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ABSTRACT The exponential stability of semi-linear stochastic partial differential equations (SPDEs)
involving Lèvy type noise is investigated in this paper. By constructing an appropriate Lyapunov function,
a new set of sufficient conditions are established in terms of linear matrix inequalities (LMIs) which ensures
the mean-square exponentially stability (MSES) of given system with Neumann boundary conditions. Then
theH∞ performance index is introduced to eliminate the disturbance which occurs in the considered system.
The boundary control gain is obtained by solving the LMI conditions using the standard MATLAB software.
Finally, a numerical example is provided to demonstrate the usefulness of the proposed methods.

INDEX TERMS Parabolic system, Boundary control, Lèvy noise, H∞ performance, Lyapunov stability.

I. INTRODUCTION
Partial differential equations (PDEs) are equations which
can be used to model the complex phenomenons in nature.
Mainly, semi-linear reaction-diffusion PDEs are commonly
used to model a variety of real-world phenomenon such as
population dynamics and chemical reactions etc., [31], [40].
Many researchers have focused their attention on
reaction-diffusion equations due to their wide range of
applications, see [1], [11], [12], [17], [25], [33]. Random
noise in dynamical systems is caused by external disrup-
tions, measurement errors, and a lack of knowledge of
specific parameters. Deterministic systems were extended
to stochastic systems in order to express this type of
dynamical system. SPDEs helps to describe the dynamics of
chemical engineering, ecology, neurophysiology, statistical
physics, biology and martial science [3], [10], [16]. In recent
years research on SPDEs is an active area with many
results and developments, see [19], [20], [37] and references
therein.

The associate editor coordinating the review of this manuscript and

approving it for publication was Xiaojie Su .

On the other side, H∞ performance has received huge
exposure for its variety of applications and the ability to
reject noise disturbances and model parameters. Ju et al. [13]
addressed the stochastic H∞ performance for Markov jump
systems along with stochastic Lyapunov functional for
obtaining the conservativeness. In [32] the authors investi-
gated the H∞ control for diffusion systems and explained the
results using Brownian motion and the Poisson process. Ding
and Zhu in [7] were presented the H∞ based synchronization
results for uncertain stochastic systems with time delays.
Pan et al. [23] investigated the H∞ boundary control
approach for reaction-diffusion equations. Yan et al. [39]
addressed the reaction-diffusion Brusselator system with
NBC.

In practice, external disturbances in modeling may have an
effect on the system’s performance. As a result, designing an
appropriate controller or performance indexes that can accept
the effects of disturbances while maintaining stability is a
difficult task. Disturbance signals are unexpected inputs that
alter the output of control systems and lead to an increase
in system error. Also, as a consequence, on establishing
the stability conditions, noise or external disturbances must
be addressed more effectively. In this connection, there are
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numerous results addressed for disturbances in the literature.
For example, Dus [8] studied the exponential stability of
general systems of discretized scalar conservation laws
using boundary feedback laws. Wei et al. [34] introduced
a multiple disturbances for stochastic systems and subse-
quently designed an observer to estimate the disturbance.
Luo and Zhang [21] addressed the exponential stability
results for PDEs with uncertainties and used the Lyapunov
technique to achieve the sufficient conditions. Wu et al. [36]
studied MSES analysis for linear stochastic PDEs with
Brownian motion and proposed a boundary controller.
Exponential stability of stochastic functional differential
equationswere presented in [22].Many results were found for
SPDE with stochastic process like Brownian motion, White
noise, Gaussian motion and so on.

Moreover, most of the stability results are presented for
SPDEs induced by Brownian motion. Brownian motion is
a stochastic process with continuous paths, hence it could
not be used to model stochastic disturbances in real-world
systems like neurobiological systems, genetic regulatory
models, singular systems and financial systems etc., [6],
[14], [30], [41]. These systems are complicated in nature
and have discontinuous paths, as a result the Brownian
motion stochastic differential equation is falling to deal
these issues. In this instance, Lèvy noise is used to cope
with the small and large fluctuations occurs in the system,
as well as it has the combination of Brownian motion and
Poisson process [2], [18], [38]. It is one of the stochastic
processes with fixed and independent increments. Stochastic
outcomes with Lèvy noise were analyzed for different kind
of systems in [9], [26]. Brzezniak et al. [5] has been
studied the concept of Lèvy noise to derive the strong
solutions of stochastic PDEs. Songet al. [28] addressed
the robust stability analysis for stochastic systems with
random jumps. The reaction-diffusion equations with Lèvy
noise addressed for stochastic systems in [24] and sufficient
conditions are established to analyze the exponential stability
results. Recently, the authors in [15] investigated the results
for continuous-time stochastic systems with Lèvy noise.
Applications of Lèvy noise can be explained clearly through
Chua’s circuit in [42]. The effects of large fluctuations on
reaction-diffusion equations were examined in [4].

Stability analysis of SPDE driven by Lèvy noise still not
yet investigated. With this motivation this article attempted
to reach the MSES for SPDEs driven by Lèvy noise
using Lyapunov stability theory. The main objective of
proposed work is to derive the sufficient conditions for
the considered reaction-diffusion equations to guarantees
the MSES. We presented boundary control for semi-linear
SPDEs driven by Lèvy noise. The main contributions of
present work are:
• Boundary control is proposed to study the MSES of the
considered SPDEs.

• Lèvy process which includes both the Wiener and
Poisson jump processes is first time addressed for the
considered parabolic system.

To ensure the MSES of the system under investigation, a new
set of sufficient LMI conditions is presented. Following that,
a H∞ performance is introduced to deal the disturbance
which occurs in the system. Finally, a numerical example is
presented to validate the applicability of the proposed model.

II. PROBLEM DESCRIPTION
Consider the following semi-linear SPDE:

d℘(~, t) =
{∂2℘(~, t)

∂~2
+ A℘(~, t)+ g(t, ℘(~, t))

}
dt

+σ (t, ℘(~, t))dW (~, t)+
∫
Z
φ(t, ℘(~, t), z)

×Ñ (dt, dz),

℘(~, 0) = ℘0(~). (1)

where t ≥ 0, ~ ∈ (0, 1) denote time and space variables,
respectively. ℘(~, t) is the system state, A is known constant
matrix, W (~, t) is a Brownian motion defined on a complete
probability space (6,F ,P) adapted to a right continuous
filtration Ft≥0 and E

[
dW (~, t)

]
= 0. Let z ∈ (Z ,B(Z ))

be a measurable space. Then Ñ (dt, dz) = N (dt, dz) −
υ(dz)dt denoted as the compensated Poisson measure in
which N (dt, dz) represents the Poisson random measure with
intensity measure υ(dz) for z ∈ B(Z ). Assume that W (·) and
N (·) are independent and the function φ(℘(~, t), z) satisfies∫
Z

∫ 1
0 φ

T (℘(~, t), z)φ(℘(~, t), z)d~υ(dz) <∞.
The system (1) is investigated with the NBC

∂℘(~, t)
∂~

∣∣∣
~=0
= 0,

∂℘(~, t)
∂~

∣∣∣
~=1
= u(t), (2)

u(t) is the boundary control input given as u(t) = K℘(1, t),
where K is control gain to be designed.
The assumptions listed below are important in getting our
main results.
(A1) There exists a constant m > 0,∫ 1

0
gT (t, ℘(~, t))g(t, ℘(~, t))d~

≤

∫ 1

0
m℘T (~, t)℘(~, t)d~. (3)

(A2) There exists a constant c > 0,

tr(σ T (t, ℘(~, t))σ (t, ℘(~, t))) ≤ c℘T (~, t)℘(~, t).

(4)

(A3) There exists a constant q > 0,∫
Z

(∫ 1

0
φT (t, ℘(~, t), z)φ(t, ℘(~, t), z)d~

)
υ(dz)

≤ q
∫ 1

0
℘T (~, t)℘(~, t)d~. (5)

To discuss the existence of solution for system (1) by
semigroup theory rewrite the system as time dependent
ordinary differential equation. For the purpose following
functions are considered as only time dependent, ℘t =
℘(·, t), Gt (℘t ) = g(t, ℘(·, t)), 6(℘t ) = σ (t, ℘(·, t)),
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dWt = W (·, t), 8t (℘t ) = φ(t, ℘(·, t), z), then we rewrite
the equation (1) as,

d℘t = [C℘t + A℘t + Gt (℘t )]dt +6(℘t )dWt

+

∫
Z
8t (℘t , z)Ñ (dt, dz) (6)

where C = ∂2

∂~2
is linear operator from H1 into H−1

with domain D(C) = H1
0 ∩ H2. If ‘‘C’’ satisfies the

coercivity condition, Gt , 6t , satisfy the Lipschitz continuity
and boundedness conditions. Then the system (6) has a
unique global strong solution ℘ ∈ L2([0,T ];H−1) ∩
D([0,T ];H ). For detailed proof see Theorem 3.2 in [27].
Remark 1: It should be emphasized that, Lèvy processes

are stochastic processes with independent and stationary
increments. Brownian motion, the Poisson process, as well as
stable and self-decomposable processes, are all instances of
Lèvy processes. Brownian motion is a well-known stochastic
process that happens continuously. On the other hand, many
practical systems may be influenced by random jump type
unexpected interference, such as dramatic stock market
fluctuations caused by the global financial crisis, and so on.
In such cases, Brownian motion-based systems are unable
to match the demands of reality. In order to develop more
acceptable findings, Lèvy noise has been introduced into
stochastic systems. So the problem addressed in this paper
will be more useful in practice.

A. PRELIMINARIES
Here we introduce the some basic definitions and lemmas that
are essential for getting the most important results.
Definition 1: System (1) is said to be MSES if there exist

a positive constants β > 0 and δ > 0 such that

E ‖℘(~, t)‖2 ≤ ρe−δtE ‖℘0(~)‖2 , t ≥ 0.

for all ℘0(~) ∈ L2(0, 1).
Lemma 1: [35] Let ℘ ∈ W 1,2([0,L];Rn) be a vector

function with℘(0) = 0 or℘(L) = 0. Then, for matrix R > 0,
we have the following integral inequality:∫ L

0
℘T (s)R℘(s)ds ≤

4L2

π2

∫ L

0

(
d℘(s)
ds

)T
R
(
d℘(s)
ds

)
.

Here, an Itö operator L defined for further use(see, [43]).

LV (·) =
∂V
∂t
+
∂V
∂℘

g(t, ℘(~, t))+
1
2
tr
(
σ T (t, ℘(~, t))

×
∂2V
∂℘2 σ (t, ℘(~, t))

)
+
∂V
∂℘
σ (t, ℘(~, t))dW (~, t)

+

∫
Z

[
V (℘(~, t)+ φ(t, ℘(~, t), z))− V (℘(~, t))

−φ(t, ℘(~, t), z)
∂V
∂℘

]
υ(dz). (7)

The notations that were used in this paper are described
below.Rn is n- dimensional Euclidean space. The superscript
‘T ’ stands for matrix transposition. I stands for identity
matrix. The symmetric elements are denoted by asterisk ′∗′.

Let ‖ · ‖ denotes L2 norm. W p,q
℘ denotes the Sobolev space

of absolutely continuous integrable functions defined over ℘.
′E′ denotes mathematical expectation.

III. MAIN RESULTS
In this section, first a boundary controller is designed
to achieve MSES for the considered semi-linear stochas-
tic parabolic system. Moreover, we use a controller to
achieve MSES for a parabolic system and derive a
sufficient conditions for ensuring H∞ performance. The
following theorem is presented to ensure that stochastic
parabolic system (1) achieves MSES under the boundary
controller u(t).
Theorem 1: Consider that the assumptions (3)-(5) holds.

For given scalarsm, c, q, known constant matrixK , and decay
rate δ > 0, there exist a symmetric positive definite matrix P
and positive scalars ρ̄, ρ and ρ, such that the following LMIs
hold:

4 =

411
π2

2 P P
∗ 422 0
∗ ∗ −I

 < 0, (8)

ρI ≤ P ≤ ρ̄I , (9)

where 411 = PA+ATPT +mI + ρ̄cI + ρ̄qI − π2

2 P+ δP+
PT δT , 422 = PK + KTPT − π2

2 P. Further, for any given
initial condition, the decay rate satisfies

E ‖℘(~, t)‖2 ≤ ρe−δtE ‖℘0(~)‖2 . (10)

Then, the system (1) is MSES.
Proof: Consider the Lyapunov functional

V (℘(~, t)) =
∫ 1

0
℘T (~, t)P℘(~, t)d~.

Now with help of Itö formula, we get that

LV =
∫ 1

0

(
2℘T (~, t)P

[∂2℘(~, t)
∂~2

+A℘(~, t)+ g(t, ℘(~, t))
]

+tr(σ T (t, ℘(~, t))Pσ (t, ℘(~, t)))
)
d~

+2
∫ 1

0
℘T (~, t)Pσ (t, ℘(~, t))d~dW (~, t)

+

∫
Z

∫ 1

0
φT (t, ℘(~, t), z)Pφ(t, ℘(~, t), z)d~υ(dz).

Using integration by parts with the boundary conditions of
system (1) and by taking ℘̄(~, t) = ℘(~, t) − ℘(1, t),
obviously, we have ℘̄(1, t) = 0, and ∂℘̄

∂~
=

∂℘
∂~

. With the
help of Lemma 1, we obtain∫ 1

0
℘T (·)P

∂2℘(·)
∂~2

d~ = ℘T (1, t)PK℘(1, t)

−

∫ 1

0

(
∂℘

∂~

)T
P
(
∂℘

∂~

)
d~

= ℘T (1, t)PK℘(1, t)

−

∫ 1

0

(
∂℘̄

∂~

)T
P
(
∂℘̄

∂~

)
d~

VOLUME 10, 2022 73873
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≤ ℘T (1, t)PK℘(1, t)

−
π2

4

∫ 1

0
℘̄(~, t)P℘̄(~, t)d~

≤ ℘T (1, t)PK℘(1, t)

−
π2

4

∫ 1

0
[℘(~, t)− ℘(1, t)]T

×P[℘(~, t)− ℘(1, t)]d~. (11)

From assumptions (3), (4) and (5), we get that∫ 1

0

[
m℘T (~, t)℘(~, t)− gT (℘(~, t))g(℘(~, t))

]
d~ ≥ 0,

(12)
tr
[
σ T (t, ℘(~, t))Pσ (t, ℘(~, t))

]
≤ ρ̄c℘T (~, t)℘(~, t),

(13)∫
Z

∫ 1

0
φT (t, ℘(~, t), z)Pφ(t, ℘(~, t), z)d~υ(dz)

≤ ρ̄q
∫ 1

0
℘T (~, t)℘(~, t)d~. (14)

By arranging equations from (11) to (14), we have

LV ≤
∫ 1

0
℘T (~, t)

[
PA+ ATPT + mI + ρcI + ρqI

]
×℘(~, t)d~ + ℘T (1, t)(PK + KTPT )℘(1, t)

−
π2

2

∫ 1

0

[
℘(~, t)− ℘(1, t)

]TP[℘(~, t)
−℘(1, t)

]
d~ −

∫ 1

0
gT (t, ℘(·))g(t, ℘(·))d~

+2
∫ 1

0
℘T (~, t)Pσ (t, ℘(~, t))d~dW (~, t)

+

∫ 1

0
2℘T (~, t)Pg(t, ℘(~, t)d~.

Then by setting χ (·) =
[
℘T (~, t) ℘T (1, t) gT (℘(~, t))

]T
and for decay rate δ, we have

LV (·)+ 2δV (·) ≤
∫ 1

0
χT (·)4χ (·)d~

+2
∫ 1

0
℘T(~, t)Pσ (t, ℘(~, t))d~dW (~, t)

Taking the expectations on both sides according to the
properties of Itö integral [43], we arrive at

E
[
LV (·)+ 2δV (·)

]
≤ E

[ ∫ 1

0
χT (·)4χ (·)d~

]
.

If LMI (8) holds, we get that

E
[
LV (·)+ 2δV (·)

]
≤ 0.

Next by using comparison principle, for any arbitrary initial
condition ℘(~, 0) = ℘0(~), the following inequality holds

E
[
V (t, ℘(~, t))

]
≤ e−2δtE

[
V (0, ℘(~, 0))

]
,

⇒ ρE ‖℘(~, t)‖2 ≤ ρ̄e−δtE ‖℘0(~)‖2 ,

⇒ E ‖℘(~, t)‖2 ≤ ρe−δtE ‖℘0(~)‖2

(15)

where, ρ = ρ̄
ρ
. According toDefinition 1 system (1) isMSES.

This completes the proof.
Suppose, in Theorem 1, if control gain K is unknown then

which affects the linearity of (8). In this case, by letting
K = PK , one can preserve the linearity and the correspond-
ing exponential stability results can be presented as follows.
Corollary 1: Consider that the assumptions (3)-(5) holds.

For given scalars m, c, q, and decay rate δ > 0, there exist a
symmetric positive definite matrixP and positive scalars ρ̄, ρ
and ρ, and and appreciate matrix K, such that the following
LMI together with conditions (9), (10) hold:

41 =

411
π2

2 P P

∗ K +KT
−

π2

2 P 0
∗ ∗ −I

 < 0. (16)

Then, the system (1) is MSES. Moreover, the control gain
matrix is given by K = P−1K.

A. H∞ ANALYSIS FOR PARABOLIC SYSTEM
External noise is inevitable in general owing to the envi-
ronmental disturbances. These external disturbances have
an impact on the system’s stability. We are interested
to investigate the system (1) in the presence of external
disturbances. Consider the following semilinear stochastic
parabolic system with external disturbance expressed in the
Itö differential form:

d℘(~, t) =
{
∂2℘(~,t)
∂~2

+ A℘(~, t)+ g(t, ℘(~, t))

+Cv(~, t)
}
dt + σ (t, ℘(~, t))dW (~, t)

+
∫
Z φ(t, ℘(~, t), z)Ñ (dt, dz), (17)

where v(~, t) is external disturbance which satisfies∫
∞

0

∫ 1

0
vT (~, t)v(~, t)d~ <∞. (18)

Definition 2: System (17) is said to be MSES with given
disturbance attenuation level γ > 0, if it is robustly stable and
the state vector ℘(~, t) under zero initial condition satisfies

E||℘(~, t)||2 ≤ γ 2E||v(~, t)||2,

for every non-zero v(~, t) satisfies (18).
The H∞ performance is a useful one for determining the
robustness of disturbed system. In order to discuss the
H∞ performance of system (1), we consider the following
performance index,

J (·) =
∫ 1
0 (℘

T (~, t)℘(x, t)− γ 2vT (~, t)v(~, t))d~. (19)

Theorem 2: Consider that the assumptions (3)-(5) holds.
For given scalars m, c, q and decay rate δ > 0, there
exist a symmetric positive definite matrix P, positive scalars
ρ̄, ρ and appreciate matrix K, such that the following LMI
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together with conditions (9), (10) hold:

4̄ =


4̄11

π2

2 P P PC
∗ 4̄22 0 0
∗ ∗ −I 0
∗ ∗ ∗ −γ 2I

 < 0, (20)

where 4̄11 = 411 + I , 4̄22 = K + KT
−

π2

2 P. Then, the
system (17) is MSES with H∞ performance attenuation level
γ > 0. Moreover, the control gain is given by K = P−1K.

Proof: The desired results were obtained using similar
techniques to those used in the proof of Theorem 1, and the
detailed proof is omitted for clarity.

By setting χ̄ (·) =
[
℘T (~, t) ℘T (~, t) gT (t, ℘(~, t))

vT (~, t)
]T , and by letting K = PK , we have

LV (·)+ 2δV (·)+ J (·)

≤

∫ 1

0
χ̄T (·)4̄χ̄ (·)d~ + 2

∫ 1

0
℘T (~, t)P

×σ (t, ℘(~, t))d~dW (~, t)

By taking the expectations on both sides, we get

E
[
LV (t, ℘(~, t))+ 2δV (t, ℘(~, t))+ J (t, ℘(~, t), v(~, t))

]
≤ E

[ ∫ 1
0 χ̄

T (·)4̄χ̄ (·)d~
]
.

If LMI (20) holds, it easy to see that

E
[
LV (·)+ 2δV (·)+ J (·)

]
≤ 0.

Integrating the above inequality over [0, t], which gives that

E
[
V (℘(t, ~, t))

]
≤ e−2δtE

[
V (0, ℘(~, 0))

]
+E

∫ t
0 e
−2δ(t−s)J (t, ℘(~, s), v(~, s))ds.

With zero initial condition, we have,

E
∫ t

0
e−2δ(t−s)J (s, ℘(~, s), v(~, s))ds ≤ 0.

Integrating over [0,∞), obtained as

E
∫
∞

0

∫ t

0
e−2δ(t−s)J (t, ℘(~, s), v(~, s))dsdt ≤ 0.

Changing the order of integration which yields that

E
∫
∞

0
J (t, ℘(~, s), v(~, s))

(∫
∞

s
e−2δ(t−s)dt

)
ds

=
1
2δ

E
∫
∞

0
J (t, ℘(~, s), v(~, s))ds ≤ 0.

It is easy to verify that

E ‖℘(~, t)‖2 ≤ γ 2E ‖v(~, t)‖2 .

We can concluded that from Definition 2 that the system (17)
is MSES with H∞ performance. This completes the proof.
Remark 2: If the system (1) considered with different

boundary conditions like Dirchlet boundary conditions,
Robin type boundary conditions the the above results are still
valid with minor changes in finding LV .

IV. NUMERICAL EXAMPLES
Example 1: This section presents a numerical example

that demonstrate how the obtained results can be applied
for FitzHugh-Nagumo equation. Consider the stochastic
PDEs with Lèvy noise in the form of FitzHugh-Nagumo
equation [29].

d℘1(~, t) =
{∂2℘1(~, t)

∂~2
− λ℘2(~, t)+ η℘1(~, t)

×(℘1(~, t)− α)(1− ℘1(~, t))
}
dt + L1,

(21)

d℘2(~, t) =
{∂2℘1(~, t)

∂~2
+ [κ℘1(~, t)− β℘2(~, t)]

}
dt

+L2,

∂℘1(0, t)
∂~

=
∂℘2(0, t)
∂~

= 0,

∂℘1(1, t)
∂~

= u1(t),
∂℘2(1, t)
∂~

= u2(t),

℘1(x, 0) = ℘0
1 (~), ℘2(x, 0) = ℘0

2 (~) (22)

where, ℘1(x, t) voltage variable, ℘2(~, t) recovery variable
and the semi-linear term η℘1(℘1−α)(1−℘1) represents the
voltage threshold. The electrical potential on the molecular
membrane can be affected by several forms of random terms
due to the surrounding medium. Since this Levy approach
allows for jumps, which gives more realistic to real world
models, the representations of L1 and L2 are given by

L1 = µ1℘
2
1 (~, t)dW1(~, t)+ ζ1

∫
∞

0
z℘2

1 (~, t)Ñ1(dt, dz),

L2 = µ2℘
2
2 (~, t)dW2(~, t)+ ζ2

∫
∞

0
z℘2

2 (~, t)Ñ2(dt, dz).

By setting

A =
[
−ηα −λ

κ −β

]
,

σ (t, ℘(~, t), z) =
[
µ1 0
0 µ2

] [
℘2
1 (~, t)
℘2
2 (~, t)

]
,

g(t, ℘(~, t)) =
[
η[(1+ α)℘2

1 (~, t)− ℘
3
1 (~, t)]

0

]
,

φ(t, ℘(~, t), z) =
[
ζ1 0
0 ζ2

] [
℘2
1 (~, t)
℘2
2 (~, t)

]
.

From Equation (21) and (22) one can reach system (1).
Let the constant parameters α = 0.5, λ = 0.1, κ = 0.8,

β = 0.54, η = 0.1, µ1 = µ2 = 0.01, ζ1 = ζ2 = 0.02 and
m = 2.25, q = 3.5, c = 1. Now solving LMIs in Corollary 1
using the LMI toolbox in MATLAB, the feasible solutions to
guarantee the exponential stability of the considered system
can be obtained with decay rate δ = 0.25. Furthermore, the
controller gain value is found as

K =
[
8.7184 0.5882
0.5882 9.1231

]
.

The validity of the developed feedback controller is demon-
strated in Figs 1 - 4. The state trajectories do not meet the
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FIGURE 1. State ℘2(~, t) of (22) without control.

FIGURE 2. State ℘2(~, t) of (22) without control.

FIGURE 3. State ℘1(~, t) of (21) with control.

equilibrium point when the control input u(t) = 0 which are
shown in Figures 1 & 2. Then we see that in the presence of
the controller system state achieves the convergence as shown
in Figures 3 & 4. This demonstrates the designed boundary
controls effectiveness.
Example 2: Next, we consider (21) and (22) with external

disturbance v(~, t)

d℘1(~, t) =
{
∂2℘1(~,t)
∂~2

− λ℘2(~, t)+ η℘1(~, t)(℘1(~, t)

−α)(1− ℘1(~, t))+ 0.01v(~, t)
}
+ L1,

(23)

d℘2(~, t) =
{
∂2℘1(~,t)
∂~2

+ [κ℘1(~, t)− β℘2(~, t)]

+0.02v(~, t)
}
+ L2, (24)

FIGURE 4. State ℘2(~, t) of (22) with control.

FIGURE 5. State ℘1(x, t) of (23) without control.

FIGURE 6. State ℘2(x, t) of (24) without control.

with the system parameters are chosen as α = 0.9, λ = 0.75,
κ = 0.4, β = 0.9, η = 0.3, µ1 = µ2 = 0.05, ζ1 = ζ2 =

0.02, m = 3, q = 1, c = 3 and v(~, t) = 1.5~ + cos(t).
Where, L1 and L2 taken same as in example 1.

For C =
[
0.01 0
0 0.2

]
, by solving the LMI conditions

in Theorem 2, we get a feasible solutions to guarantee the
exponential stability of the considered system can be obtained
with the control gain

K =
[
1.5295 0.0503
0.0503 1.2725

]
.

and we can obtain the optimized H∞ performance level
γmin = 0.1124.

Simulation results for the considered system with and
without the boundary feedback control are shown in
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FIGURE 7. State ℘1(x, t) of (23) with control.

FIGURE 8. State ℘2(x, t) of (24) with control.

Figures 5 - 8. It is evident that the state responses have
good transient response with the help of designed the
boundary controller and achieve the exponential stability in
the presence of disturbance.

V. CONCLUSION
In this paper, the problem of MSES of semi-linear stochastic
PDE driven by Lèvy noise using boundary feedback control
has been investigated. The system’s mean-square exponential
stability was guaranteed using Lyapunov theory and LMI
technique. The disturbances that exist in the system has
been dealt with the aid of the H∞ performance. Finally,
numerical example establishes the effectiveness of the
proposed techniques. In future, due to the importance of
SPDE results can be extended to investigate the observer
based control with varies form of performance indexes such
as passivity, dissipativity, extended dissipativity and so on.
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