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ABSTRACT In this paper, a new optimization algorithm called Motion-Encoded Genetic Algorithm with
Multiple Parents (MEGA-MPC) is developed to locate moving targets using multiple Unmanned Aerial
Vehicles (UAVs). Bayesian theory is used to formulate the moving target tracking as an optimization
problem where target detection probability defines the objective function as the probability of detecting
the target. In the developed MEGA-MPC algorithm, a series of UAV motion paths encodes the search
trajectory. In every iteration of the MEGA-MPC algorithm, UAV motion paths undergo evolution. The
proposed approach for dynamic target search using multi-UAVs uses parallel computations to solve the
optimization problem based on the MEGA-MPC algorithm where Each UAV can communicate with other
UAVs if requested. The algorithm’s performance is tested with various characteristics under six distinct
scenarios using a different number of UAVs and targets. The statistical analysis of the results obtained
using MEGA-MPC compared with other well-known metaheuristics shows that MEGA-MPC offers better
solutions to find dynamic targets since it outperforms all the compared algorithms.

INDEX TERMS Dynamic target search, motion-encoded genetic algorithm, probabilistic targets, unmanned
aerial vehicles.

I. INTRODUCTION
Technological advancements have resulted in the widespread
adoption of unmanned aerial vehicles (UAVs) in various
aspects of human endeavour. Drones are now commonly
applied in search, rescue, reconnaissance and surveillance
tasks. UAVs are intensely adaptable, capable of working
in diverse environments, affordable and efficient in follow-
ing commands and intercommunication. The widespread
application, capabilities, coordination improvements, and
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other features have made the research area promising. There-
fore, UAVs are very widely and successfully used in applica-
tion fields like target detection [1], object tracking [2], map
building, [3], [4], environmental building [5], and so on.

Different factors need to be carefully considered in a
UAV-based target search problem. One of those is to identify
the duration over which the probability of finding the target
is maximum [6]. Above this critical period, getting the job
done becomes difficult due to weather, deviation from the
initial trajectory, terrain characteristics, and other factors.
Therefore, in designing a search problem formulation with
UAVs, there is the need to consider both the drone flight path
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trajectory and flight time.Works have been done on trajectory
problem formulation where the UAVs flight trajectories are
considered in real-time over a prediction horizon [2]. Another
critical issue of designing such problems is the availability
of initial information about the target position, besides other
search conditions [7], [8]. A common approach is to account
for uncertainty bymodelling the initial conditions using some
probability function. There is also the need to diligently
account for sensor models and other search conditions and
constraints.

In searching for lost targets, either a single or multiple
UAVs could be employed. For the multi-UAV case, coordi-
nation between the vehicles plays a crucial role in increasing
the efficacy of the search mechanism especially in the case of
finding multiple targets at the same time. However, there are
several challenges in such cooperative search problems [9].
One of such challenges is ensuring that individual UAVs can
function autonomously, irrespective of their communication
and sensing capabilities. Besides, the design should be robust
enough to cope with different harsh situations while fulfilling
practical constraints.

A Bayesian approach for the target search problem was
proposed in [7], [10] to evaluate the probability of a UAV
flight path. In [8], [11], the target dynamics was formulated
as a stochastic Markov process which has a deterministic
characteristic of not being affected by the searching sce-
narios. The search map was modelled as a multivariate and
normal distribution where the initial target position deter-
mines the mean and variance of the distribution [11], [12].
On a different note, a Kalman filter-based optimizationmodel
was adopted in [13], where it combines observations from
different sensors. In [14], an optimal path planning mech-
anism, which works with the central Voronoi partitioning
algorithm, was proposed. In a collaborative search problem,
a self-assessment based method [15] that was applied to
different communication structureswas adopted. The adopted
approach has been very efficient in scalability, communi-
cation and design complexity. In [14], the search problem
is formulated as a parallel control system where converge
control, data source detection, and data collection procedures
can work simultaneously. However, in most of these collab-
orative search problems, the UAVs that participated in the
search process were assumed to be homogeneous, reduc-
ing the effects of external obstacles. Reference [16] utilizes
a game-theory based method for cooperative research and
contrasted results with modified binary log-linear learning.
However, an improved multi-ant colony scheme is used in
unknown environments for multi-UAVs search in [17].

The presence of multiple probabilistic variables increases
the complexity of these search problems. The resulting non-
deterministic problems could either have a polynomial-time
hardness [8] or exponential-time complexity, as the case may
be. Therefore, classical methods like differential calculus
are non-suitable and impractical to use in such scenarios.
Consequently, different heuristic optimization algorithms like
Genetic Algorithm (GA) [18], Ant Colony Optimization

(ACO) [12], one-step look ahead greedy search algorithm [7],
k-step look ahead greedy search algorithm [8], Bayesian
optimization approach (BOA) [10], branch and bound
approach [19], Cross Entropy Optimization (CEO) [20], gra-
dient descend methods [21], [22], limited depth search algo-
rithm [23] etc. are tried and found considerably efficient on
such UAV-based search problems. Among the tried meth-
ods, [10], [12], [20], [23] presented the algorithms which can
handle multiple UAVs for search operations, resulting in a
fast-paced search process. On the contrary, [7], [8] proposed
the algorithms where the design specifications of the search
problem are the main focus.

It is noteworthy to mention that most of the approaches
discussed above used the binary model of sensor detection to
track the moving targets effectively. Recently, [24] proposed
the motion-encoded particle swarm optimization (MPSO) for
solving the given search problem using one UAV. The paper
presented the comparative results with some famous heuristic
approaches showing that the developed method is 4.71 times
more time-efficient with 24% high detection accuracy than
the default PSO. Reference [25] reviews various intelligent
optimization algorithms tested on swarm search applications
involvingUAVs. Because of the high complexity of the search
problem, particularly in the case of fast-moving targets and
multiple UAV presence, the optimization problem formu-
lation and its solution strategy become more challenging.
On the flip side, the recent advancements in UAV technolo-
gies, sensors manufacturing, and communication infrastruc-
ture have kept the window of advanced research in the field
and finding better solutions open. The solution mechanism
of the target search problem needs to be robust in terms of
search capacity. It also needs to possess the properties of
methodical optimization tools such as adaptability, computa-
tional efficiency and optimality. On the optimization front,
joint optimization of multi UAV path planning and target
assignment has been carried out bymulti-agent reinforcement
learning in [26].

Furthermore, with the advance in computing performance
of new computers, many optimization algorithms have been
developed in the field of metaheuristics. For example, in [27],
a new optimization metaheuristic based on ancient war strat-
egy is proposed. This algorithm is called War Strategy
Optimization (WSO) and it mimics the strategic movement
of army troops during the war. The proposed algorithm is
tested using a 50 benchmark test functions and comparedwith
several algorithms. The results are encouraging for future
use of this algorithm. Another example is the Jaguar Algo-
rithm (JA) which is based on the behaviour of jaguars in the
wild. This algorithm is proposed in [28]. The proposed algo-
rithm is tested over Seven classic benchmark function prob-
lems and compared with couple of algorithms. The results
show the good performance of this algorithm. In [29] a new
metaheuristic called Crystal Structure Algorithm (CryStAl)
which is inspired by the principles underlying the formation
of crystal structures from the addition of the basis to the
lattice points is proposed. The performances of the proposed
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algorithm are tested over 239 mathematical functions and
compared with 8 well-known optimization algorithms. The
results of the proposed CryStAl have been found to be better
than the remaining comparing algorithms. A multi-objective
version of the is which is called MOCryStAl is proposed
in [30]. Another very interesting work is presented in [31].
The authors of this work proposed a new Parallel Hybrid
Island architecture which shows a parallel way to combine
different metaheuristics by using the island model as the
base. Using the proposed approach several combinations of
metaheuristics has been made with better performance than
single algorithms.

As the optimization tool for the considered problem, this
paper has proposed a GA with Multiple Parents (GA-MP)
[32] and motion encoding (ME) feature. In GA, multiple par-
ents take part in the recombination phase. The GA-MPmech-
anism combines these parents based on diagonal crossover
and gene scanning. This approach improves the efficacy of
the conventional GA in searching for the global optima.
This promising optimization algorithm has been tested and
checked with diverse optimization problems like constrained
optimization, graph coloring and numerical optimization, and
compared with several state-of-the-art algorithms [32], [33].
Moreover, the motion encoding feature is added to GA-MP
for the first time in this paper to boost the algorithm’s search
capabilities.

This article presents the Motion-Encoded Genetic
Algorithm with Multiple Parents (MEGA-MP) as a solution
tool for searching the dynamic targets, with multiple UAVs
coordinated for improved performance. The key features of
this work are as follows:
• The formulation of the moving target search task as an
optimization problem by defining the objective function
and associated constraints for accurate tracking.

• Implementation of the motion encoding (ME) mecha-
nism with GA and Multiple Parents (GA-MPC) for the
first time to form a combined optimization tool to deal
with the optimization problem with good results.

• The use of multiple UAVs with or without communica-
tion to track one or multiple targets at the same time.

• Investigation of six scenarios with different complexities
to asses the performance of the proposed algorithm.

• Comparison of the obtained results with 10 other popular
and state-of-the-art optimization algorithms to check the
suitability of the proposed algorithm in the application
of interest.

The rest of the paper has been organized as follows: the
problem formulation of moving object tracking with multiple
coordinated UAVs has been presented in this section. The for-
mulation of the objective function and associated constraints
are presented in section II. Section III describes the optimiza-
tion tool proposed in this paper: the Motion-Encoded Genetic
Algorithm with Multiple Parents (MEGA-MP). Section IV
describes the simulation results and discusses the optimiza-
tion algorithms used for comparison. Lastly, section VI
concludes the article.

II. PROBLEM FORMULATION
This section gives a detailed account of the searching
problem, including target and senor models, and belief map
similar to the presentation [12] and [34].

A. TARGET MODEL
The searching problem always begins with the assumption of
an appropriate probability distribution function (PDF). The
purpose of the PDF is to model the target’s location subject
to its most recently available information, for example the last
known location before signal is lost. More details on location
probability estimation can be found in [35], [36]. A Normal
or Gaussian distribution, for instance, could be used if there
is information about the target location; otherwise, a uniform
distribution will be suitable. Let represent the searching area
by � and the unknown location in the search problem by νt .
To model the initial probability map, we discretize � into a
2−dimensional grip whose �x × �y cells can be uniquely
identified by their indexes. Given the initial observation ψ0,
let represent the probability function by a grip-based map
p
(
νt0|ψ0

)
= b(νt0) called initial belief map or priori PDF.

Each cell in b(νt0) corresponds to a discretization of the search
area with an associated probability that the target is present in
that cell. Since νt0 ∈ �, by applying the well-known property
of probability distribution, we have∑

νt0∈�

b(νt0) = 1. (1)

Markov Process is used to model target navigation pattern,
in particular, if the target is not static. For a conditionally
deterministic target, such that its movement pattern depends
on the target’s first location, νt0, the Bayesian approach is
employed. In this instance, the probability that the target
proceeds from cell νtk−1 to ν

t
k is given by p(ν

t
k |ν

t
k−1). Accord-

ingly, for a known initial position, the target’s entire path
will be known. This procedure is a well-known assumption in
target search problems. The interested reader can find more
information in the following references [10], [12], [37].

B. SENSOR MODEL
We assume that independent measurements ψk are made by
the only sensor attached to the UAV at time step t through a
sensor model given by

p
(
ψk = Dk |νtk , ϕk

)
, (2)

where νtk and ϕk are the target and UAV positions, respec-
tively. The observations are independent because their occur-
rence gives no information concerning the occurrence of
other observations. The function (2) represents the proba-
bility of the target detection ψk = Dk subject to νtk and
ϕk . Detection algorithm classifies the measurement, which
is either a detection ψk = Dk or no detection ψk = Dk .
Consequently, given a target location νtk , the probability of
no detection is obtained using

p
(
ψk = Dk |νtk , ϕk

)
= 1− p

(
ψk = Dk |νtk , ϕk

)
. (3)
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In an ideal sensor, for instance, the target is only detected
when νtk = ϕk . In this case, we have

p
(
ψk = Dk |νtk , ϕk

)
=

{
1, if νtk = ϕk
0, otherwise.

(4)

C. BELIEF MAP UPDATE
After establishing the prior PDF p

(
νt0|ψ0

)
≡ b(νt0) as

explained in subsection II-A and given the sequence of obser-
vations ψ1:k = {ψ1 · · ·ψk} made by the sensor, the Bayesian
approach is used to recursively construct the belief map of
the target state p

(
νtk |ψ1:k

)
≡ b

(
νtk

)
at time step k . This

method of iteration is called the Recursive Bayesian Estima-
tion (see [7] for details) and it iterates through two stages; the
prediction and update stages.
The prediction stage comes into play when belief map of

the target fluctuates with time. Mathematically, suppose the
belief map at time step k − 1, that is p

(
νtk−1|ψ1:k−1

)
≡

b
(
νtk−1

)
, is known, then the predicted belief map at time step

k , that is p
(
νtk |ψ1:k−1

)
≡ b̂

(
νtk

)
is evaluated as follows:

b̂(νtk ) =
∑

νtk−1∈�

p(νtk |ν
t
k−1)b(ν

t
k−1). (5)

Recall that b
(
νtk−1

)
≡ p

(
νtk−1|ψ1:k−1

)
. So, it is the condi-

tional probability of νtk−1 given that the sequence of observa-
tions up to k − 1 are already known.

The update stage is binding when the observation at time
step k , that isψk , is available. Then, assuming all the observa-
tions are independent, the update is evaluated by multiplying
the latest conditional observation by the predicted belief map
given by (4). Mathematically, we have

b(νtk ) = λp(ψk |ν
t
k )̂b(ν

t
k ), (6)

where λ given by

λ =
1∑

νtk∈�

p(ψk |νtk )̂b(ν
t
k )

(7)

The parameter, λ, is a normalization factor employed to keep
the target inside the search area. In other words, λ ensures∑

νtk∈�

b(νtk ) = 1. (8)

Useful information on how the belief map used in this work
can be improved or changed is given in [38]

D. OBJECTIVE FUNCTION
This subsection focuses on formulation of the objective func-
tion represented by F . Let us denote by τk ≡ p

(
Dk |ψ t

1:k−1

)
the conditional probability that a target does not get detected
at time step k during a sensor observation. This τk across
the entire searching area is the summation of the product of
the probability of no detection given by (3) and the predicted
belief map given by (5). Mathematically, we have Using (8)
and bearing in mind the normalization factor given by (7)

for no detection (i.e ψk = D), it follows that λτk = 1.
Consequently, τk is bounded between 0 and 1, that is, 0 <
τk ≤ 1. It is only zero when the probability that target
proceeds from cell νtk−1 to ν

t
k is zero, that is, p(ν

t
k |ν

t
k−1) = 0,

otherwise, it decreases as k increases, see [12]. It is obvious
that τk = 1 when the normalization factor is 1. Since all the
observations are assume to be independent, it follows that the
conditional probability that the target is detected at time step
k is

1− τk . (9)

The joint probability of failing to detect the target from steps
1 to k denoted by σk = p

(
D1:k−1

)
is the product of all τk ,

that is,

σk =

k∏
i=1

τi. (10)

From (10), it follows that

σk = τ1τ2τ3 · · · τk−1τk =

k−1∏
i=1

τiτk = σk−1τk . (11)

Consequently, by using (9) and (11), the probability that the
target gets detected for the first time at step k can be evaluated
as follows:

ρk = σk−1 (1− τk) . (12)

Now, we compute the cumulative probability in k steps
denoted by χk by summing over (12) as follows:

χk =

k∑
i=1

ρi = χk−1 + ρk (13)

Finally, based on (13), we formulate the objective function as
follows. Define a search path P = (p1, p2, . . . , pN ) and let
{1, 2, . . . ,N } represents the time period. Searching strategy
aids at finding P such that (13) is maximize. Thus, the search
objective function is given as

J =
N∑
k=1

ρk . (14)

III. MOTION-ENCODED GENETIC ALGORITHM WITH
MULTIPLE PARENTS (MEGA-MPC)
This section details the proposed Motion-Encoded Genetic
Algorithm with Multiple Parents (MEGA-MPC) and its
implementation in solving complex search problems.

A. GENETIC ALGORITHM
Genetic Algorithms (GA) are search algorithms inspired by
the theory of evolution using the principles of genetics and
natural selection. GA combines the survival of the fittest fea-
ture among its string structures with a structured but random-
ized information exchange to form a search algorithm with
some of the innovative knacks of human search. GA, a uni-
versally adopted evolutionary algorithm for solving real-life
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FIGURE 1. Flowchart of the proposed approach.

and practical optimization problems, can effortlessly deal
with highly complex fitness landscapes. Additionally, It is
very suitable for parallel computing. It adopts crossover and
mutation as its primary search operators. However, various
improvements have been considered over time to address
the slow response and uncertainty for convergence to global
optimal associated with traditional GA. In line with this fact,

this work considers some modifications to the conventional
GA for improved performance.

B. GENETIC ALGORITHM WITH MULTIPLE
PARENTS (GA-MPC)
Various parent crossover methods have been proposed in
the literature. Some of these methods include the Unimodal
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TABLE 1. Comparing algorithms.

TABLE 2. Statistical analysis of the outcome of all algorithms for scenario 1.

TABLE 3. Statistical analysis of the outcome of all algorithms for scenario 2.

(UNDX), the Simplex crossover (SPX), Parent Centric
(PCX), and the triangular crossover (TC), each with a

given number of parents and associated constraints. UNDX
and SPX use mean-centric probability distribution, whereas
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FIGURE 2. Search scenarios.

the PCX is parent-centric. In a GA with multiple parent
crossover, the traditional mutation operator is replaced by a
randomized operator.

C. MOTION-ENCODED GENETIC ALGORITHM WITH
MULTIPLE PARENTS (MEGA-MPC)
Several improvements andmodifications to theGenetic Algo-
rithm exist in the literature; the Motion-Encoded Genetic
Algorithm with multiple parents in this paper is developed to
find a target in motion using multiple UAVs. For the search
problem, a global optimum is desired to be reached. This

paper proposes using UAV motion to encode the trajectory in
a MEGA-MPC algorithm. The UAV motion paths generated
evolve over n iterations in theMEGA-MPC. The target search
paths represent a set of UAV motion segments, with each
track corresponding to the movement of the UAV between
adjacent cells. The flowchart of the proposed approach is
shown in Figure 1. The process starts with the initialization
phase, in which a belief map is created based on the available
information. Also, a population of PS individuals is randomly
generated in the search space of the problem at hand. Then
each individual is coded into a motion-encoded path where
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FIGURE 3. Search paths for scenario 1 obtained using the tested algorithms.

a search path is then described by a vector of N motion
segments, Uk = (uk,1, uk,2, ·uk,N ). and the magnitude and
direction of the motion at a particular time t as ψt and γt ,
respectively. Once the search path is created for each individ-
ual, the objective function is evaluated using the cumulative
probability equation given by (14). After that, the population
is sorted based on the objective function (cumulative prob-
ability), and then the first m paths are saved in the archive
pool (A). A section pool with 3PS size is created using a
tournament selection procedure with size TC (TC can be

randomly selected either 2 or 3). For every three consecutive
individuals from the selection pool, three new offsprings are
generated using the following expression:o1 = x1 + β × (x2 − x3)

o2 = x2 + β × (x3 − x1)
o3 = x3 + β × (x1 − x2)

. (15)

Then a randomized operator based on a predefined probabil-
ity changes some of the properties of the generated offsprings
using values from the archive pool (A).
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FIGURE 4. Search paths for scenario 2 obtained using the tested algorithms.

Any duplicates in the generated offsprings are removed.
Finally, the optimal results are displayed if the termination
criterion is met. Otherwise, the solution iterates.

IV. PROPOSED APPROACH FOR DYNAMIC TARGET
SEARCH USING MULTI-UAVs
As discussed in the preceding sections of the paper, the
Bayesian theory was adopted to formulate finding a mov-
ing target or a dynamic target as an optimization problem
with the objective function set to maximize target detection
probability. In this paper, multi-UAVs are used at the same
time. Therefore, to achieve the objectives of thework, the pro-
posed approach for dynamic target search using multi-UAVs
is formulated as a parallel optimization problem. Each UAV

searches for the target starting from a different location.
If there are zones or areas with different probabilities, each
UAV tries to find the area with a higher probability. In the
case of regions with the same probabilities, the UAVs are
divided into groups where the number of groups is equal to
the number of areas with different probabilities. For example,
if there are 6 areas denoted as area1, area2, area3, area4,
area5, and area6 where area1 and area2 have the same prob-
ability and area3, area4, area5, and area6 have the same
probabilities, then the UAVs are divided into two groups.

The developed MEGA-MPC is implemented to solve par-
allel optimization problems. In other words, UAVs work in
parallel with or without communication between them. Com-
munication betweenUAVs ismostly needed for areas with the
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TABLE 4. Statistical analysis of the outcome of all algorithms for scenario 3.

TABLE 5. Statistical analysis of the outcome of all algorithms for scenario 4.

TABLE 6. Statistical analysis of the outcome of all algorithms for scenario 5.

same probability to avoid all UAVs searching for the target in
the same area.

V. APPLICATION, RESULTS, AND DISCUSSION
A. SCENARIOS
In this work, six scenarios are investigated and simulated. The
same grid size (wx = wy = 40) is used for all scenarios with

different number of UAVs, different initial UAV positions,
different belief map b(x0), and different target motion model
P(xt |xt−1). Figure 2 depicts the tested scenarios whereby the
probability map is color-coded such that warmer colour cells
represent higher target probabilities. A white circle indicates
UAVs’ initial positions, whereas a white arrow depicts the
dynamics of the moving targets. These scenarios are: It is
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FIGURE 5. Search paths for scenario 3 obtained using the tested algorithms.

worth mentioning here that the present problem, as it is
formulated in the paper, can be used to search for both a single
or multiple targets using multiple UAVs. Most of the tested
scenarios are designed to test one target search using multiple
UAVs. However, Scenario 5 is designed to search for multiple
targets using multiple UAVs.
• Scenario 1: In the first scenario, two areas with high
probabilities are located near each other and moving
eastwards. The probability of the lower area is slightly
lower than that of the upper one. There are two UAVs;
the first one is located at the center of the search space,
while the second is located to the right of the search
space. Figure 2(a) depicts this scenario.

• Scenario 2: In the second scenario, the two areas are
equally spaced from the center (along the y-axis) of
the search region. The probability of the lower area is
slightly lower than the upper one. In this case, both areas
move toward the southwest. Here also, there are two
UAVs with one UAV at the centre of the search space,
whilst the other is to the right of the targets and the first
UAV, as shown in Figure 2(b).

• Scenario 3: The third scenario tests the adaptability
of the search algorithm. This scenario is depicted in
Figure 2(c), where only one dense area can be seen
moving towards the southeast. However, there are three
UAVs located around the target in this case.
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FIGURE 6. Search paths for scenario 4 obtained using the tested algorithms.

• Scenario 4: There is only one dense area in this
scenario, like the previous one. However, in this sce-
nario, the target moves toward the three UAVs located
initially in the southwest of the search space, as shown
in Figure 2(d).

• Scenario 5: In this scenario, two probability areas are
located at the center (along the x-axis) of the search
region. Both targets are moving toward the north. There
are two UAVs for this scenario near the initial position
of the probability area. Since both targets have the same
probability, the UAVs are searching for multiple targets
here. This scenario is shown in Figure 2(e)

• Scenario 6: In this last scenario, depicted by Figure 2(f),
there are two probability areas, both located at the lower
corner of the search region moving toward the northeast.
However, in converse to the previous cases, the probabil-
ity of the upper area is slightly lower than the lower area.
Furthermore, there are four UAVs initially stationed at
the four corners of the search region

B. COMPARING ALGORITHMS
In order to compare the proposed algorithm, several
well-known algorithms have been selected. The list of algo-
rithms along with their main reference, inspiration source and
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FIGURE 7. Search paths for scenario 5 obtained using the tested algorithms.

control parameters are given in Table 1. In addition to the
parameters given in Table 1, the maximum number of iter-
ations for all algorithms is selected as 300. These algorithms
have been chosen because the are very competitive and they
have been applied in many research works.

C. RESULTS
In the coming section, the obtained results are reported
using statistical parameters. The ‘BEST’, the ‘MEAN’,
the ‘MEDIAN, the ‘WORST’, the ‘Standard Deviation
(SD)’, and the ‘Feasibility Ratio (FR)’ for all the com-
pared algorithms and scenarios are tabulated and discussed.
The FR, defined as the ratio of successful runs to total

attempted runs, indicates how successful the considered
algorithm is.

1) SCENARIO 1
We recall that in this scenario, there are two UAVs, the first
one located at the centre of the search space whilst the second
one is towards its right side. The results for scenario 1 are
tabulated in Table 2. The following observations are apparent
from the obtained results:
• For the first UAV, the proposed MEGA-MPC obtained
the best results for all the statistical parameters, and
the FR is 100%. For the second UAV, the proposed
algorithm had the best results for all the comparing
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TABLE 7. Statistical analysis of the outcome of all algorithms for scenario 6.

statistical parameters except for the SD, and it also
obtained 100 as FR.

• For the first UAV, all the algorithms have an FR of 100%.
In other words, all the algorithms could find a feasible
path in all runs. However, for the second UAV, only three
algorithms achieved an FR of 100%.

Furthermore, Figure 3 shows the optimal search paths for
eachUAV for all tested algorithms. It is worthmentioning that
the sketched path represents the search path in this figure (and
in the similar figure for the remaining scenarios). However,
the presented belief map depicts the target’s final step. The
targets’ evolution can be visualised by comparing this map
with the one illustrated in Figure 2 to observe target evolution.
Figure 3 shows that the proposed MEGA-MPC algorithm
allowed the two UAVs to track the targets, thereby finding
the highest probability region.

2) SCENARIO 2
This scenario had two UAVs, one at the centre of the search
space and the other at a midpoint along the y-axis, to the right
of the targets and the first UAV along the x-axis. The results
obtained for scenario 2 are tabulated in Table 3. The following
observations are made from it:
• For the first UAV, MEGA-MPC has achieved the best
results for all the considered statistical parameters, and
the FR is 100%. For the second UAV, the proposed
algorithm obtained the best results for the ‘BEST’ and
the ‘MEDIAN’ statistical parameters, whilst the TLBO
has obtained the best results for the remaining statistical
parameters. It has obtained 100 as FR.

• For both UAVs, all the algorithms have an FR of 100%
the runs.

Figure 4 shows the optimal search paths for each UAV for
all tested algorithms. The figure shows that the MEGA-MPC
algorithm allowed the two UAVs found the highest probabil-
ity region by following the target paths.

3) SCENARIO 3
We recall that in this scenario, there are three UAVs located
around the target, represented by a dense area. The results for
scenario 3 are tabulated in Table 4. The following comments
can be made from this table:
• For the first UAV, the proposed MEGA-MPC obtained
the best results in terms of the statistical parameters;
‘BEST’, ‘MEAN’, and ‘MEDIAN’. TLBO, on the other
hand, had the best results for the ‘WORST’ and the ‘SD’
statistical parameters.

• For the second UAV, MEGA-MPC had the best results
for the ‘BEST’, ‘WORST’ and ‘SD’ statistical parame-
ters, whilst the TLBO obtained the best results for the
remaining statistical parameters, and it got an FR of
100%.

• For the third UAV, the proposed algorithm obtained the
best results in all the compared statistical parameters
except for the ‘MEAN’ value, where the best result is
obtained using the TLBO algorithm.

• For the first UAV, all the algorithms have an FR of 100%.
For the second UAV, only 66% of the algorithms have
obtained an FR of 100%. Finally, for the third UAV, only
42% of the algorithms obtained an FR of 100%. For the
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FIGURE 8. Search paths for scenario 6 obtained using the tested algorithms.

three UAVs, the proposed algorithm has obtained an FR
of 100%.

Figure 5 shows the optimal search paths for each UAV for
all tested algorithms. It can be seen from Figure 5 that the
MEGA-MPC algorithm allowed the three UAVs to find the
targets by following their tracks.

4) SCENARIO 4
Recall that there is only a single dense area in this scenario,
with the target moving toward the three UAVs initially located
in the southwest region of the search space. The results
for this scenario are tabulated in Table 5. For this scenario,
we observe the following from the table:

• For the first UAV, MEGA-MPC had the best ‘MEAN’,
‘MEDIAN’, and ‘SD’ while the DE had obtained the
best results in terms of the ‘BEST’ value.

• For the second UAV, MEGA-MPC obtained the best
results for the ‘BEST’ and the ‘MEDIAN’ while the
TLBO had the best results for the remaining statistical
parameters, and it has an FR of 100%.

• For the third UAV, the proposed algorithm obtained the
best results in all the compared statistical parameters.

• For the first and third UAVs, all the algorithms
have an FR of 100% except for the ABC. For the
second UAV, all the algorithms have obtained an FR
of 100%.
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The optimal search paths for all UAVS and algorithms are
shown in Figure 6. It is seen that the proposed algorithm
allowed the three UAVs to find the target, represented by the
dense area, by following the target paths.

5) SCENARIO 5
In this scenario, there are two probability areas located at the
centre of the search region along the x-axis. Both targets are
moving toward the north. There are two UAVs situated near
the probability area’s initial position for this scenario. The
results for scenario 5 are tabulated in Table 6. The following
observations can be made from the results:
• For the first UAV, MEGA-MPC had the best results in
all the compared statistical parameters.

• For the second UAV, MEGA-MPC had the best results
for the ‘BEST’ and ‘MEDIAN’. TLBO got the best
‘MEAN’, and SCA obtained the best values for
‘WORST’ and ‘SD’.

• For both UAVs, all the algorithms converged in all runs
(i.e., FR = 100%).

Figure 7 shows the optimal search paths found for each UAV.
The results show that the proposed algorithm allowed each
UAV to follow the target paths. With the aid of communica-
tion between UAVs, each of the two UAVs found one of the
two areas with the same probability.

6) SCENARIO 6
In scenario 6, the two probability areas are located at the
search region’s lower corner, moving toward the northeast.
The upper area had a slightly lower probability than the lower
one. The four UAVs were initially positioned at the four
corners of the search region. The results for this scenario are
shown in Table 7. The following can be deducted from the
presented results:
• For the first UAV, the proposed MEGA-MPC obtained
the best results in all the compared statistical parameters.

• For the second UAV, MEGA-MPC obtained the best
results for the ‘BEST’ value while TLBO had the best
results for the remaining parameters.

• For the third UAV, the proposed algorithm also obtained
the best results in all the compared statistical parameters
except the ‘SD’ value.

• For the fourth UAV, the proposed algorithm obtained the
best ‘BEST’ value while TLBO got the best values for
the remaining statistical parameters.

• For the first UAVs, only theMEGA-MPC and the TLBO
obtained an FR of 100%. Only three algorithms con-
verged in all runs for the remaining three UAVs, with an
FR of 100%. Therefore, this scenario is themost difficult
to tackle among the six scenarios investigated.

Figure 8 shows the optimal search paths found for each
UAV. Figure 8 shows that the proposed algorithm allowed
each UAV to follow the target paths. Since there are two areas
with the same probabilities, each UAV followed one target
and was able to find it.

D. DISCUSSION
The obtained results in this study demonstrate the superior-
ity of MEGA-MPC over the well-known and widely used
algorithms considered in this paper. The observed success
of the MEGA-MPC can be attributed to the search capa-
bility of the ECPO and the motion-encoded mechanism
introduced to the ECPO. We believe that these two fea-
tures, exploited to develop the MEGA-MPC algorithm, have
immensely contributed to its excellent performance. First,
ECPO is a robust and reliable algorithm as it is ranked
among the top 5 algorithms, evenwithout theMEmechanism.
Secondly, implementing an ME mechanism with the ECPO
enhanced performance in locating moving targets using a
single UAV. This mechanism aided ECPO in avoiding the
creation of non-valid search paths while searching. Finally,
the MEmechanism’s transformation from the cartesian to the
motion space assisted in adapting ECPO-ME to incorporate
the dynamics of the moving target.

VI. CONCLUSION
This paper uses a novel approach based on a variant of the
famous genetic algorithm using multiple (GA-MPC) and a
Motion-Encoded mechanism to search for dynamic targets
using multiple UAVs. The target search problem was con-
verted from a cartesian problem to a motion-based one via
space transformation using the motion encoding feature. This
transformation allowed the search path to be represented by
a series of motions in which UAVs move to neighboring
cells from their present location. Different numbers of UAVs
were used to test the developed algorithm on six unique
scenarios with varying complexities. The algorithm’s perfor-
mance was evaluated by comparing it with eleven reputable
metaheuristics. The analysis of the results demonstrated the
effectiveness and reliability of the proposed algorithm applied
to dynamic-targets search with multiple UAVs.

In this paper, only the cumulative probability was consid-
ered in the objective. Other objectives like fuel consumption
or avoidance of forbidden areas and obstacles and other
constraints can be considered for further work. These con-
siderations would make the problem a multi-objective one,
constituting future extensions.

Furthermore. it is worth to mention that in this paper the
approach was to formulate the problem of finding targets as
an optimization problem and then it has been solved using
an efficient optimization algorithm. However, there are other
approaches to investigate in the future based on Deep Learn-
ing (DL) as it has been explored in [48].
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