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ABSTRACT Motor imagery (MI) and action observation (AO) are mental practices commonly applied in
brain–computer interface (BCI) systems for stroke rehabilitation. However, previous studies have reported
that combined AO andMI (AOMI) is more effective than MI or AO alone in terms of enhanced event-related
desynchronization (ERD), which expresses cortical excitability and improves the classification performance
of the BCI system in healthy subjects. Nonetheless, evidence the use of this strategy in stroke patients is still
lacking. Hence, this study aimed to investigate the effect of AOMI on ERD and classification performance
in chronic stroke patients. Ten chronic stroke participants were recruited for this study. Each participant
was asked to perform both MI (control condition) and AOMI (experimental condition) tasks. For the
MI task, the participants requested to perform MI while gazing at a static arrow picture. For the AOMI
task, the participants were given a video-guided movement while executing MI. An array of 16 Ag/AgCl
electrodes were used to record electroencephalographic (EEG) data during the mental tasks to analyze
ERD amplitudes. Common spatial patterns (CSPs) combined with support vector machines (SVMs) were
employed to evaluate the classification performance (offline analysis) of the baseline and imagery classes
under each condition. Our results indicated that the ERD values and classification accuracy in AOMI were
significantly greater than those under MI conditions. Moreover, a significant negative correlation between
ERD values and classification performance was also found. In other words, enhanced ERD values (more
negative values) also increased classification performance.

INDEX TERMS Brain-computer interface, motor imagery, action observation, stroke, machine learning.

I. INTRODUCTION
A stroke is a major cause of death worldwide. Most stroke
survivors commonly experience hemiparesis on one side of
the body [1]. Particularly, impairment of upper limb function
greatly impacts their activities of daily living due to the
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inability to perform fine motor skills. Moreover, upper limb
function rarely ever recovers completely. Hence, creating an
effective therapeutic method to improve upper limb function
is important for aiding stroke patients to resume normal
life. [2]. Presently, constraint-induced movement therapy is
a helpful therapeutic method that can enhance the recovery
of upper limb function by encouraging the use of an affected
upper limb. However, moderately to severely motor-impaired
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patients may not obtain sufficient benefits from this technique
due to their incapacity to produce upper limb movement.
Thus, other strategies to help these patients improve their
upper limb function are needed [2], [3].

Motor imagery (MI) is a mental task that requires imag-
ining a physical movement without performing the actual
action. It is an alternate therapeutic method in which severely
motor-impaired patients can access brain areas associated
with motor execution without the need for voluntary move-
ment [4]. Generally, there are two types of MI: kinesthetic
MI and visual MI. Kinesthetic MI is an imagination of sen-
sation perceived during executing real movement (such as
muscle contraction, skin perceptions, proprioception), while
visual MI creates a visual representation of movement in
terms of the third-person view. Nevertheless, previous stud-
ies have indicated that kinesthetic MI was more effective
than visual MI in activating brain areas related to motor
execution [5], [6]. Therefore, kinesthetic MI appears to be
more favorable to apply in stroke rehabilitation in conjunction
with conventional therapy [4]. However, the main problem of
applyingMI training in stroke patients is the difficulty of eval-
uating the MI performance in these patients based on obser-
vation alone. Fortunately, brain–computer interface (BCI)
technology currently exists to overcome this problem.

BCI is a system that can acquire brain signals while a stroke
patient is executing MI. It can evaluate his/her MI perfor-
mance using an algorithm to interpret that brain signal during
the MI task [3]. According to electroencephalography (EEG)
studies in healthy subjects, it is well known that executing
MI produces a phenomenon called event-related desynchro-
nization or synchronization (ERD/ERS). ERD is a decrease
in EEG power, whereas ERS is an increase this power related
to an event. Furthermore, they usually occur within spe-
cific frequency bands, including the alpha or mu and beta
bands (8–13 Hz and 14–30 Hz, respectively). Normally, ERD
appears over the contralateral sensorimotor areas of the imag-
ined upper limb during MI. In contrast, ERS presents after
MI termination. ERD refers to the activated cortical areas
involved in sensory, motor, and cognitive processing, whereas
ERS reflects inhibition of neural activity [7], [8]. Thus,
ERD is usually used as a power spectrum feature in
MI-based BCI systems to indicate that a stroke patient is
performing MI.

In MI-based BCI training, a stroke patient is asked to
perform kinesthetic MI while the system will monitor ERD.
If ERD occurs, the system will provide useful feedback
(i.e., functional electrical stimulation, haptic and visual feed-
back) back to the patient. In contrast, if ERD does not occur,
the system will not give feedback to the patient. Hence,
the patient can learn how to generate ERD by trial-and-
error learning. Furthermore, neurofeedback in conjunction
with ERD occurrence is a potential strategy for inducing
neural plasticity that leads to improved motor function in
stroke patients [3], [9], [10]. Moreover, previous studies
have reported that MI-based BCI with neurofeedback could
improve motor function in stroke patients [11]–[15].

In addition to MI, action observation (AO) is another way
to trigger cortical areas involved in motor execution that
passes through the mirror neural system [16]. AO carefully
observe a movement performed by another person. It can
recruit the same neural structures related to that observed
movement as if he or she truly executed the observed
action [17]. Hence, the idea of using AO for encouraging
motor recovery in stroke patients has been proposed and is
called AO therapy. AO therapy requires stroke patients to
observe a specific object-directed action shown on a com-
puter screen. The patients are then asked to perform the action
that they observed [18]. Nevertheless, stroke patients who
have severe motor impairment may not receive any benefits
from this method because of their restricted ability to perform
voluntary movement. Additionally, previous EEG studies
revealed that ERD also occurred in AO and MI [19], [20].
Therefore, combining AO with the BCI system is another
therapeutic training mode for enhancing motor recovery in
severely motor-impaired stroke patients [21], [22].

Commonly, previous studies have examined the effect of
MI- or AO-based BCI training on motor recovery in stroke
patients separately. However, multimodal brain imaging stud-
ies have revealed that combined action observation andmotor
imagery (AOMI) could facilitate the brain areas associated
with motor execution more effectively than MI or AO alone
in healthy subjects [23]–[28]. AOMI is a movement imagi-
nation concurrent with watching the same imagined action
shown on a computer screen [29], [30]. Previous research
has reported that AOMI training could improve balance
and muscle force and aiming performance in healthy sub-
jects [31]–[33]. Although the AOMI concept is not a novel
method, it is very rarely used in neurorehabilitation, particu-
larly in stroke patients [29].

Few studies have investigated the effect of AOMI on motor
recovery and cortical activity in stroke patients. Sun et al. [34]
were the first to examine the effect of AOMI training on upper
limb function and cortical activity in subacute stroke patients.
In Sun’s study, the patients were randomly allocated into
experimental and control groups. In the experimental group,
the patients were given AOMI training and conventional
therapy, whereas the patients in the control group received
asynchronous AOMI and conventional therapy. After four
weeks of training, they found that the patients in the exper-
imental group showed significantly greater improvement of
upper limb function as evaluated by the Fugl–Meyer assess-
ment compared to the patients in the control group. Further-
more, the patients in the experimental group also showed
a significantly larger amplitude ERD in the alpha or mu
band (7–12 Hz) at the C3 electrode (lesional sensorimotor
area). In addition to Sun’s study, Ichidi et al. [35] investi-
gated the effect of AOMI on ERD patterns in stroke patients
(no information on the stroke phase) during AOMI and
MI tasks. In Ichidi’s study, the patients were asked to execute
three different cognitive tasks: MI with static hand pictures,
MI with static words, and AOMI. They found that AOMI
conditions demonstrated greater ERD amplitudes in the beta
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band (13–28 Hz) at C3 and C4 electrodes compared to
MI conditions.

The common problem in EEG-based BCI systems is
the variance of classification performance among subjects
depending on the ability to generate ERD in each individ-
ual. In addition, stroke patients usually show weak ERD in
the ipsilesional sensorimotor cortex during cognitive tasks,
which negatively affects the classification performance [19],
[36], [37]. According to the abovementioned studies, AOMI
is likely to be a better strategy than MI and AO for producing
ERD. Moreover, a previous study has reported that AOMI
could lead to an improvement int the classification perfor-
mance of the BCI system in healthy subjects [27].

Therefore, AOMI is probably also effective for improving
classification performance in stroke patients. To verify this
hypothesis, the present study aimed to investigate the effect
of AOMI on cortical activity and classification performance
in chronic stroke patients.

II. MATERIALS AND METHODS
A. PARTICIPANTS
In the present study, we recruited 10 chronic stroke patients
with moderate to severe upper limb impairment, who were
right-handed prior to stroke (one female, two right hemipare-
sis) from the Physical Therapy Center of Mahidol University.
The inclusion criteria included several parameters: (1) first-
ever stroke caused by ischemia or hemorrhage, (2) stroke
onset more than six months, (3) age between 40 and 80 years,
(4) normal vision, (5) Mini-Mental State Exam (MMSE)
score ≥ 25, which means the participant must have nor-
mal cognitive status, (6) Fugl–Meyer Upper Extremity
(FM-UE) ≤ 42, and (7) no previous experience with
MI or AO. The participants were excluded if they had hemis-
patial neglect, aphasia, apraxia, and/or history of. Epilepsy.
All participants signed written informed consents to par-
ticipate in this study, which was approved by the Mahidol
University Central Institutional Review Board (COA No.
MU-CIRB 2020/097.3107). Participant details are presented
in Table 1.

B. EXPERIMENTAL DESIGN
To evaluate the contribution of AOMI to classification perfor-
mance, the MI task was used as the control condition. Before
the participants participated in AOMI and MI, the researcher
taught the participants how to execute kinesthetic MI. The
researcher would perform passive movement of wrist and
hand extension at the paretic hand and ask the participants to
feel and memorize the sensation of movement (such as skin
contraction, proprioception), which they had to imaginewhile
performing kinesthetic MI.

In both AOMI and MI tasks, the participants started by
watching a blank screen for 5 s after which a black cross
appeared at the center of the display for 3 s to alert the
participants to prepare themselves for performing the upcom-
ing cognitive task. During this period, the participants were
instructed to avoid any body movements, including eye

blinking and saliva swallowing. Next, for the AOMI task,
video-guided movement was shown on the computer screen
for 5 s to demonstrate how to perform wrist and hand exten-
sions. The video was presented from the first-person view on
the same side as the paretic hand. The participants were then
asked to concurrently perform kinesthetic MI while watching
the video-guided movement. In contrast, for the MI task, the
participants had to perform kinesthetic MI while watching
the red arrow pointing in the direction of the paretic hand
for 5 s. During the AOMI and MI periods, the participants
were not allowed to produce any movement with the paretic
hand. After that, the blank screen appeared again to inform
the participants to relax. The relaxation time was randomly
set between 5 and 8 s before the next trial started to avoid
adaptation. A schematic of a trial in the AOMI and MI tasks
is shown in Fig 1(a) and (b), respectively. In this study, each
participant participated in the experiment for two days. On the
first day, half of the participants were randomly assigned
to perform the AOMI task, and the remaining participants
were allocated to perform the MI task. On the second day,
the participants who initially performed the AOMI task were
assigned to participate in the MI task, whereas the partic-
ipants who initially performed the MI task were assigned
to participate in the AOMI task. On each experimental day,
each participant was asked to perform the cognitive task
for two sessions. A session was composed of 20 trials with
3-minute breaks between each session. Therefore, the total
number of cognitive tasks was 40 trials for each condition
(40 AOMI trials and 40 MI trials). The experimental trial
was conducted for two days to prevent accumulated mental
fatigue and reduce the effect of short-term memory from the
prior task.

C. EEG DATA RECORDING
The participants were seated in a comfortable chair, and each
participant placed his/her forearm of the affected side on a
desk. A 14-inch laptop computer was set in front of them,
and the display distance was proper for eyesight. A g. tec
biosignal amplifier (g. USBamp, Graz, Austria) was used to
acquire EEG data during the experiment. 16 electrode place-
ments (FP1, FP2, FC3, FC4, C5, C6, C3, C4, C1, C2, CP3,
CP4, P3, P4, O1, and O2 in accordance with the international
10–20 system), which are presented in Fig 2 were selected to
record the EEG data at a sampling rate of 512 Hz. Electrodes
on the AFz and the left earlobe were used as the ground
electrode and reference electrode, respectively. The electrode
impedances used to acquire the EEG data were below 5 K�.
The graphical user interface for the participants to perform
the AOMI and MI tasks was created by a Python script.

D. ERD/ERS AND TIME-FREQUENCY ANALYSES
In this study, we examined the cortical activity between
AOMI and MI conditions by means of ERD/ERS and time-
frequency analyses. The EEG data from C3 (for right-sided
hemiparesis participants) or C4 (for left-sided hemiparesis
participants) were selected, which were placed over the
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TABLE 1. Participant details.

FIGURE 1. Schematic of a trial in the AOMI and MI task. (a) The participants started by watching a blank screen for 5 s after which
a black cross appeared at the center of the screen for 3 s. Next, the participants were asked to perform kinesthetic MI while
concurrently watching the video-guided movement for 5 s. Finally, the blank screen appeared again to inform the participants to
relax. The relaxation time was randomly set between 5 and 8 s. (b) The participants started by watching a blank screen for 5 s after
which a black cross appeared at the center of the screen for 3 s. Next, the participants were asked to concurrently execute
kinesthetic MI while watching at a red arrow pointing in the direction of the paretic hand for 5 s. Finally, the blank screen appeared
again to inform the participants to relax. The relaxation time was randomly set between 5 and 8 s.

primary sensorimotor area of the hand to calculate
% ERD/ERS values and plot time–frequency maps. First, the
EEG data were sliced into 8-s epochs (starting at 5 and 13 s
in Fig 1a, b) after which they were bandpass filtered from
5–35 Hz, and an independent component analysis (ICA)
was used to reject eye blinking artifacts [38]. Finally, the
preprocessed data were used to compute ERD/ERS values
and plot time–frequency maps.

Normally, ERD/ERS values are presented in terms of
percentage change, and equation (1) was used to obtain
% ERD/ERS values [8]:

%ERD/ERS =
(A− R)

R
× 100 (1)

A indicates the power spectrum values in a given frequency
band (such as alpha and beta bands) while the participants
were performing the cognitive tasks. R represents the power

spectrum value before the participants executed the cognitive
task. The EEG data from 1 to 5 s after the video-guided
movement or red arrow appeared (i.e., from 9 to 13 s
in Fig 1a, b) and from 2 to 3 s after the black cross presented
on the screen (i.e., from 7 to 8 s in Fig 1a, b) were used to
compute A and R, respectively. Welch’s method with a Ham-
ming window (nonoverlapping) was employed to estimate
the power spectrum values of A and R in each epoch. Then,
we averaged A and R across epochs, and put these values
into equation (1) to obtain % ERD/ERS values. If the value
of % ERD/ERS was a negative number, it indicated the
presence of ERD (activated neural activity). In contrast, if the
value of % ERD/ERS was a positive number, it indicated
the presence of ERS (inhibited neural activity) [7], [8]. In this
study, the % ERD/ERS values was computed in four fre-
quency bands, including the alpha (8–13 Hz), lower beta
(14–20 Hz), upper beta (21–30 Hz), and whole bands
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FIGURE 2. The 16-electrode placements used to record EEG data.

(8–30 Hz) to compare cortical activity between AOMI and
MI conditions.

For time–frequency analysis, the mean event-related spec-
tral perturbation (ERSP) was plotted to express the activity
in the affected sensorimotor area of the hand (C3 or C4).
ERSP presented cortical activity in terms of spectral power
change relative to the baseline due to a cognitive task. Eight-
second epoch data (starting at 5 and 13 s in Fig 1a, b) were
applied to compute ERSP for plotting time–frequency maps,
and the mean ERSP was obtained using equation (2).

ERSP (f , t) =
1

N

N∑
iD1

(Fi(f , t)2) (2)

N is the number of trials. Fi(f , t) is the spectral estimation
of the ith trial, which was estimated by short-time Fourier
transform using a Hanning-tapered window. f and t are the
frequency (i.e., 5–35 Hz) and time (i.e., from 5 to 13 s in
Fig 1a, b), respectively. ERSP values were normalized by
subtracting the baseline (i.e., from 7 to 8 s in Fig 1a, b)
and presented in log-transformed values. The whole process
of ERD/ERS and time-frequency analyses were conducted
with MATLAB (R2020a) and the EEGLAB (v2020.0) tool-
box [38]. The results of the time-frequency analysis of all
participants during AOMI and MI tasks are shown in Fig 3.

E. CLASSIFICATION PERFORMANCE
In this study, an offline classification analysis was used
to evaluate the classification performance between AOMI
and MI conditions. The preprocessed data in the section
on ERD/ERS and time-frequency analyses were continu-
ally applied to establish the classification model. After that,

FIGURE 3. Event-related spectral perturbation (ERSP) maps at the C3 or
C4 channel between AOMI and MI tasks of all participants. The blue color
refers to a decrease in EEG power (activated neural activity), and the red
color indicates an increase in EEG power (inhibited neural activity)
relative to the baseline. The results of ERSP map exhibited that AOMI was
more effective than MI tasks in terms of activating the neural activity of
the primary sensorimotor area of the hand.
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FIGURE 3. (Continued.) Event-related spectral perturbation (ERSP) maps
at the C3 or C4 channel between AOMI and MI tasks of all participants.
The blue color refers to a decrease in EEG power (activated neural
activity), and the red color indicates an increase in EEG power (inhibited
neural activity) relative to the baseline. The results of ERSP map exhibited
that AOMI was more effective than MI tasks in terms of activating the
neural activity of the primary sensorimotor area of the hand.

the EEG data from five channels placing over the affected
sensorimotor areas (FC3, C5, C3, C1, CP3 for right-sided
hemiparesis and FC4, C6, C4, C2, CP4 for left-sided hemi-
paresis) were selected. Next, the EEG data were sliced
into 2-s epochs to create the data for a 2-class condition.
The 6–8 and 9–11 s periods (Fig 1a, b) were represented
as 2-s epochs for class 1 (baseline class) and class 2 (imagery
class), respectively. The two classes were differentiated
because they are commonly used in EEG-based BCI systems
for stroke rehabilitation [27], [39]–[41]. In the present study,
the participants were asked to perform each AOMI and MI
task for two sessions, and each session was composed of
20 trials. Thus, we obtained the EEG data for 40 trials,
in which each trial comprised 2 classes. Therefore, 40 epochs
of data for each class (40 epochs for the baseline class and
40 epochs for the imagery class in each AOMI and MI con-
dition) were obtained. The epoch data were separately band-
pass filtered into four frequency bands: (1) alpha (8–13 Hz),
(2) lower beta (14–20 Hz), (3) upper beta (21–30 Hz), and
(4) whole bands (8–30 Hz). The EEG data were filtered
into four bands to compare the classification performance
based on each band power feature between the AOMI andMI
conditions. Afterwards, a common spatial pattern (CSP) filter
was used to increase the difference between the two classes
by projecting the CSP filter matrix into the original datasets,
which could concurrentlymaximize the variance for one class

and minimize the variance for another class [42]. Later, mean
band powers extracted from the filtered data were used as the
feature vectors, and a support vector machine (SVM) was
applied to create the classifier [43]. Finally, a 5-fold cross
validation (80% for training and 20% for testing) was used
to obtain the mean accuracy results. The whole process of
offline classification analysis was provided by MNE, SciPy,
and Scikit-learn python packages.

F. STATISTICAL ANALYSIS
PASWStatistics software version 18.0 (formerly SPSS Statis-
tics, Chicago) was adopted for statistical analysis in this
study. Due to the small sample size, theWilcoxon signed-rank
test was used to compare the mean classification accuracy
and % ERD/ERS values between AOMI and MI conditions
in each frequency band. Statistical significance was defined
when p values were < 0.05.

III. RESULTS
A. % ERD/ERS of C3/C4
In the present study, % ERD/ERS values from the C3
(left-sided hemiparesis participants) or C4 (right-sided hemi-
paresis participants) channels were used to compare AOMI
and MI conditions, and we found significant differences
in % ERD/ERS values in the alpha (p = 0.005), lower
beta (p = 0.013), upper beta (p = 0.022) and whole bands
(p = 0.007). The % ERD/ERS results in all participants are
presented in Table 2.

B. CLASSIFICATION PERFORMANCE
When comparing the mean classification performance in
four band power features between AOMI and MI conditions,
we found significant differences in mean classification per-
formance in the alpha (p = 0.005), lower beta (p = 0.011),
upper beta (p = 0.021) and whole bands (p = 0.005). The
classification accuracy results for all participants are shown
in Table 3.

In addition to evaluating the mean classification accuracy,
false positive and false negative (FP and FN, respectively)
values were analyzed. According to a 5-fold cross validation,
each confusion matrix result consisted of 16 test datasets.
Hence, the summation of confusion matrix from the 5-fold
cross validation in each participant was composed of 80 test
datasets. Then, the summation of confusion matrix across
all participants was averaged to obtain the mean of confu-
sion matrix between the AOMI and MI conditions in each
frequency band. We found that the AOMI task produced
lower FP and FN values compared to the MI condition for
all frequency bands. The means of all participant’s confusion
matrix results between the AOMI and MI conditions are
shown in Table 4.

In the present study, five channels (i.e., FC3/FC4, C5/C6,
C3/C4, C1/C2, and CP3/CP4) were selected to establish the
classification model, but % ERD/ERS values were analyzed
only for a single channel (C3 or C4). To clarify whether
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TABLE 2. % ERD/ERS values in four frequency bands for all participants between the AOMI and MI conditions.

TABLE 3. Mean classification accuracy in four band power features for all participants between the AOMI and MI conditions.

TABLE 4. The means of all participant’s confusion matrices between the AOMI and MI conditions.

increased ERD in C3 or C4 contributed to improving the
classification performance, Spearman’s correlation was used
to examine the correlation between % ERD/ERS values of

C3/C4 and mean classification performance in each fre-
quency band. The correlation results indicated that there
were significant negative correlations between % ERD/ERS
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values and mean classification performance in the alpha
(r = −0.729; p = 0.000), lower beta (r = −0.625;
p = 0.003), upper beta (r = −0.661; p = 0.002), and
whole bands (r = −0.817; p = 0.000). Hence, increased
ERD values (more negative values) at the C3 or C4 channel
based on AOMI contributed to improving the classification
performance. In other words, stronger ERD at the C3 or C4
channel (the primary sensorimotor area of the hand) corre-
lated with higher classification performance. The results of
the correlation analysis between %ERD/ERS (C3/C4) values
and classification performance in each frequency band are
shown in Fig 4.

IV. DISCUSSION
A. MAIN RESULTS
This study aimed to examine the effects of AOMI on corti-
cal activity and classification performance in chronic stroke
patients. Our results indicate that AOMI is a more robust
strategy than MI in terms of enhanced ERD values in the
affected sensorimotor area and classification performance.
Significant differences in ERD values and classification per-
formance between AOMI and MI conditions were found in
the alpha (8–13 Hz), lower beta (14–20 Hz), upper beta
(21–30 Hz), and whole bands (8–30 Hz). Moreover, a signifi-
cant negative correlation between ERD values and classifica-
tion performance was found. In other words, increased ERD
values (more negative values) also led to an improvement in
classification performance.

B. EFFECT OF AOMI ON ERD
ERD is an electrophysiological phenomenon expressed in
terms of decreased EEG power at a specific frequency band
(such as alpha and beta bands) that is related to a spe-
cific event. Generally, ERD is interpreted as an increase in
cortical excitability or activated cortical neurons involved
in the processing of sensory and cognitive information or
motor behaviors. In healthy subjects, motor execution (ME)
in addition to MI and AO can manifestly produce ERD in
a specific brain area [8], [44]. For instance, observation of
hand movement can elicit ERD (alpha band) in the occipital
lobe. Hand MI can provoke ERD (alpha and beta bands) in
the contralateral sensorimotor areas of the imagined hand [5].
However, in stroke patients, ERD during MI or ME is com-
monly reduced or absent in the affected hemisphere due to
damaged neurons [8], [37].

In the present study, according to the results of%ERD/ERS
of C3/C4 and time-frequency analyses, the ERD magnitudes
significantly increased compared to MI condition when par-
ticipants were given the video-guided movement while per-
formingMI (AOMI condition). These findings are in linewith
previous studies that examined ERD magnitudes in healthy
and stroke subjects [24], [27], [35], [45]. However, when
considering only the effect of AOMI on ERD in the alpha
band as described in previous studies, variation in the results
were found. In experiments conducted in healthy subjects,

Eaves et al. [45] reported no significant difference in ERD
in the alpha band between AOMI and MI tasks, whereas the
studies from Bian et al. [27] and Nagai et al. [24] found sig-
nificant differences in ERD in the alpha band between AOMI
and MI conditions. In the experiments conducted in stroke
subjects, Ichidi et al. [35] also reported that no significant
differences were noted in ERD in the alpha band between
AOMI and MI conditions in stroke patients. Although, our
results indicate that AOMI is superior to MI in producing
ERD in the alpha band. The factors that may influence the
results in this study and previous works incongruently include
the differences between participants (healthy or stroke sub-
jects), stroke phase (subacute or chronic phases), and/or
mental tasks (AOMI of simple or complex movements).
Additionally, our study conducted the experiment with only
ten chronic stroke patients. Therefore, further studies should
clarify the effect of AOMI on ERD in the alpha band in a large
sample size of stroke patients. For the results of ERD in the
beta band, our result is in line with previous studies [24], [27],
[35], [45] in which AOMI was reported to be more effective
than MI for enhancing ERD in the beta band.

In summary, it may be concluded that AOMI is more
effective than MI in terms of producing an increase in cor-
tical activity involved in motor function. The increased ERD
during AOMI may be induced by the spontaneous activation
of the mirror neuron system that is automatically stimulated
by observation of body movement [19], [20], [27]. Moreover,
applying video-guided movement while performing MI may
increase task attention and lead to enhanced ERD [8]. For
clinical applications, Sun et al. [34] demonstrated that using
AOMI training along with conventional therapy was more
effective than MI training for improving upper limb function
in subacute stroke patients. However, its effect on improving
upper limb function in chronic stroke patients is still unclear.
Thus, future research should investigate this hypothesis.

C. EFFECT OF AOMI ON CLASSIFICATION PERFORMANCE
The common problem of MI-based BCI systems is the varia-
tion in classification performance among subjects depending
on the capability of generating ERD in each individual. Par-
ticularly, stroke patients who usually have less ability to elicit
ERD due to brain lesions commonly show lower classifica-
tion performance [19], [36], [37]. To improve classification
accuracy, some studies have proposed novel mathematical
algorithms or classifiers to overcome this problem [42], [46],
[47]. On the other hand, some studies focus on a strategy that
could enhance ERD by using sensory stimulation (such as
vibration, electrical stimulations, and/or visual-guided move-
ments) during MI and has led to increased classification
accuracy [27], [48], [49]. In this study, the latter method
was used to improve classification performance in chronic
stroke patients. Our results indicate that adding video-guided
movement during MI could improve classification accuracy
even in stroke patients. Furthermore, FP and FN values in
the AOMI condition were lower than in the MI condition.
In addition, it was also found that increased ERD values
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FIGURE 4. Correlation analysis between % ERD/ERS (C3/C4) values and classification performance in each frequency band.

significantly correlated with improved classification perfor-
mance. These findings are in line with Bian’s study which
examined the effect of AOMI on classification performance
in healthy subjects [27].

Although AOMI is not a new strategy, evidence of the use
of AOMI-based BCI systems for stroke rehabilitation is still
lacking. In the present study, we only provided videos that
showed simple movement of the wrist and hand to stroke
patients during MI. However, simple movement could lead
to a significant improvement in classification performance
and ERD in the affected sensorimotor area. It is well known
that ERD represents a decrease in EEG power in a specific
frequency band (8–30 Hz) during MI relative to the baseline
or idle state [7], [8]. Our classification models, which are
based on ERD features, were used to classify the EEG data
between imagery and baseline states. Hence, it is straight-
forward that increasing ERD due to AOMI could make the
classification model to discriminate which EEG data were
imagery or baseline state easier compared toMI. Thus, AOMI
is a more appropriate method for stroke patients who are
new patients and are unfamiliar with classical MI to allow
them to participate in EEG-based BCI training. In addition,

the benefits of using video clips to improve MI efficacy are
low cost and easy to implement in BCI systems; therefore,
our findings may offer an alternative strategy for improving
the effectiveness of BCI systems for stroke rehabilitation.
However, our study only demonstrated AOMI advantages in
an offline classification analysis. To confirm its advantage in
terms of improving the efficacy of BCI training for stroke
rehabilitation, future studies should compare the effect of
AOMI and MI-based BCI training with neurofeedback (such
as functional electrical stimulation or robotic hands) onmotor
recovery in stroke patients. Furthermore, our study used
video-guided movement to improve classification accuracy
between baseline and imagery classes. Nevertheless, using
AOMI to improve classification performance between right-
and left-hand classes or hand and foot classes is still debat-
able. Further studies should investigate this hypothesis.

D. LIMITATIONS
Even though a small sample size of 10 participants was
involved in this study, the increased cortical activity and clas-
sification performance were found to be significant. Future
studies should validate our results by conducting experiments
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in a large population of stroke patients. In addition, we do not
know the type of lesions in each participant (such as cortical,
subcortical, and/or mixed lesions). A previous study reported
that different lesion locations affected the ERD amplitude
during MI, especially in supratentorial lesions, including pri-
mary motor cortex damage, which negatively impacted the
production of ERD in the affected hemisphere [50]. Thus,
further studies should verify the effect of AOMI on stroke
patients who present with this lesion.
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