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ABSTRACT Major depressive disorder (MDD) has been considered a severe and common ailment with
effects on functional frailty, while its clear manifestations are shrouded in mystery. Hence, manual detection
of MDD is a challenging and subjective task. Although Electroencephalogram (EEG) signals have shown
promise in aiding diagnosis, further enhancement is required to improve accuracy, clinical utility, and
efficiency. This study focuses on the automated detection of MDD using EEG data and deep neural network
architecture. For this aim, first, a customized InceptionTime model is recruited to detect MDD individuals
via 19-channel raw EEG signals. Then a channel-selection strategy, which comprises three channel-selection
steps, is conducted to omit redundant channels. The proposed method achieved 91.67% accuracy using the
full set of channels and 87.5% after channel reduction. Our analysis shows that i) only the first minute of EEG
recording is sufficient for MDD detection, ii) models based on EEG recorded in eyes-closed resting-state
outperform eyes-open conditions, and iii) customizing the InceptionTime model can improve its efficiency
for different assignments. The proposed method is able to help clinicians as an efficient, straightforward,
and intelligent diagnostic tool for the objective detection of MDD.

INDEX TERMS Time series classification (TSC), major depressive disorder (MDD), EEG signal processing,
deep learning, InceptionTime, diagnosis system.

I. INTRODUCTION and vegetative symptoms for at least two weeks [4]. Based

Mental health conditions have a significant influence on the
quality of life from childhood to adolescence and adulthood
[1]. Globally, especially the western countries, mental disor-
ders are among the leading causes of disability, accounting
for 30-40% of chronic sick leave and cost around 3% of gross
domestic product (GDP) [2].

Major depressive disorder (MDD), which is also known
as (unipolar) depression, is one of the most common mental
health conditions [3]. It is characterized as a mood dis-
order that causes sleep disorders, interest deficit (anhedo-
nia), energy deficit, feeling the emotion of sadness (low
mood), poor appetite or overeating, changes in cognition,
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on these symptoms, particularly low mood and anhedonia as
the two fundamental symptoms, a patient is diagnosed with
depression [5]. According to the Diagnostic and Statistical
Manual of Mental Disorders (DSM-5) [6], there are many
side effects related to depression, such as significant weight
loss or weight gain. Depression ranked first globally in Years
lost to disability (YDL), while more than 300 million people
suffer from depression across the globe [7]. It is also the
ninth rank in disability and death together [8] since suicide
is more common among individuals with depression [9].
These statistics have been exacerbated after the COVID-19
pandemic rapidly swept across the world in 2019. Studies,
including the general population from five countries, have
shown that the prevalence rate of depression has surged dur-
ing the COVID-19 pandemic [10]. Also, it has been revealed
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that the correlation between COVID-19 and depression for
different groups is increasing, including medical staff with
18.4% self-reported rates of depression [11], and university
students with 82.4% depression rate [12].

Generally, psychiatrists diagnose depression using either
asking about individuals’ symptoms, thoughts, feelings, and
behavior patterns or by checking their questionnaires. The
widely used criteria to diagnose depression are stated in
DSM-5 [6], published by the American Psychiatric Asso-
ciation. However, this approach to diagnosis has two main
limitations. First, clinicians and psychiatrists detect depres-
sion based on the information provided by the subjective
claims of patients, which can cause the diagnosis to be biased.
Second, the criteria determined by DSM-5 are insufficient
in some cases or even heterogeneous in a number of diag-
nostic categories [13]. Various attempts have been frequently
made to address the shortcomings of DSM-5 [14]-[17], using
alternative approaches based on laboratory tests. For instance,
there have been efforts to analyze metabolic changes in the
body, such as urinary metabolites, to detect depression [18],
[19]. Nonetheless, the most investigated alternative approach
to diagnose depression is through analyzing brain activity.

Electroencephalogram (EEG) is a widely used method to
record the electrophysiological dynamics of the brain, result-
ing from neural activity in real-time, by which the cognition,
brain function or dysfunction and possible indication of men-
tal disorders can be analyzed [20]. A typical EEG contains
multiple sensors (electrodes) placed on different areas of the
scalp [21]. These sensors pick up the activity of neurons
in different parts of the brain, where the voltage variation
between every two electrodes is recorded [22]. It has been
proven helpful in the diagnosis of neurological, cognitive psy-
chology, and psychophysiological disorders [23]. It can also
be used in less developed or developing countries, where peo-
ple are faced with a lack of physicians and psychiatrists. EEG
recording can be automatic, adaptable to different contexts,
portable, easy to follow, and cost-effective [24]. However,
the interpretation of EEG data is not straightforward; due
to the noise, variability between individuals, and substantial
changes over time, even for the same person.

This study proposes a high-performance deep learning-
based method to classify individuals with and without MDD
using EEG signals. To develop the novel automated system,
30 healthy and 34 MDD individuals’ EEG records were
used. Afterward, we utilized the channel-selection method to
reduce the required number of electrodes and find the most
useful channels for the MDD recognition task. Besides, a sen-
sitivity analysis was applied to investigate the effectiveness
of the length and condition of EEG records as well as the
model’s parameters.

The main contributions of the proposed method can be
summarized as follows:

A. Developing a generalized and robust intelligent system

that accepts EEG time series data to detect MDD.
To date, most EEG classifiers used high cost and mem-
ory usage processing, such as image-based and feature
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extraction-based methods, to enrich EEG records as
the input of classification models. Therefore, there is
a lack of straightforward approaches for implementa-
tion of MMD classification in real-world with timely
response.

B. Proposing a re-organized and re-developed Inception
Time-based model for this application and compar-
ing its performance with the incipient InceptionTime
model. Not only is implementing our time series
method innovative for diagnosing MDD, but this is also
the first attempt to customize and analyze the Incep-
tionTime architecture in a way that achieves superior
performance in MDD detection.

C. Investigating an efficient EEG-based MDD detection,
requiring a fewer number of electrodes by removing
redundant channels. This is the first study, to the best
of our knowledge, to consider whether reducing the
number of electrodes is still promising in the perfor-
mance of the model for MDD classification and in
that case, which electrodes are better candidates to be
kept. Indeed, a fewer number of electrodes is easier
to implement, while being time and computationally
cost-effective and less susceptible to noise.

D. Analyzing the effect of EEG recording conditions, seg-
ments, and the deep model structure on the classifica-
tion performance. This is a leading attempt to argue
whether shorter segments of EEG recordings can still
hold the performance of the automated MDD classifier.
It is essential to realize which segment of the EEG
data conveys the most valuable information so that
the model can only rely on that segment. Moreover,
we investigated how different recording conditions,
such as eyes being open or closed, affect the MDD
classification model and whether physicians could only
adhere to preferable conditions using the proposed
model.

The abbreviations used throughout this paper are listed in
Table 1.

Il. BACKGROUND

In this section, some of the publicly available datasets
are introduced, followed by reviewing relevant articles.
Cavanagh et al. [25] presented an EEG recording dataset
including 46 MDD individuals and 75 healthy controls. With
a 64-electrode cap, EEG data were recorded from partici-
pants aged only between 18 to 25 years. A probabilistic task
was assigned for the individuals when the EEG data were
recorded, which is relatively energy- and time-consuming for
participants and clinicians compared to resting-state record-
ing data. Furthermore, Cai et al. [26] introduced an EEG
dataset consisting of 24 MDD individuals and 29 healthy
controls. There were 33 males and 20 females, and the sub-
jects were aged from 16 to 56 years old. A 128-electrode
cap was utilized to record EEG data only in eyes-closed
condition during the resting-state. Wu et al. [27] collected
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TABLE 1. Abbreviations list.

Abbreviation

Definition

ASR Artifact Subspace Reconstruction

CNN Convolutional Neural Network

DMN Default Mode Network

DSM-5 D?agnostic and Statistical Manual of Mental
Disorders

dDTF direct Directed Transfer Function

DWT Discrete Wavelet Transform

EEG Electroencephalogram

EC Eyes-Closed

EO Eyes-Open

FDMB Frequency-Dependent Multi-layer Brain

GPDC Generalized Partial Directed Coherence

GAP Global Average Pooling

GDP Gross Domestic Product

HC Healthy Control

HUSM Hospital Universiti Sains Malaysia

kNN k-Nearest Neighbors

LE Linked Ear

MDD Major Depressive Disorder

MAD Mean Absolute Difference

NCA Neighborhood Component Analysis

IDCNN-LSTM One-Dimensional CNN-Long Short-Term
Memory

PDC Partial Directed Coherence

SSRI Selective Serotonin Reuptake Inhibitor

STFT Short-Time Fourier Transform

SGD Stochastic Gradient Descent

SVM Support Vector Machine

TSC Time Series Classification

WCOH Wavelet Coherence

WT Wavelet Transform

YDL Years Lost to Disability

EEG recordings data using 32 channels. The number of sub-
jects was higher than other databases, with 200 individuals
for each MDD and healthy group. However, it seems not
very generalizable as MDD individuals were aged 52.85 and
54.90 years old on average for women and men, and healthy
ones were 49.87 and 54.59 years old, respectively. These age
profiles of the participants are even higher than the middle
ages of countries with the most geriatric populations [28].
That is to say, this dataset belongs to a distinct cohort, and
thus it does not consider a universal one.

Mumtaz et al. [29] published a valuable public database
with 19-channel EEG recordings of 34 patients with MDD
and 30 healthy individuals with a proper distribution of
gender, age, and the number of participants in different
classes. The data includes both eyes-open and eyes-closed
during the resting-state with a mean age of 40.3+12.9 and
38.3+15.6 years for MDD and healthy groups, respectively.
They described the database and study design in their paper
[29], where they also proposed a machine learning approach
for MDD detection. They extracted a feature matrix using
wavelet transform (WT) analysis and then reduced its dimen-
sion based on a rank-based feature selection method. The
most effective features were given to a logistic regres-
sion classifier, which was trained through 10-fold cross-
validation. The proposed method of this study achieved
87.5% accuracy, 95% sensitivity, and 80% specificity for
the MDD classification task. Applying WT analysis may
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reduce the irrelevant information since it takes advantage
of converting the data into compressed parameters. Yet, this
approach is subjective due to the WT works on window
functions, which are made of priory choice of frequency and
time scales. Therefore, it requires experience in selecting
predefined window functions and consequently depends on
the analysis and EEG data.

The database published by Mumtaz et al. [29] was also
used in several other research works. Mahato and Paul
[30] developed machine learning models to classify MDD
individuals with EEG signals, including support vector
machine (SVM), logistic regression, Naive Bayes, and deci-
sion tree. Using features ranging from alpha (8-13 Hz),
alphal (8-10.5 Hz), alpha2 (10.5-13 Hz), beta (13-32 Hz),
and delta (0.5-4 Hz) to alpha band power with paired theta
asymmetry, they found the highest classification accuracy
was achieved using alpha2 power, compared to alpha and
alphal power. Of all classifiers, SVM provided the best
performance with an accuracy of 88.33%, where the com-
bination of alpha2 power and theta symmetry were used as
input features. Given that they used only eyes-closed records
of 30 MDD and 30 healthy individuals, it seems their machine
learning model’s performance can be improved using more
input data.

Aydemir et al. [31] also proposed a classification model
based on hand-crafted features in three steps to detect
MDD. They used melamine patterns and discrete wavelet
transform (DWT) to generate features. The most valuable
features were selected using neighborhood component anal-
ysis (NCA). Finally, Quadratic SVM and weighted k-nearest
neighbors (kNN) were able to classify individuals with a
99.11% and 99.05% accuracy as their superior results. While
using DWT results depend on the number of decomposi-
tion levels, the more the decomposition levels are, the more
computationally complex and time-consuming the model is.
Additionally, despite the melamine pattern being a novel idea
and having good results, it should be further assessed to
confirm its performance.

Dand et al. [32] used a frequency-dependent multi-layer
brain (FDMB) network along with a convolutional neural
network (CNN) to determine if an individual has MDD.
The time-frequency characteristics were extracted from EEG
signals, where each frequency band corresponds to a single
layer of a multi-layer network. The FDMB network takes
advantage of the frequency characteristics and channel cou-
pling of EEG signals simultaneously to provide the input of
a CNN-based architecture. In terms of input data, they first
selected 0-180s of records and then used a non-overlapping
sliding window with a length of 2s to segment the samples.
They achieved an accuracy of 97.27% and specificity of
97.33% for MDD detection. Despite using three convolu-
tional layers, they showed that there was less than a 0.5%
difference in performance with one or two convolutional
layers in the core block.

Saeedi et al. [33] introduced five different deep learning
architectures to discriminate MDD individuals from healthy

VOLUME 10, 2022



A. Rafiei et al.: Automated Detection of MDD With EEG Signals: A Time Series Classification Using Deep Learning

IEEE Access

controls. They extracted the association between EEG chan-
nels using generalized partial directed coherence (GPDC) and
direct directed transfer function (dDTF) methods in the form
of effective brain connectivity analysis. Also, a new approach
for the combination of sixteen connectivity methods (GPDC
and dDTF in eight frequency bands) was utilized to construct
an image for every individual. The constructed images of
eyes-closed records were used to train and test their mod-
els. The experimental analysis shows that a one-dimensional
CNN-long short-term memory (1IDCNN-LSTM) model out-
performs all models, with an accuracy of 99.245%, a sen-
sitivity and specificity of 98.519%, and 100%, respectively.
Although their evaluation of the 2DCNN-LSTM method led
to a faster model, it was less efficient than IDCNN-LSTM,
even with more parameters. Therefore, it is worthwhile to
investigate a top-performing model by considering both the
performance and computation time of the models.

Loh et al. [34] suggested a CNN model for detecting
MDD patients from healthy individuals using an imaging
approach. At the first step, spectrogram images were obtained
after STFT was applied to EEG signals, resulting in 3,600
images from the individuals in the dataset. These images were
then passed through an eight-layer CNN network to detect
MDD. Their approach achieved 99.25% accuracy, 99.24%
sensitivity, and 99.26% specificity after utilizing 10-fold
cross-validation. Their model achieved high performance,
yet might not be practical to implement in clinics, since the
2D-CNN-based models have high computational costs.

Khan et al. [35] estimated the effective connectivity within
the brain default mode network (DMN) regions using a par-
tial directed coherence (PDC) method to properly classify
MDD individuals. They first used the continuous 2-second
window of records and calculated the PDC matrices based
on them. Next, they discarded all indirect causal effects of
non-DMN regions by extracting the connectivities. Finally,
a three-dimensional (3D) CNN took in the PDC matrices
as its input for the classification task. They performed clas-
sification based on the number of labeled PDCs. Using a
10-fold cross-validation technique, they attained an accuracy
of 94.96 £ 7.32% for the proposed classification algorithm.
In the next work, Khan et al. [36] constructed a 2D-CNN-
based deep learning model with the ability to distinguish
between MDD and healthy individuals. They selected DMN
channels and extracted continuous 2-second segments from
19 channel pre-processed EEG data. Afterward, they applied
wavelet coherence (WCOH), to determine the coherence of
these segments, mapped them to the format of image for
each individual. These images were the input of the 2D-CNN
architecture, which consists of 5 convolutional layers with a
kernel size of 5 x 5 for all layers. To evaluate their model, a
10-fold cross-validation technique was considered, which led
to an accuracy of 96.0 & 1.55. Using novel feature extraction
methods, PDC in the first paper, and WCOH in the second
paper, yield remarkable results. Nonetheless, for extending
these outcomes, more assessments should be applied to verify
their model performance.
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To date, a variety of models have been developed to detect
MDD involving CNN-based and non-CNN-based ones.
Although CNN-based models showed promising perfor-
mance, they generally used image conversion, sub-sampling,
and complex mathematical calculations to provide the input
data for their models. Non-CNN-based models, however,
applied traditional machine learning models with a focus
on the extraction of handcrafted features. Even though they
tried to select the most crucial features and mostly con-
sidered a more extended segment of records, their mod-
els’ performance was not very promising and relied on all
channel data. Therefore, we have tried to bridge this gap
by introducing a model that can directly work with EEG
time series to dramatically decrease the computational costs
and time for automatically detecting MDD with a notable
performance. This approach offers the flexibility of inves-
tigating the condition and length of EEG recording. There-
fore, we have re-organized a time series model for MDD
classification, which can operate without any pre-extracted
features. Besides, as a different number of electrodes and
caps are being used to record EEG signals, it is crucial to
assess which electrodes have a more decisive influence on
MDD classification. Hence, we propose a three-step channel-
selection approach to discover the most effective electrodes
and compare the performance of the model using this data.
To summarize, these novel attempts help achieve lower com-
putational cost and memory usage and a more straightforward
and convenient data collection process for the patients and
physicians.

IIl. MATERIALS AND METHODS

A. DATASET

In this study, we have used a publicly available dataset pro-
vided by Mumtaz et al. [29] in 2017. The dataset comprises
multi-channel EEG recordings obtained from 64 participants,
including 34 MDD individuals (17 females and 17 males
with a mean age of 40.3£12.9 years) and 30 healthy control
(HC) individuals (9 females and 21 males with a mean age of
38.3£15.6 years). All MDD subjects were labeled according
to the DSM-5 criteria [6]. Participants were informed about
the experiment in advance, and completed written consent
forms. Moreover, the human ethics committee of Hospital
Universiti Sains Malaysia (HUSM) approved the experiment
procedure. In order to reduce the effect of medications on
the recorded data, the MDD individuals did not receive any
medications for two weeks before the experiment, yet given
antidepressants under the general category administered by
Selective Serotonin Reuptake Inhibitors (SSRIs), along with
the consultation of a psychiatrist. A nineteen electro-gel sen-
sors EEG cap was applied to acquire EEG data according to
the 10-20 electrode placement system [21], referencing the
linked ear (LE). In this regard, the on-scalp placements of
electrodes, which can be subdivided into separate regions,
including the frontal (Fpl, Fp2, Fz, F3, F4, F7, F8), temporal
(T3, T4, TS, T6), parietal (P3, P4, Pz), occipital (O1, O2) and
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FIGURE 1. The schematic of electrodes location according to the 10-20 international system.

central (C3, C4, Cz) areas, and reference points electrodes
(A1, A2) are represented in Fig. 1. The sampling frequency
of the EEG data was set to 256 Hz.

In the experiment, the EEG data of 5-min-long eyes-open
(EO), 5-min-long eyes-closed (EC), and ten-min-long TASK
conditions of each individual were collected. The partici-
pants were instructed to keep their eyes open and closed
with minimal blinking and head movement for five minutes
during EO and EC, respectively. During the TASK condition,
the participants were asked to fulfill a ten minutes task of
visual stimulus, where they entered the ‘SPACE’ button on
the keyboard each time the target flashed on the screen. The
EO and EC data are not available for every individual, but
each participant has at least one of them. We only focused
on EO and EC records for this study to train the proposed
model for diagnosing MDD individuals to see if MDD could
be detected without performing the TASK test.

B. PRE-PROCESSING

Raw EEG data are usually contaminated by noise and arti-
facts. Thus, several filters were applied to avoid subsequent
errors in analysis, ensuring that the underlying neuronal activ-
ity is truly represented by the data. At the first step, a bandpass
filter with cutoff frequencies of 0.1 Hz and 70 Hz was applied
to the data, followed by a notch filter to suppress 50 Hz
power line noise. Therefore, the frequency bands which do
not have considerable influence on the MDD classification,
and repetitive spectral noise were removed [37]. Detecting
and correcting the background artifacts due to eye blinks,
eye movements (vertical and horizontal), muscle and heart
activities, and sensor motions were the next step. For this pur-
pose, the artifact removal algorithm was implemented based
on the artifact subspace reconstruction (ASR) method [38].
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ASR is an automatic, adaptive method that can effectively
wipe large-amplitude or transient artifacts comprising multi-
channel EEG recordings. Furthermore, since some of the
available records have more than nineteen rows of data,
we discarded excessive channels. These extra channels of
data were recorded either as additional data or as a reference,
such as Al or A2 channels, which play the role of reference
electrodes by locating at the ears. After processing the data,
we selected the first four minutes of each EEG record and
omitted records less than four minutes long. This is mainly
because there is not usually an exact five-minute recording
in the dataset, and most of the records consist of less than
five minutes long. Also, we wanted to use as long as possible
input data to develop our model. Afterward, we mapped data
of each record between —1000 and 1000 mV. Amplification
of the EEG data could help the deep learning model to
discover clues for the identification of MDD individuals. All
these steps have been done using MATLAB software (version
2018a) and EEGLAB built-in plugin [39]. The overall pre-
processing pipeline of our work is presented in Fig. 2, which
provides 115 pre-processed EEG records.

C. CLASSIFICATION

Since EEG classification-based problems, as a time series
classification (TSC), differ substantially from traditional
supervised learning models for structured data, the temporal
information of the signal should be considered. A novel and
state-of-the-art deep learning ensemble for TSC is Incep-
tionTime [40], which is the equivalent of the AlexNet [41]
model for TSC. It has been shown this model potentially has
a promising performance for multidimensional time-series
data with different length sizes [42]. InceptionTime is an
ensemble of five distinct TSC deep learning models, each of
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FIGURE 2. The schematic of electrodes location according to the 10-20
international system.

which is generated by cascading multiple Inception modules.
The basic idea of the Inception module is to utilize various
filters to a time series input simultaneously. This module
includes filters in varying lengths and allows the network to
extract relevant patterns automatically from both short and
long time series. In this research, we have borrowed the idea
of the InceptionTime model and implemented a modified and
customized version of it to distinguish between MDD and
healthy individuals using EEG signals.

The used Inception network classifier comprises two dif-
ferent residual blocks, each of them consisting of three Incep-
tion modules instead of traditional fully convolutional layers.
The input of each residual block is transferred to be added
to the next block’s input via a shortcut linear connection,
which leads to mitigating the gradient vanishing problem
by occurring a direct gradient flow [43]. These residual
blocks are followed by a global average pooling (GAP) layer
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that averages the multivariate time series’ output over the
whole-time dimension. At the end of this architecture, just
a direct fully-connected layer with two neurons representing
Healthy and MDD classes is used with the softmax activation
function.

Fig. 3 illustrates an architecture of the Inception network
with six separate Inception modules stacked one after the
other. Also, it comprises the inside details of the proposed
Inception module operations. The bottleneck layer serves as
an operation of sliding filters to transform the dimension of
the EEG time series in the Inception module. Thus, this not
only can reduce the complexity of the model and mitigate
overfitting problems, but it also provides much longer filters
for the Inception network with roughly the same number
of learning parameters in comparison with other methods.
We have considered a bottleneck layer for each Inception
module with a size of 57. The modification of the bottleneck
layer from 1 to 57 led to a tremendous increase in each
Inception module’s dimension. Therefore, a higher number
of sliding multiple filters with different lengths have been
applied simultaneously on the same input time series. In this
regard, we have utilized three sets of 64 filters of lengths 10,
20, and 40. Additionally, a parallel MaxPooling operation
with a considered size of 3, followed by a bottleneck layer,
has been applied to reduce the dimensionality. The output
of the MaxPooling window has been calculated by taking
the maximum value in the given window. Afterward, the
output of each independent layer has been concatenated to
form the output of the multivariate time series. The same
operations have been repeated for every Inception module of
the network. Eventually, five Inception networks formed the
proposed deep model. This is mainly because an Inception
network shows a high standard deviation in the accuracy due
to the stochastic optimization process and randomly initial-
ized weights during the training process. Moreover, we have
considered the mean squared error as the loss function of the
proposed model instead of the categorical cross-entropy of
the InceptionTime and the stochastic gradient descent (SGD)
by applying the momentum and the Nesterov techniques
rather than the Adam optimizer for the training phase [44],
[45]. The evaluation of the proposed model’s parameters has
been done in Section V.A (Table 6 and Table 8 ).

D. EEG CHANNEL-SELECTION

After attaining a robust and high-performance deep learning
model to classify individuals with 19 channels, we aim to
explore the possibility of classification with a smaller num-
ber of channels (electrodes). Feature extraction techniques
were used to discover the most effective channels for dis-
criminating between two classes. These methods identify the
features, which seem to be less relevant for the objective,
irrespective of the utilization of any learning algorithm. They
are relatively fast and inexpensive in terms of computation
and are helpful for recognizing correlated, duplicated, and
redundant features. However, these methods cannot detect
multicollinearity, especially when a combination of features
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FIGURE 3. The proposed Inception network architecture with inside details of each Inception module for the EEG time series classification task.

may yield an enhancement in the overall model performance.
So, we have applied three complementary feature selection
steps to find the most effective channels, as described in the
following sections.

1) MEAN ABSOLUTE DIFFERENCE
We have calculated the mean absolute difference (MAD) for
each channel of all participants’ EEG signals at the first step
of the feature selection [46]. This approach calculates the
absolute difference of a channel data from the mean value,
which is defined as (1):
n -

MM}:%X;J%—&| (1)
where Xj; is the jth signal value of the ith channel, X; is the
mean of values of the ith channel, and »n is the number of
signal values. The major distinction between the MAD and

73810
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FIGURE 4. The MAD measure of each EEG channel.

variance threshold measures is the lack of the square in the
former. Fig. 4 demonstrates the MAD value for each channel.
The higher the MAD, the higher the discriminatory power of a
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channel and potentially the more effective channel. As can be
clearly seen in Fig. 4, since there is not a significant difference
between the MAD values of the channels, it is hard to decide
which channel should be omitted for the classification task.
Nonetheless, the MAD values will be combined with the
following experiment to select the most influential set of
channels.

2) CORRELATION COEFFICIENT

In the second step, we have computed the correlation coef-
ficients for different channels. A correlation-based algorithm
represents a measure of the relationship of features, in which
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one feature can be predicted from the other, if they are cor-
related [47]. That is, the correlation coefficient demonstrates
how a feature moves in relation to another. The higher corre-
lation between two features, the more similarity between the
features. Therefore, channels should be uncorrelated among
themselves; otherwise, the learning model might only need
one of those, as the second one is more likely to not accu-
mulate additional information. Fig. 5 depicts the correlation
matrix of all the EEG channels, which consists of a correla-
tion coefficient between them. This value is computed as (2):
Cov(x,y)

_— 2
Pxy oy (2)
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Channel Selection

FIGURE 6. EEG channel-selection result. The red electrods represent omitted channels.

where pxy represents the correlation coefficient between x
and y channels, oy is the standard deviation of channel x,
and oy is the standard deviation of channel y. To explore
correlated channels, we have set a correlation coefficient of
0.75 as the threshold for dropping one of the two correlated
channels. Table 2 shows channels with their correlated pairs.

First, we have omitted a channel that correlates with three
or more channels. Regarding this matter, O1, P4, and Cz
channels have been discarded. Next, if the correlation coeffi-
cient of two channels is equal to or greater than 0.75, then the
MAD measure determines which of them should be excluded.
At this stage, we have omitted the channel with the lower
MAD measure. Thus, Fp2, C3, T5, and F4 channels have been
discarded in the step of the correlation coefficient channel-
selection approach.

3) BACKWARD-ELIMINATION ALGORITHM

To reach the aim of an appropriate classification with the
lowest number of channels, we have employed the backward-
elimination algorithm [48] to obtain the ten most influential
channels. In comparison with two previous steps, which use
the intrinsic properties of the channels via univariate statis-
tics, this method explores all possible subsets of channels,
assessing their performance by training and evaluating the
classifier using that subset. This algorithm follows a greedy
search approach by testing all possible combinations of chan-
nels by removing one channel at a time, and comparing the
accuracy of the models when they are trained. Therefore,
channel selection and classification have been performed for
every individual subset and that with the lowest lost function
has been selected. Each subset, at first, comprises 11 out of
12 channels to find the most inefficient channel. We have con-
tinued this process after removing one channel with 10 out of
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TABLE 2. Name of channels and their correlated pairs.

Channels Correlated pair(s)
Fpl Fp2
C3 Pz
P3 T5,Cz
0Ol P4,02,T5
T5 P3,01
Fz F4,Cz
Fp2 Fpl
F4 Fz
C4 Cz
P4 T6, Pz, O1
02 (01
T6 P4
Cz P3, Fz, C4
Pz C3, P4

11 remaining channels to eliminate another. At the end of this
process, T4 and P3 channels have been excluded. Eventually,
Fpl, F3, C4, F7, T3, Fz, 02, F8, T6, and Pz channels have
been kept for training and evaluating the model as ten EEG
channels to classify MDD individuals. Fig. 6 demonstrates
the locations of omitted electrodes on the scalp in the 10-20
international system.

IV. RESULTS

The evaluation of the proposed method comprises two dif-
ferent experiments. First, we have randomly split the data set
into the train (24/115), validation (14/115), and test (77/115)
sets. This segmentation is the same for the following eval-
uations in which the test set consists of the same propor-
tion of data types, 6 EEG records for each EO and EC
of the two labels. In the training phase, a shuffled batch
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TABLE 3. Hyper-parameters of the customized inceptionTime model for
the MDD classification Task.

Hyper-parameter Amount
Depth 6
Kernel size 40
Bottleneck 57
Number of filters 64
Maxpooling 3
Batch size 32
Learning rate 0.01
Momentum 0.9
Predicted Class
Healthy MDD
EO  EC EO  EC Sensitivity
=
=
= HC 6 6 HC 0 0
5 1
§ = MDD - - MDD - | - 100%
O
=
= e
5% i e T e Specificity
< a
[a) HC = = HC
= 1 o
MDD | MDD 83.33%
o Negative
Precision Predictive Valte Accuracy
85.71% 100% 91.67%

FIGURE 7. Performance metrics of the model in the face of 10-channel
EEG data.

size of 32 updates the network weight through minibatch
SGD using the learning rate of 0.01 with the momentum of
0.9 and the Nesterov technique. Table 3 delineates the details
of the model’s hyper-parameters. The model has been imple-
mented for all experiments in Python using Keras framework
2.7.0 with Tensorflow 2.7.0 as the backend on the Google
Colaboratory.

Subsequently, the model was trained with the 19-channel
EEG data. Fig. 7 illustrates the confusion matrix, sensitivity,
specificity, accuracy, negative predictive value, and precision
of the test data of the trained model with 19-channel EEG
data. As clearly can be seen, the model was able to classify all
healthy records precisely, whereas it was unable to recognize
two MDD records, one EO and one EC recordings. That is,
the model demonstrated the highest possible sensitivity in the
face of the test data; however, two false detections of healthy
class as MDD caused the specificity of 83.33%. The accuracy
metric stood at just under 92%, and negative predictive value
and precision indicated 100% and 85.71%, respectively.

Moreover, the evaluation of the channel-selection approach
was considered in the first experiment. The model perfor-
mance for classifying MDD individuals using ten selected
channels is represented in Fig. 8. This model misclassified
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Predicted Class

Healthy MDD
FO  EC FO  EC Sensitivity
=
= . -
S HC 5 6 HC 0
% T | Mop MDD - | - 91.67%
O
=
2 e
2 EO  EC EO  EC Specificity
< a
a HC HC
= MDD | 1 MDD 83.33%
.. Negative
Precision Predistive Valiis Accuracy
84.61% 90.91% 87.5%

FIGURE 8. Performance metrics of the model in the face of 19-channel
EEG data.

one EO and one EC recordings for MDD, and an EO record-
ing for a healthy individual. The sensitivity and specificity
of the model are 91.67% and 83.33%, respectively. Using
10-channel EEG data, the developed model can discriminate
MDD’s records from healthy ones with an accuracy of 87.5%
and a precision of 84.61%.

In our second experiment, to have a more concrete illus-
tration and a better comparison, we have employed a strat-
ified 10-fold cross-validation at the subject level and have
chosen two state-of-the-art research for comparison [29],
[30]. Individual-wise partitioning (involving both EO and
EC of an individual in either train or test sets) prevents the
possible occurrence of being one record of an individual in
the train set and the other record in the test set. In addition,
we have selected the two proposed models due to several
contributing factors. They have utilized the same dataset as
ours, considered the EEG time series data (2D data) instead
of short-time Fourier transform (STFT) image processing
and other imaging approaches without using sub-samples,
and tried to use feature selection to classify with the lowest
possible features. Thus, we have calculated the accuracy,
sensitivity, and specificity of our proposed methods before
and after channel selection and compared them with their
results in Table 4.

V. DISCUSSION

The utilization of artificial intelligence-based methods has
been proliferating in healthcare problems [49]. More specif-
ically, since the number and quality of EEG records are
increasing, the application of these methods has become pop-
ular. We proposed a deep learning approach for automated
detection of MDD individuals using 19-channels EEG data.
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TABLE 4. Classification results of our proposed methods using stratified 10-fold cross-validation and two state-of-the-art research on the same dataset

and similar input type.

Models Features Accuracy Sensitivity Specificity
Mumtaz et al. [29] Wavelet features 87.5% (£7.1) 95% (£4.3) 80% (8.8)
Mahato et al. [30] Alpha 2 + Paired Theta asymmetry 88.33% 89.41% 90.81%
Our proposed method 19-channel EEG data 91% (£4.9) 94.9% (£8.2) 88.2% (x11.3)

Our proposed method after 10 selected channels EEG data

channel selection

90.1% (£5.5) 93.2% (£8.8) 88.2% (£11.3)

Most of the studies on this topic have followed either
feature extraction, time-frequency representation, or subsam-
pling approaches. Research works based on feature extrac-
tion methods focused mainly on using band powers as
well as other handcrafted features for the classification task
using EEG data and machine learning techniques [29]-[31].
Other research works, which employ the STFT approach,
were interested in applying image processing techniques on
transformed EEG to image data. They usually involve a
CNN-based architecture on STFT images to find the effective
patterns for MDD classification [32]-[34]. The last group
extracted EEG segment length (e.g., two-second segment)
and developed a model to classify every segment. When all
segments were classified, it would be possible to catego-
rize the EEG data [35]. We considered MDD classification
as a TSC problem and tried to find a solution using the
EEG time series data without any conversion and extraction.
Therefore, this approach can reduce the computation cost
and time, occupy lower memory and make the classifica-
tion task closer to real-time implementation. More specif-
ically, as the proposed methods do not require particular
algorithms and methods to prepare data for the classifi-
cation task, it significantly decreases the resources neces-
sary to run the model. In terms of performance, our model
showed superior proficiency, especially with the sensitivity
metric.

We compared our method with two previous techniques,
which involved feature extraction but considered data as
time series [29], [30]. Mumtaz et al. [29] compared three
time-frequency decomposition analyses where they found
out wavelet transform was the most suitable for feature
extraction. According to their experiment, the most effective
features were EEG data of frontal and temporal areas with
delta and theta bands. This was consistent with our channel-
selection method, which also found that EEG frontal channels
were the most relevant (Fig. 6). They selected the first two
minutes of both EC and EO EEG records to train and test their
model. Mahato et al. [30] applied different types of features
and separate machine learning techniques as the classifier
for automated detection of MDD. The highest performance
was achieved with SVM using a combination of alpha2 and
theta asymmetry, which was trained and evaluated using EC
EEG records. Our proposed method was able to use four-
minute-long 19-channel EEG data as an input to classify
MDD individuals with an accuracy of 91.67% on the test
set. It can detect all healthy records accurately (sensitivity
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of 100%), but one EO MDD and one EC MDD were mis-
classified (Fig. 7). After subject-wise partitioning and 10-fold
cross-validation, the model showed an accuracy of 91% and
sensitivity of 94.9% (Table 3 ). Besides, it showed that the
proposed deep learning structure of this study, can be imple-
mented on EEG data with superior performance as a TSC
model. Our proposed model, as a costumized version of the
InceptionTime model, is different from the original model in
a number of ways, including the hyper-parameters, structure
of every single Inception module, and the training scheme.
We also realized that the bottleneck hyperparameter of the
model has the most effective parameters to achieve the best
performance.

Classifying with the smaller subset of channels is usually
a valuable approach as it might provide low computation cost
and memory usage, reduced time, and better generalization
capability. It is also beneficial for clinicians and patients as
being more convenient in clinical practice. For automated
detection of MDD individuals, we tried to minimize the
number of channels. Thus, three distinct channel selection
methods were applied to the EEG data. As well as the ben-
efits of classification with the lower number of features,
it still works if we combine with 64-channel EEG datasets
and just use the selected channels for MDD classification.
This approach can solve the problem of the lack of data
for training deep learning models and their generalizability.
As Fig. 6 shows the result of our work for finding the effective
channels, there are no particular patterns in terms of the
area where electrodes are located. Despite this point, the
frontal area seems to have the most impact, and temporal
and parietal areas possess the inferior impact on the clas-
sification of MDD individuals. Interestingly, neurophysio-
logical studies also have shown the prefrontal cortex, which
is a part of the brain’s frontal lobe, often involves activity
changes in individuals with depression and anxiety [50], [51].
In addition, the performance metrics of 10-channel EEG data
experiments present a promising outcome. Although it has
about 5% lower accuracy than the 19-channel experiment
on the test set, there was less than a 1% difference between
the two experiments in a 10-fold cross-validation approach.
In the former investigation, the model misclassified one EO
healthy individual through 10-channel EEG data compared to
19-channel EEG data, which leads to a lower specificity and
negative predictive value (Fig. 8). Interestingly, as we can see
in Table 2, both input data possess the same specificity, while
10-channel EEG data has a lower 1.7% sensitivity.
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A. SENSITIVITY ANALYSIS

EEG data collection with relatively long records (e.g., five-
minute records), is time-consuming and can add an increment
of computation costs and memory usage for the recording and
processing. Therefore, reducing the duration of the measure-
ment not only mitigates these problems but also provides the
opportunity of collecting more data. Hence, we have designed
a sensitivity analysis to study the influence of different parts
of recordings on the classification of MDD individuals and
find the segments, which convey the most precious informa-
tion. For this aim, we have cut the first, second, third, and
fourth minutes of the EEG data. With the same model archi-
tecture and parameters, we have input these segments of data
into the model separately and measured the model’s accuracy,
sensitivity, and specificity for the classification task. Table 5
shows the mean and standard deviation of each segment using
a stratified 10-fold cross-validation technique for 19-channel
EEG data.

TABLE 5. Classification results of our proposed method using the first,
second, third, and fourth minutes of the EEG data.

Segments Accuracy Sensitivity Specificity

86.5% (+7.2)

84.9% (£12.2)
84.9% (£12.2)
83.3% (+13.5)

First (0 — 1 min)
Second (1 — 2 min)
Third (2 — 3 min)
Fourth (3 — 4 min)

90.1% (£5.5)
88.4% (+7.2)
87.5% (+7.3)
85.7% (+7)

96.6% (£10.5)
94.9% (+8.2)
93.2% (48.8)
91.5% (+8.9)

The outcomes demonstrate the fact that each segment of
the time window comprises relatively adequate patterns and
regularities to distinguish MDD individuals from healthy
ones. Notably, the first minute of EEG data might convey the
most precious information as the performance metrics of this
time window are higher than other segments. Despite having
a 0.9% accuracy lower than the whole record experiment, the
first segment reveals a 1.7% higher average sensitivity. On the
contrary, the fourth minute of the records had the lowest
performance in the classification task. Interestingly, as we get
closer to the last segments, the accuracy decreases. Besides,
all segments show a sensitivity higher than 90%, which
means they provide an accurate classification for healthy
records.

There are two important results from this analysis. First,
MDD classification can be fairly accurate by using every one-
minute segment of data throughout the four-minute record
instead of the whole record. Second, the first minute might
convey the most precious information since the performance
metrics of the model in this experiment are as desirable as
the model’s performance in a four-minute-long record. As a
result, recording only one minute of EEG data might be
enough for the MDD classification problem. This potentially
addresses the issues mentioned earlier regarding collecting
data and can provide the opportunity of gathering a higher
number of individuals” EEG records with less inconvenience
for the patients and clinicians. With a larger database, poten-
tially more accurate, reliable, and generalizable machine
learning models could be developed.
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In a further experiment, we have investigated the depth
parameter of the inception networks in our InceptionTime
model using 19-channels EEG data. In this regard, we have
kept unchanged all training parameters and only substituted
the depth parameter. It represents the number of Incep-
tion modules in the Inception network, which is changed
from 6 to 5 and 7 to analyze the impact on the model’s
performance. Table 6 illustrates the model performance using
different depths with consideration of a stratified 10-fold
cross-validation.

TABLE 6. Classification performance of the model with the different
depth sizes.

Depth size Accuracy Sensitivity Specificity
5 87.4% (£7.4) 91.5% (£8.9) 84.9% (£12.2)
6 91% (+4.9) 94.9% (+8.2) 88.2% (£11.3)
7 90.1% (£5.5) 93.2% (£8.2) 88.1% (£8.2)

Setting depth as 5 resulted in a 4.6% accuracy decline
in comparison with the depth size of 6 and reached the
sensitivity and specificity of 91.5% and 84.9%, respectively.
While the accuracy and sensitivity of the model were similar
in the depth of 7 to the original model with less than 1%
decrease, the sensitivity stood at 93.2% with a more than
1% reduction. The most critical point when we enhance
the depth is the increase of the computation cost and time
considerations. Thus, a trade-off between the performance
and computational cost is necessary to consider in terms of
enhancing the depth. The depth of 6 for the model had both
advantages of the performance and computational cost for the
detection of individuals with MDD.

The third experiment was dedicated to examining the per-
formance of the model according to the state at which EEG
data was recorded. Thus, we first left out the EC records,
evaluated the model’s performance using only EO data, and
then repeated the experiment using only EC. Table 7 demon-
strates the performance metrics of the models, which were
trained and tested using only EO, only EC, and the combi-
nation of them and stratified 10-fold cross-validation with
the same architecture of the proposed model. The model
with only EC records shows superior accuracy and specificity
with 92.7% and 91.5%, respectively. Nonetheless, evaluating
using EO records leads to lower performance, where the
accuracy stands at 89%. Although the combination of both
records seems to yield a more reliable model as it sees the
higher number of records, EC recordings might be sufficient
for the classification of MDD individuals.

Comparing the performance metrics of the original Incep-
tionTime structure and parameters with our customized
model deciphers how the proposed approach can be helpful.
In this regard, we have trained and tested the Inception-
Time model using a stratified 10-fold cross-validation tech-
nique and reported its accuracy, sensitivity, and specificity
in Table 8. As clearly can be seen, our proposed methods
outperform in all the performance metrics. Of note, it has a
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TABLE 7. Classification performance of the model using different
conditions of recorded EEG data.

Input EGG data Accuracy Sensitivity Specificity
EO 89% (£7.7) 93.2% (£8.8) 86.6% (£13.1)
EC 92.7% (+4.8) 94.9% (+8.2) 91.5% (+8.9)
EO +EC 91% (+4.9) 94.9% (£8.2) 88.2% (£11.3)

TABLE 8. Classification performance of the inceptiontime model and our
proposed method using 19-channel EEG data.

Input EGG data Accuracy Sensitivity Specificity
InceptionTime 79.6% (£9.6)  88.1% (8.2)  75% (+8.4)
Our proposed method ~ 91% (+4.9) 94.9% (£8.2)  88.2% (+11.3)

more than 13% higher specificity, which means it can predict
MDD individuals precisely, and more than 11% accuracy.
One of the most common limitations of machine learn-
ing models for classifying MDD individuals from healthy
ones is the lack of generalization. The number of records
in clinical datasets is usually not favorable for developing
a generalizable artificial intelligence model for this task.
Because different approaches were employed to collect data
(e.g., number of channels, protocols, etc.) in different works,
it is difficult to combine various datasets for developing the
model. Another limitation of our approach, similar to most
deep learning models, is the limited explainability and inter-
pretability, which could be investigated in future works.

VI. CONCLUSION

EEG analysis for the detection of MDD is an arduous and
intricate task. Many intelligent models have recruited differ-
ent methods such as feature extraction, image conservation,
and subsampling to achieve high performance. Nonetheless,
this study showed that MDD individuals could be classi-
fied using EEG time series. Having employed a customized
InceptionTime model revealed the power of this deep learning
architecture in the face of time series data. In addition, we can
accomplish the classification task using a lower number of
electrodes. Also, recording first-minute EEG data in the eyes-
closed resting-state seems enough to detect MDD. The pro-
posed method can aid healthcare professionals in identifying
MDD individuals using fewer EEG channels and shorter
recordings.
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