fall- and agricultural ADL-mimicking exper-
iment was approved by the Research Ethics Committee
(IRB No. 2004/003-027) of Seoul National University
and all participants were provided with safety guide-
lines and detailed information about the experiment
and the established experimental protocol before the
experiment.

Three-axis inertial sensors (SHIMMER3, ShimmerTM,
Ireland) were used to capture the acceleration and angular
velocity for falls and Ag_ADL_M_E. The inertial sensors
used in the experiment consisted of two channels of accelera-
tion detectors on three axes and one channel of angular veloc-
ity detectors on three axes, each with ranges of± 2 g,± 16 g,
and ± 2000 ◦/s. The sensitivity of the acceleration detector
with an output range of ± 2 g was 600 mV/g, and the
sensitivity of the acceleration detector with an output range
of ± 16 g was 0.732 mg/LSB. The sensitivity of the angular
velocity detector was 131 LSB/dps and the communication
interface was operated using I2C. The inertial sensors used
in the experiments were attached to the subjects’ waists,
and the directions of the three-axis acceleration and angular
velocity obtained from the inertial sensors are presented in
Figure 2 [17]. The measured signals were transmitted and
stored via real-time Bluetooth.

During the fall mimicking experiment, the subjects wore
pad-type hip joint protectors, protective helmets, cervi-
cal spine protectors, and wrist and knee joint protectors,
as shown in Figure. 3(a). Figure 3(b) shows the situation of
Fall01, which is slip and fall. As shown in Figure 3(c), and
Figure 3(d) is the hip-impact status after falling. The fall
mimicking experiments were performed after installing a
foam mattress to prevent hip joint injury.
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Seven falls and eight ADLs were proposed, as presented in
Tables 1 and 2. The time and trials were designed for each fall
and ADL during agricultural work. As presented in Table 1,
the most frequently occurring fall from agricultural work was
selected as Fall01–Fall03 [26]; Fall04 corresponds to a fall
while riding up a tractor [27]; Fall05 is a fall that is caused by
a long-term squatting posture, especially during agricultural
work such as weed removal; Fall06 is a fall that is caused
by long-term work with stooping tasks, which likely mimics
pepper harvesting work; and Fall07 is a fall that is caused by
loss of balance while carrying objects [28]–[30]. All falling
motions were repeated five times.

FIGURE 3. Overview of the proposed methodology for the fall
experiment: (a) A schematic view of a participant wearing a sensor and
joint protection guards; (b) Fall01 slip and fall; (c) the impact phase when
the hips touch the floor; and (d) the resting phase after the fall.

Seven falls and eight ADLs were proposed, as presented in
Tables 1 and 2. The time and trials were designed for each fall
and ADL during agricultural work. As presented in Table 1,
the most frequently occurring fall from agricultural work was
selected as Fall01–Fall03 [26]; Fall04 corresponds to a fall
while entering a tractor [27]; Fall05 is a fall that is caused by
a long-term squatting posture, especially during agricultural
work such as weed removal; Fall06 is a fall that is caused
by long-term work with stooping tasks, which likely mimics
pepper harvesting work; and Fall07 is a fall that is caused by
loss of balance while carrying objects [28]–[30]. All falling
motions were repeated five times.

Table 2 shows walking, sitting, standing, ascending, and
descending, with ADLs designed to simulate routine farm-
ing operations. In addition, agricultural processes such as
harvesting, packing, and transportation, including squatting
(e.g., weed removal), stooping (e.g., pepper harvesting), and
lifting (e.g., box lifting), are known to be heavy workloads
to the skeletal system. ADL01 to ADL03 were identified
as ADLs investigated in previous studies, namely, walking
up and down ladders instead of climbing stairs and sitting

TABLE 1. Types of falls considered in this study.

down. They reflect additional movements such as standing
up. ADL04 is a simulation of a furrow jump that crosses
between furrows lightly, and ADL05 uses a tractor’s tread
plate to simulate the movement of climbing on the tractor
[31]–[33]. In addition, ADL06was designed to simulate long-
term squatting tasks, such as harvesting in agriculture, and
ADL07 was chosen to simulate tasks in a bent position,
such as harvesting peppers. Finally, we defined ADL08 as
a box-loading task that is often conducted for transportation
during agricultural operations [34]. All ADL movements
designed in this study consisted ofmovements that commonly
occur in agricultural work (Table 2). The selected motion was
repeated five times.

TABLE 2. Types of ADLs based on motions that were used to mimic
agricultural work.

B. BENCHMARK DATA COMPARISON
A fall and ADL classification model was also learned using
the SisFall dataset, which is an open dataset, in addition to
the dataset obtained through the ADL mimicking experiment
for fall detection. To obtain the SisFall dataset, 34 types of
fall and ADL mimicking experiments were performed on a
total of 38 subjects, who were classified into two groups,
namely, 23 subjects aged 19-30 years and 15 subjects aged
60-75 years old; this dataset contains a total of 4505 data
samples. The dataset consists of 1798 fall data points of
15 types and 2707 ADL data points of 19 types. For safety
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reasons, all subjects aged 60 to 75 years participated only in
the ADL experiment, except for one subject who was trained
in martial arts in the elderly group. In this benchmark dataset,
two acceleration channels with ±8 g and ±16 g ranges and
one angular velocity channel with a range of±2,000 ◦/s were
detected using the fall detection system (FDS) developed
by the research team. The acceleration and angular velocity
were measured to acquire three-axis data, and data storage
and wireless data transmission functions were performed
using internal memory. The FDS sensor was attached to
the subject’s waist, and a fall-and ADL-mimicking experi-
ment was performed. Table 3 presents the main contents and
differences between the SisFall and Falls&Ag_ADL_M_E
datasets. The SisFall dataset consists of 4505 data sam-
ples, of which 1798 are fall data, which are classified into
15 types, and 2707 are ADL datasets, which are classified
into 19 types [17]. Because Falls&Ag_ADL_M_E was a
young subject dataset for safety reasons, we used the model
with only 3537 data samples of young subjects out of the
4505 samples in the SisFall datasets for comparison with a
similar age group.

TABLE 3. SisFall vs. Fall&Ag_ADL_M_Es dataset comparison.

C. MODEL PREPARATION
The acceleration and angular velocity data measured through
Falls&Ag_ADL_M_Es may have been affected by noise and
disturbance during measurement, and these noise compo-
nents may have affected the performance of the fall classifi-
cation model to be developed. Thus, the raw data that were
initially measured required pre-processing, and a low-pass
filter (LPF)was used to block the high-frequency components
of the most common noise [18], [35].

The fall/non-fall classification model obtained through
the mimicking experiment was composed of two types of
data frames (SisFall dataset and Fall&Ag_ADL_M_Es) using
sensor signals as independent variables. Each dataframe

consisted of components of three observation values from
the Shimmer 3 sensor: Sensor 1 (acceleration, ±2 g),
Sensor 2 (acceleration, ±16 g), and Sensor 3 (angular veloc-
ity, ±2000/ ◦s). A data frame was constructed through a fea-
ture extraction process using the proposed method [36]–[38].
Snorm is defined as the Euclidean norm of acceleration
in the 3-axis plane and can be calculated by Snorm =√
(s2x + s2y + s2z), which is used to describe the spatial varia-

tion of acceleration during movements in the 3D plane of the
body. Shori is defined as the Euclidean norm of acceleration
in the horizontal plane (x, z-plane) and can be calculated by
Shori =

√
(s2x + s2z)Shori =

√
(s2x + s2z),, which is used to

describe the spatial variation of acceleration during move-
ments in the horizontal plane of the body. Sverti is defined
as the Euclidean norm of acceleration in the vertical plane

(y, z-axis) and can be calculated by Sverti =
√
(s2y + s2z),

which is used to describe the spatial variation of acceleration
during movements in the vertical plane of the body. Nine
variables were extracted, and additional features for statistical
variables such as the mean, standard deviation, variance,
maximum, minimum, range, kurtosis, skewness, and correla-
tion coefficient were extracted based on these nine variables.
Therefore, the feature vector extracted from the sensor of one
channel had 54 independent variables. m represents the total
number of samples in the data frame, as listed in Table 4 [39].

TABLE 4. Description of feature vector for machine-learning algorithm.

III. CLASSIFICATION MODEL
A. K-NEAREST NEIGHBORS (kNN)
The kNN algorithm is a method for classifying data x by
majority voting. It determines which class of k data is
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distributed close to the coordinate around that located when
data x is newly entered. When the data are entered, the mini-
mum distance between the new data and the existing training
data is calculated. From the k data points around the entered
data, we classify the data by determining to which class the
training data are assigned. Equation (1) corresponds to the
Euclidean distance calculation. Therefore, once the learning
and test data are prepared, the distances between the data are
calculated to determine the type of nearest neighbors from the
data. The kNN model utilized the Python-based scikit-learn
library to implement the kNN, and the k value was set to five.
Seventy percent of the datasets were defined as training data
and the remaining 30% were used as test data and classified.

d
(
Xi,Xj

)
=

√(
xi1 − xj1

)2
+ · · · +

(
xin − xjn

)2 (1)

RXk =
{
X ∈ Rn, d (X ,Xi) ≤ d (X ,Xk)

}
(2)

where d (Xi, Xj) denotes the distance between samples Xi
and Xj and RXk denotes the group that belongs to the nearest
neighbor among the k-nearest neighbors of the new feature
vector X. Then, the newly entered feature vectors are assigned
to the class and belong to the nearest neighbor k [40].

B. SUPPORT VECTOR MACHINES (SVM)
Support vector machines (SVMs) are multipurpose machine
learning models that are frequently used in linear and non-
linear classification, regression, and anomaly detection and
have been used mainly for binary classification models
after feature extraction [41]. The initial linear support vec-
tor machine (SVM) theory was proposed by Vapnik et al.
In 1963, it was used to solve image recognition problems
such as the recognition of handwritten numbers and faces.
Recently, Liu et al. applied SVM algorithms to models that
classify falls and non-falls, which indicated highly satisfac-
tory performance [42].

The SVM classifier used in this work utilized a linear
support vector machine (SVM) provided by the Python-
based scikit-learn library, which defined 70% of the datasets
as training data and the remaining 30% as test data to
train the model. Equations (3) and (4) refer to the pro-
cess of finding the boundary between hyperplanes that can
separate samples of classes belonging to different groups.
Given the training data X = {X1,X2,X3 . . . . . . ,XN−1,XN }
labels that correspond to hyperplanes can be found at Y =
{y1, y2, y3 . . . . . . , yN−1, yN , yi ∈ [1,−1]} where w and b are
the parameters that represent the hyperplane.

wT · Xi + b ≥ +1, yi = +1 (3)

wT · Xi + b ≥ −1, yi = −1 (4)

The margin of a hyperplane is the distance between the
hyperplanes that pass through each support vector. Geomet-
rically, the distance between the two hyperplanes is 2

‖w‖
when the margin is obtained, and the SVM is defined as an
algorithm that maximizes the margin.

C. ARTIFICIAL NEURAL NETWORK (ANN)
Artificial neural networks (ANNs) are machine-learning
algorithms inspired by biological neural networks (where
the brain is considered particularly important in the central
nervous system of animals) and are used in statistics and
cognitive science. ANNs are represented by the intercon-
nection of neural systems from various input variables to
the output, and artificial neural networks (ANNs) can be
represented as mathematical functions that are configured to
represent complex relationships between inputs (independent
variables) and outputs (dependent variables).

al+1 = σ
(
W lal + bl

)
, (5)

Here, al is the neuron value of layer l (ali represents the
value of neuron i of layer l), W represents the weight matrix
between layers l and l + 1, bl represents the bias associ-
ated with neurons in layer l, and σ represents the activation
function. The ANN implemented in this work is a two-layer
feedforward network that consists of sigmoid hidden and
output neurons, where softmax is used as the final output
short activation function (Figure 4). The error function uses
sparse categorical cross-entropy and a stochastic gradient
descent (SGD) optimizer. We defined a simple artificial neu-
ral network (ANN) model using Keras with a TensorFlow
backend. The performance of the model was evaluated using
data frames that were divided into training (70%) and test-
ing (30%) sets. The test results were verified through hold-
out cross-validation using the average of the results of five
repeats.

FIGURE 4. Implementing a simple ANN model with TensorFlow/Keras.

The detailed parameter setting of the classifiers is shown
in Table 5. Initially, default values were used when select-
ing model parameters. Finally, we determined the value of
the parameters through the observation responses by slightly
changing those settings.

TABLE 5. Parameter setting for Machine learning model of the
benchmark.

D. PERFORMANCE EVALUATION CRITERIA
We evaluated the model using the machine learning method
for the performance evaluation of the three (kNN, SVM, and
ANN) classification models proposed in this work. In this
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FIGURE 5. Illustration of the Snorm and Shori distributions of falls and ADLs in agricultural work. The left 8 activities represent
ADLs, and the right 7 activities represent falls. (a) and (b): Boxplots of the maximum Snorm and Shori values for falls and ADLs
using sensor 1 (acceleration ±2 g). (c) and (d): Boxplots of the maximum Snorm and Shori values for falls and ADLs using sensor 2
(acceleration ±16 g). (e) and (f): Boxplots of the maximum Snorm and Shori values for falls and ADLs using sensor 3 (angular
velocity: ±2000 deg/s).

work, the positive condition was defined as the subject’s fall,
and the negative condition was the subject’s performance of
routine ADL behavior without falling [37]. The fall detection
results are classified into four cases: true positive (TP), false
positive (FP), true negative (TN), and false negative (FN).
In fall detection systems, the results from FP and FN are
evaluated as good performance classifiers [43]. Sensitivity,
specificity, positive prediction value (PPV), negative predic-
tion value (NPV), and accuracy were used as classification
performance evaluation metrics, which correspond to the typ-
ical performance evaluation criteria for binary classification
tests [44]. Sensitivity (or recall) is the ability to detect falls,
and PPV (or precision) represents the quality of accurate fall
detection. The sensitivity, specificity, precision, and accuracy
show effective evaluation results for human activity classifi-
cation on unbalanced datasets [45], [46].

ROC (Receiver Operating Characteristics) AUC (Area
Under Curve) is the area under the roc auc curve that takes
into account all possible classification thresholds. If the roc
auc-score is closer to a value of 1, the prediction model is
reliable, which can be one of the metrics used to evaluate
the performance of the model. Accuracy is the proportion of

the true test results among the total results, and the formula
is presented in Equation (6). The sensitivity and precision
were calculated using Equations (7) and (8), respectively.
Higher sensitivity, specificity, precision, and accuracy values
indicated better system performance of the applied model.
The F1-score is the harmonic mean of the precision and
sensitivity, which is used as a criterion for fairness in class
performance for an unbalanced class distribution [36]. The
formula for the F1-score is presented in Equation (9). In addi-
tion, the Matthews correlation coefficient (MCC) is used as
a basis for assessing the quality of binary classification or
multiclass classification of machine learning, where perfect
prediction corresponds to a classification value of +1 and
random prediction to a value of −1. Random prediction pro-
duces meaningless values. The result is usually determined
to be reliable if the MCC value is 0.4 or higher. The MCC
formula is presented in (10) [47].

Accuracy

=
TP+ TN

TP+ TN + FP+ FN
(6)

Sensitivity(orrecall)
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=
TP

TP+ FN
(7)

Precision

=
TP

TP+ FP
(8)

F1_score

= 2×
sensitivity× precision
sensitivity+ precision

(9)

MCC

=
TP× TN − FP× FN

√
(TP+ FN ) (TP+ FP) (TN + FN ) (TN + FP)

(10)

E. STATISTICAL ANALYSIS
For static evaluation, the difference between the benchmark
data and the proposed data group is compared with Student’s
t-test. The 3 or more groups of comparison used ANOVA, and
a post-hoc-test was performed through Tukey’s HSD.

IV. RESULTS
A. THRESHOLD-BASED FALL DETECTION
Threshold-based classification assessed the performance of
using the feature vectors Snorm and Shori, which are the maxi-
mum and minimum threshold values, respectively, to classify
falls and ADLs in agricultural work. All the data acquired in
this studywere analyzed after removing high-frequency noise
components through preprocessing. Previous studies [37]
found that threshold-based fall detection could be achieved
using simple feature vectors, such as Snorm and Shori. This
threshold-based classification has the advantages of low com-
putational cost and simplicity compared to machine learning
or regression analysis, and is widely used for high-speed
fall/non-fall classification. The threshold is determined using
the maximum distributions of Snorm and Shori. The distribu-
tions of falls and ADLs in agricultural work are shown in
Figure 5. Figure 5(a), (b), and Figure 5(c) and (d) show the
signal analyses from the accelerometers with measurement
ranges of ±2 g and ±16 g. Figure 5(e) and (f) show the
signal distribution measured by the angular velocity sensor.
Table 6 presents the red horizontal line that indicates the
maximum Snorm and Shori boundaries of agricultural ADL
measurements in each plot, and the green horizontal line that
represents the minimum Snorm and Shori boundaries of the fall
measurement data.

TABLE 6. Measurement of the threshold-based classifier (using
SNU_ag_fall_5Hz LPF).

Two thresholds were established for fall and ADL clas-
sification during agricultural work using the maximum and
minimum values of Snorm and Shori that are specified in
Figure 5 and Table 6. As shown in Figure 5(a), the data
that are distributed above the red horizontal line are true
positive (TP) data; namely, this line is the threshold that
determines a fall, and the data that are distributed below the
green horizontal line are true negative (TN) data; namely, this
line is the threshold that determines anADL. In addition, false
positives (FPs) and false negatives (FNs) were distributed
between the red and green horizontal lines. Falls and non-
falls were classified according to the determined values cor-
responding to each label.

Table 7 presents performance metrics of the threshold-
based classifier that were analyzed based on the falls and
ADLs in agricultural work, as shown in Figure 5. The results
show that the S2 accelerometer (measurement range: ±16 g)
and the two-axis (x, z horizontal plane) component achieved
classification performancewith 72.7% accuracy, 73.05% sen-
sitivity, 69.86% precision, and 71.42% f1-score.

TABLE 7. Results of the threshold-based classifier using proposed
dataset. (SNU_ag_Fall&ADL.)

B. MACHINE LEARNING-BASED FALL DETECTION
In this study, a machine-learning-based fall classification
model was also implemented, and three methods (kNN,
SVM, and ANN) were applied for classification. The
experimental solution mimicked previous research methods
[37], [39]. The dataset included simulated falls and ADL
behaviors that imitated agricultural work, while other SisFall
datasets included ADLs and simulated falls. In addition,
the performance of the implemented machine-learning-based
fall classification model was compared and evaluated for
two categories (binary-class classification and multiclass
classification).

1) BINARY-CLASS CLASSIFICATION (FALL/NONFALL)
Figure 6 shows the roc auc score compared with both datasets
using the kNN, SVM and ANN classifiers, the evaluation
metrics of roc auc-score using the 16 g acceleration data were
0.0438, 0.0095 and 0.0950 higher than those for the bench-
mark dataset. There were statistically significant differences
between groupmeans as determined by t-test (p< 0.05). Both
datasets (benchmark and Proposed) demonstrate a reliable
prediction in the SVM model.
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FIGURE 6. Comparison of binary-class classification of roc auc-score for
benchmark and proposed dataset on kNN, SVM and ANN classifier using
16g acceleration sensor. (Student’s t-test, ∗∗∗p < 0.001.)

Table 8 presents evaluation results (roc auc-score, accu-
racy, F1-score, and MCC) of the binary-class classification
models for falls and ADL behavior. Tables 8(A) and (B)
present the test results of kNN-, SVM-, and ANN-based fall
classification models that were implemented using bench-
mark and proposed datasets. In the benchmark dataset, clas-
sification was realized with 0.992 roc auc -score, 99.25%
accuracy, 99.22% F1-score, and 98.49% MCC using the
SVM classifier. On the proposed dataset, the best binary
classification evaluation performance, with 1.0 roc auc-score,
99.84 accuracy, 99.83 F1-score, and 99.69 MCC, was real-
ized by the ANN model. The best performance on proposed
datasets was achieved when acceleration sensors that could
measure the ±16 range were used. In particular, fall classifi-
cation models that were trained using the experimental data
measuredwith an accelerometer (Acc_16 g) with ameasuring
range of ±16 g achieved accuracy, F1-score, and MCC that
exceeded 99%. The roc auc-score, accuracy, F1-score, and
MCC of the ANN classification model using the proposed
dataset were 0.095, 17.41%, 17.22%, and 34.34% higher,
respectively than those using the benchmark dataset. There
were statistically significant differences between benchmark
and proposed data set groups as determined by Student’s
t-test. In addition, for the fall classification models that were
trained using the proposed dataset, the metrics of roc auc-
score, accuracy, F1-score, and MCC for the acceleration data
were higher than those for the angular velocity data. This
result supports the finding of previous studies that it may
be practical to apply only acceleration information when
implementing a machine-learning-based fall detection sys-
tem [36], [48]. However, there are no significant differences
between two acceleration sensors (8g vs 16g and 2g vs 16g)
using the SVM classifier.

2) MULTI-CLASS CLASSIFICATION
Table 9 presents the evaluation results (roc auc-score,
overall-accuracy, F1-score, and MCC) of the multi-
class classification models for falls and ADL behavior.
Tables 9(A) and (B) show the performance of the models on
the benchmark and the proposed dataset. The experimental

TABLE 8. Binary-class classification results of the machine learning
model and The roc auc-score, accuracy, F1-scores, and MCC ± SE.

results calculate themacro average and one versus rest (OVR)
easily used in multi-class classification to compute metrics
independently for each class and to take an average to treat all
classes equally (Tran et al., 2018). According to Table 9, the
SVM classifier outperformed the other models in multiclass
classification using data measured from the accelerometer
(Acc_16 g) with a measurement range of ±16 g. The roc
auc-score of the SVM model using the data that were mea-
sured from Acc_16 g were 0.991 and 0.989 for the multi-
class classification model with the benchmark dataset and the
proposed dataset. The roc auc-score was 0.003 higher than
the proposed dataset. However, another evaluation metric
of overall accuracy, f1-score, and MCC using the proposed
dataset were 1.51, 9.55, and 2.38% higher, respectively, than
those using the benchmark dataset. There were statistically
significant differences between groups determined by Stu-
dent’s t-test(p-value < 0.5).
Table 9 presents the performance results of a multi-class

classification model. The SVM classifier using the Acc_16 g
sensor model showed the best evaluation performance. The
statistical reliability was evaluated by comparing the metric
of prediction rate.

Figure 7 shows the confusion matrix of the fall and ADL
multi-class classification models using Acc_16 g sensor
datasets. Each row of the matrix represents an actual class
while each column represents a predicted class. The model
consists of nine-class, eight of which are ADL classes from
ADL 01 to ADL 08, and the ninth class includes the seven
falls. A graphical representation of the roc auc curve is shown
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TABLE 9. Multiclass classification results of the machine learning model
and applied sensor. The roc auc-score, overall accuracy, F1-scores, and
MCC ± se.

in Figure 8, Class 0 to 7 are ADL01 to 08 and Class 8 is Falls.
Figure 9 shows a comparison of classification performance
metrics with kNN, SVM and ANN classifier on proposed
dataset using 16 g acceleration sensor.

FIGURE 7. Confusion matrices for the nine-class classification (ADL and
fall) for the SVM classifier using 16g acceleration sensor.

V. DISCUSSION
The acceleration and angular speeds of falls were observed
to be significantly higher in elderly people than in young

subjects [52]. The subjects fell onto a mattress; hence, this
environment may be different from the actual agricultural
environment in which elderly people fall. However, these
experimental conditions were considered to be within an
acceptable range according to the results of previous stud-
ies [49], [50]. The threshold-based fall detection technique
is widely used owing to its advantages of low computing
complexity and low computational volume [51]. This indi-
cated that the horizontal-plane component can be a useful
classification metric for distinguishing between falls and
normal agricultural ADLs. MCC was used as a classifica-
tion performance index to evaluate the disproportionately
distributed data. MCC is a classification performance eval-
uation measure for comparing the accuracy and determin-
ing the predictive reliability of unbalanced datasets [53].
In Fall&Ag_ADL_M_Es, the ratio of fall to non-fall data
was set at 40:60, which is different from that of the bench-
mark dataset, namely, 49:51, which does not include elderly
data. Although the balanced distribution of data samples
is a factor that can affect the analysis results, excellent
results were derived from the performance metric in fall
&Ag_ADL_M_Es [54]. These results show the possibility
that this dataset can also be extended and used to compare
and analyze such as imbalanced datasets measured at actual
agricultural workplaces in future work. As shown in Figure 7,
the confusion matrices ADL02 and ADL05 are interpreted
as misclassification due to the similarity of motion between
the two tasks. In addition, the roc auc-curve results show that
the Class 1 (ADL02) and Class 4 (ADL05) scores were also
below the macro average (0.984) in figure 8. In the roc auc-
score, all classes can be considered over 0.95 roc auc-score.
However, class 1 and 4 are significantly lower than other class
groups using one-way ANOVA with Tukey’s HSD post hoc
test.

FIGURE 8. Receiver operating characteristic for the nine-class
classification (Fall and ADL) for the SVM classifier using the 16 g
acceleration sensor.

In multi-class classification analysis, the number of data
samples from the proposed fall-mimicking experiment was
intentionally controlled. In ADL01–ADL08, fall and ADL
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data corresponded to 6.67% and 46.6%, respectively, of the
total. The binary classification model and generated mod-
els were evaluated through performance comparisons of the
roc auc-score. The performance metrics reached 0.988 roc
auc-score, 85.45% overall accuracy, 84.38% f1-score, and
84.21% MCC on the proposed dataset, respectively. The
SVM classifier using 16g acceleration was assessed to show
the best performance in multi-class classification problems.
It was confirmed that the statistical significance between
proposed and benchmark datasets is shown in figure 6. In the
case of the multi-class classification problem, statistical sig-
nificance was observed with the classifiers (kNN, SVM, and
ANN), and these statistical tests were confirmed through the
results of one-way ANOVAwith Tukey’s HSD post hoc tests,
shown in Figure 9. The overall accuracy using nine-class clas-
sification were no significant differences between classifiers
(kNN, SVM, and ANN).

In the SVM classifier, Fall&Ag_ADL_M_Es showed
higher reliability than the benchmark datasets (Table 9) on
the classification of falls and agricultural activity recogni-
tion. The proposed model is reliable, even though the data
distribution is unbalanced. This indicates that it can also
be used to design a classification model for motion recog-
nition. In practice, it can be difficult to record a realistic
fall database using elderly volunteers in their actual living
environments, especially in rural areas. Therefore, effective
fall-mimicking experiments using database models, such as
the machine learning approach, are important. In the design
of an experimental protocol with an inevitably unbalanced
dataset, in addition, the approach proposed in this study is
expected to be useful in detecting falls that generate high risks
in everyday environments, including falls and agricultural
activities.

FIGURE 9. Comparison of classification performance metrics with
proposed dataset using 16 g acceleration sensor. (Statistical analysis
using ANOVA with Tukey’s HSD post-hoc test. ∗p < 0.05, ∗∗p < 0.01, ns:
not significant, independent treatments: k = 3.)

VI. CONCLUSION
The SNU_Ag_Fall&ADL dataset was established by mea-
suring possible fall movements and daily activity data during

agricultural work using machine learning approaches (kNN,
SVM, and ANN) for the 40 study participants.

Because the experiment was conducted in a limited lab-
oratory setting, it is expected that the classification perfor-
mance will be affected when the model is applied in the
field, namely, in an agricultural work environment. If various
age groups were to be included among the experimental
participants, especially if the proportion of elderly partici-
pants was to increase, the range of motion deviations, such
as movement speed, would increase, which could affect the
recognition rates of motion [18]. Therefore, future studies
should carefully consider participants of various age groups,
particularly elderly workers in rural areas, in real agricultural
environments during the experimental design process.

This study delivered a valuable result that can be used
for machine-learning classification, such as analyzing the
relative differences between sensor characteristics using agri-
cultural mimicked data and selecting parameters to improve
the classification performance in the future. It is considered
that it would be necessary to apply advanced methods to
improve the performance, likely in the experimental design,
to increase the size of the sample and to improve the analy-
sis of data. Recently, cross-application in various fields has
been recommended in the field of data science. For these
approaches, in combination with computerized ergonomics
in agricultural biomechanics and across all cultures, changes
in the disclosure and sharing of results are required to stan-
dardize the data and analysis tools available in various fields.

Previous studies aimed to focus on the high prediction per-
formance of fall and nonfall classification initially. Through
this study, it was delivered that not only the performance
of the benchmark fall classification model was exceeded
in binary-class classification but also the reliability of the
corresponding model was a high performance for each ADL
activities classification. In the future, we plan to focus more
on the classification of agricultural work using experimen-
tal data measured at actual farm work. Moreover, we plan
to consider various methods such as deep learning (CNN,
LSTM, or ensemble) models among machine learning tech-
niques. In such machine learning research, omnidirectional
analysis and conclusions can be drawn depending on which
dataset is used, how the data frame has consisted, and
which evaluation metric is used. Therefore, it is neces-
sary to continuously make efforts to present experiments
under various conditions in detailed explanation in future
research.

If the technology and algorithm implemented in this study
are embedded in a portable device or smart accessory, elderly
or vulnerable users could be monitored in real-time while
connected to an ambient network. This would increase the
effectiveness of medical treatment for immediate emergency
response and real-time monitoring, thereby improving the
quality of life of users who are exposed to accidents such as
falls and have positive economic effects by reducing medical
expenses. In addition, this study is expected to bring about
a large change in the ergonomic approach to agricultural
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production technology in the era of the 4th industrial revo-
lution and smart farms.

The conclusions that were drawn from this study are as
follows:

1. In the threshold-based analysis derived in this study,
the classification accuracy of S2 sensors with a wide
range of measured values was higher than that of other
sensors, as reported in previous studies.

2. In the binary-class classification using machine learn-
ing, the proposed model showed improved classifi-
cation performance. Especially, the ANN classifier
showed the highest classification rate and statisti-
cally significant differences between the proposed and
benchmark datasets.

3. In the multi-class classification model of datasets
collected through agricultural fall-mimicking experi-
ments, the performance of the SVM classifier using
a wide range of acceleration sensors (±16g) was
higher than that using the others. It misclassified some
movements such as ADL02 (ladder ascending and
descending) and ADL05 (tractor riding and getting
off). To improve this misclassification rate, solutions
through the application of advanced machine learning
models will be addressed as future research topics.
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