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ABSTRACT Using machine learning (ML) techniques like deep learning (DL) for accelerated design
(forward and inverse) of metasurfaces has attracted great interest. However, most studies are focused on
using relatively regular and less complex patterns for specific photonics applications. In this paper, we report
significant improvements of our prior developed DL model tested on complex and random metasurfaces by
combining the the Network Architecture Search (NAS) method and the spatial symmetry information of the
complex metasurfaces. It is found that a shallow and wide neural network will provide better performance
for the complex and physics based metasurfaces problem, which is in contrast to the deep trend in existing
DL models. Our method can now accurately identify the EM response locations from arbitrary random and
complex metasurfaces while the conventional models fail to accomplish. It can also accurately predict the
EM response curve by injecting correct symmetry information into the architecture design step. Thus this
paper offers a platform to distill the influence of different fundamental operations for complex metasurface
design problems. In future, it may play an essential role in determining the most suitable neural network
for the complex metasurface problems. Finally, we are sharing this home-generated physics-based dataset
[SUTD polarized reflection of complex metasurfaces (SUTD-PRCM)] for future testings from the research
community that we believe the best DL model is yet to be found.

INDEX TERMS Artificial intelligence, machine learning (ML), deep learning (DL), neural networks,
metasurfaces, electromagnetics (EMs).

I. INTRODUCTION

Due to the electromagnetic (EM) wave or light-matter inter-
action, specified designed metasurfaces in some unique pat-
terns can exhibit remarkable EM responses or light outputs
for many applications [1]-[15]. Some examples are heat
transforming [16], cloaking [17], [18], hologram [19], con-
version [20], absorption [21], [22], scattering [23], polariza-
tion [24]-[26], transmission [27], different colors [28], [29],
meta-lense [25], [26], programmable metasurfaces [30]-[32],
and many others [33]-[36]. These applications are made
possible by the rapid advancement in micro- and even
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nano- fabrication technologies and computational modeling
over the past decades.

In the design of these metasurfaces in specified geometri-
cal arrangements, machine learning (ML) methods like deep
learning (DL) techniques have demonstrated unprecedented
performance in providing rapid and accurate prediction [37]
if a well-defined EM response is given. Particularly, the DL
technique has been mainly applied for forward modeling
and inverse design generation [38]-[51]. For forward mod-
eling, instead of explicitly solving the governing Maxwell
equations, DL models can learn the complex and non-linear
mapping between input parameters to output EM response
with a sufficiently large and high-quality dataset. Compared
to computationally expensive EM numerical solvers, efficient
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and accurate evaluation of the DL model can lead to faster
computational time and larger design search dimensions. The
inverse design problem aims to return the potential pattern
for the desirable EM response. The high-fidelity surrogated
model can replace the costly numerical solvers in the tra-
ditional design methodology based on evolutionary algo-
rithms such as genetic algorithm (GA) [52], particle swarm
optimization (PSO) [53], and ant colonization optimization
(ACO) [54]. Usually, a generative adversarial network (GAN)
system will involve a forward model that can be numerical
solvers or DL models.

The involvement of DL typically started from the explo-
ration with the most basic neural architecture, a fully
connected network (FCN) [50], [55], [56] for supervised
learning. With this approach, the electromagnetic scattering
behavior of alternating dielectric thin films parameterized
on thicknesses and dielectric constants of the films were
successfully predicted [57]. In dealing with the instability
and inconsistency problem, a bidirectional encoder-decoder
model (Tandem) is proposed [57]. A recent paper [58] studied
this problem when the output is only a scalar parameter.
ML algorithms on densely sampled spectral work such as
reflection and transmission were also tested [59], [60]. For
inverse design, deep generative models are employed for
generating new meta-atom designs to achieve the desired
EM response. Various groups [59], [61]-[63] have used the
GAN system to quantify a differential mapping from desired
EM response to the discrete 2D pattern. Another paper [64]
further enhances the expression capability of the DL model by
appending to CNN a recurrent neural network (RNN) which
is more often seen in sequence modeling.

However, we observe that majority of the DL-related works
in metasurface design are restricted to canonical shapes or
connected polygons, which belong to a relatively limited and
straightforward design dimension. The findings reported in
using such a limited and regular dataset are also qualitative
in comparing different neural architectures. It is less intu-
itive to make meaningful comparison across different models
without a common and more complex dataset. Easy access
to such standard dataset will allow a more quantitative and
fair comparison between different neural architectures and
training strategies in the research community. Inspired by
how the standard datasets in CV community has advanced the
state-of-the-art in their field, we are ready to share our dataset
(SUTD-PRCM), which was first generated in a previous
work and tested on different DL models [62]. This dataset is
essentially a collection of numerical simulated results of EM
wave reflection of randomly created metasurfaces.We used
one floquet port with two modes in the unit cell simulation
within the frequency domain solver. The reflection spectra are
results from S-parameter from CST simulation. We will use
the polarization to interpret the result under a more general
setting of wave propagation. Each sample in the dataset
consists of an input metasurface of 16 x 16 binary image, and
its associated output EM reflection as a function of frequency
from 2 to 10 GHz. The randomly generated samples are
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sufficiently complex that are suitable for forward prediction
and inverse design in testing different DL models in a simple
GPU setting.

In our recent work [62], we have demonstrated that in
using the SUTD-PRCM dataset tested with some existing
DCNN based neural architectures that might not be the most
optimal neural architecture yet that we will report the fur-
ther improvements in this paper. Thus, we are motivated to
find the best Al architecture for complex metasurface. An
important paper [65] reports a very novel way to automat-
ically identify the best architecture and parameter selection
for modeling Minkowski Fractal-Based FSS problem. The
geometry of their metasurface is controlled by width, height,
thickness, and offset length. They use the Bayesian Opti-
mization method in network architecture search and opti-
mize the architecture of a fully-connected regression model
(FCRM). It has been proved that their method can reduce
sensitivity for training and considerably improve prediction
performance. This paper will focus on using 2D patterns
to implement a metasurface rather than shape parameters.
The deep CNN module is the main machine learning oper-
ation in this method. Moreover, we will use a gradient-based
method named Differentiable Architecture Search (DARTS)
to optimize architecture. We will propose a framework that
can help us to understand how to design the potential ‘best’
DL model for our complex metasurface datasets. We regard
a deep learning model as two parts, the basic operations,
and the architecture to assemble those operations. We would
demonstrate the general approach to find suitable architecture
and design suitable fundamental operations.

The focus of this paper is to use a physics-generated dataset
to test the performance of some deep learning models, and we
conclude the well-known models will not work well in this
dataset. Note the model is not aimed to obtain any specific
design or performance of metasurfaces. The paper can be
viewed as a random-shape-level metasurface machine learn-
ing task that tries to deal with complex binary metasurface
that has not been studied before. Most literature on metasur-
face designs will limit the pattern to reach some performance.
In this paper, we use a full random metasurface, which has
no constrain in its pattern and to test the limit of Al in
this complicated dataset by using Deep Convolutional Neural
network technology, network architecture search technology,
and symmetry model technology. Our experiments aim to
identify the best architecture of Al, and also to share this
home-made dataset with the research community of further
improvement.

The rest of the paper is organized as follows. Firstly,
we introduce the main methods used in this paper like
Network Architecture Search, geometrical machine learn-
ing concept, and symmetric neural network in Section.Il.
Secondly, we briefly introduce the main experiment setup
like the Maximum-peak-binary classification (MPBC) task
and Magnitude Regression (MR) task in Section.IIl. Thirdly,
we present the improved performance of these methods com-
pared to the traditional DCNN model in Section.IV. Finally,
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we conclude the paper with a summary and possible future
works in Section.V. The details of the public SUTD-PCRM
dataset are presented in the Supplementary material. Its sym-
metry property is also shown in Appendix.

Il. METHODS

A. NETWORK ARCHITECTURE SEARCH (NAS)

Neural architecture search (NAS) [66] is a technique for
automatically designing the structure or layout of the neu-
ral network (NN) in the field of machine learning (ML).
The objective of NAS is to discover the best architec-
ture for a neural network tailored for a specific require-
ment based on a given dataset. It represents a set of tools
that will test and evaluate many potential architectures in
order to select the most suitable one for a given problem
by maximizing a fitting function. The most well-known
NAS method is Google’s NASNet [67], but this method
requires thousands of TPU/GPU resources that are not
affordable for common research groups based in universi-
ties. There are various NAS methods like Reinforcement
Learning (RL) Methods [68], Gradient-based (GB) Meth-
ods [69], Evolutionary Algorithms (EA) [70] and Bayesian
Optimization (BO) [71].

In this paper, we adopt the Differentiable Architecture
Search (DARTS) [69], [72], [73], as it requires signifi-
cantly less computational resources as compared to other
NAS methods. DARTS introduces a continuous relaxation
scheme that enables differentiable learning objectives, unlike
the RL or EA approaches. This differentiability is the key
to the computational feasibility following a gradient-based
approach. It allows the researchers to apply NAS only using
one GPU. Many seek to further improve DARTS and leads to
many variants such as PC-DARTS [73], SharpDARTS [74],
RC-DARTS [75] and Fair DARTS [76]. In our experi-
ment, we adopt the DARTS [69] with Geometry-Awared
gradient algorithm [72] and PC-DARTS setup [73] which
can converge quickly and escape from local minima. The
PC-DARTS is a memory-efficient and faster variant of
DARTS that reduces the redundancy in navigating the search
space by performing the search in a subset of channels.
The Geometry-Awarded gradient algorithm proposes a bet-
ter optimization and regularization strategy to achieve fast
and high-quality convergence. We modify the branches
and blocks in the original DARTS structure [69], [72],
[73] and make it feasible for the SUTD-PRCM dataset.
Tracking the evolution of the searched architect during
the training process of DARTS can help us to summa-
rize the correct structure-property required by the best
model. The full framework is shown in Fig. 1. We use
3000 samples from the 108,000 training dataset as the vali-
dation set for updating architecture parameters. The remain-
ing 105,000 samples construct the new training dataset
and are used for updating model parameters. An algo-
rithm flowchart of DARTS is added in the supplementary
materials.
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B. GEOMETRIC DEEP LEARNING

ML aims to construct algorithms that can learn the latent rule
of a dataset by approximating the underlying nonlinear rela-
tionship with the typical objective of accurately predicting
a set of input parameters. So the learning algorithm would
deal with millions of training examples that demonstrate the
intended relation between input and output. After training,
the model should approximate correct outputs, even for not
appearing samples. Such an ability is called the generalization
of the ML model. It is well-known that the success of modern
ML algorithms will depend heavily on the correct assump-
tions about the nature of the target function when they are
established. These assumptions are subsumed in the phrase
inductive bias [77], which is becoming a popular concept in
the ML community after Google put forward this paper [78].

Recently, other researchers also put forward a new concept
called Geometric deep learning [79], which is a common
mathematical framework to study the ML neural network
architectures with incorporate prior physical knowledge.
It provides a consistent way to build future architectures by
considering geometry and symmetry. Exploiting these known
symmetries of an extensive system is a powerful method that
enables deep learning systems to exploit the low-dimensional
geometry arising from basic physics principles. For example,
reveal the space-translation symmetry for grid images, time-
translation symmetry in the time-series sequences, and rota-
tion symmetry for molecules. In short, this theory can distill
into two concepts: the G-invariant function and G-equivariant
property. Generally, a G-invariant function is required. But
it is more flexible to use G-equivariant when the Signal has
deformation stability. For example, Recurrent Neural Net-
work (RNN) is well-known to conserve the time translation
since it can be viewed as a step as a Markov dependence
updating processing. Convolution Neural Network (CNN)
could hold the spatial translation because of the convolutional
operation. Graph Neural Network (GNN) focuses on more
interrelation between two meta-unit, with a good affinity for
permutations symmetry.

Our Metasurface ML dataset (SUTD-PRCM) has some
symmetrical information as shown in Appendix.A. Different
branches and parts will have different symmetries. For exam-
ple, the x(co)-polarization branch owns the Z2 symmetry.
The y(cross)-polarization complex number branch owns the
PAZ2, symmetry. Since the traditional DCNN models don’t
contain the symmetry information, it is straightforward to
embed these corresponding symmetrical properties or infor-
mation into the network and to explore its improvement on
DL models and NAS search.

C. SYMMETRIC CNN MODULE

There are a lot of works about how to include symmetry infor-
mation from the data sets into ML. For example, [80] takes a
detailed study about how to integrate the group techniques
into kernel learning. The main technique is averaging all
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FIGURE 1. The main structure of the network architecture search (NAS) module. The orange and yellow square
represent the two architectural types: normal and reduction, respectively. There are nine cells from C, to Cg. Each cell
is the interaction of the last two cells. The interaction contains 4 intermediate units (N; to N4). Each unit is the sum
aggregation of several mapping (black arrow). There are 14 mappings in one interaction. Each mapping is a weighted
aggregation of candidate operations. In this paper, we use eight symmetry operations S;. A final linear layer is applied

to convert Cg to the binary output of positive 1 or negative 0.

possible nonlinear functions over the symmetry group, which
has been used in [81] for biomedical image analysis, [82]
for shape matching, and [83]. Another example is the Scat-
tering Convolution Neural Networks (SCNN) [84], which
uses wavelet instead of conventional convolution operation
to capture transition invariance. SCNN is later extended [85]
to deal with translations, rotations, and scaling groups in
object recognition. Other research groups have addressed
this problem by learning equivariant representations, like
equivariant Boltzmann machines [86], [87], and equivariant
descriptors [88]. Nevertheless, concepts from locally com-
pact topological groups are used [89] to develop a theory of
statistically efficient learning in the sensory cortex, which has
achieved great success in speech recognition [90]. In 2015,
researchers proved that convolutional networks could exploit
the rotation symmetry for galaxy morphology prediction
by rotating feature maps [91]. The technique was further
extended to solve various computer vision tasks with cyclic
symmetry [92].

In this paper, we will use G-average [79] way to build an
G- equivariant convolutional layer

1

@)

1
= Y f@K); x), ¢))
8eg

F(K; x) fg F(g(K; x)du(g)

Card(G)

where the ©(G) is the Haar measure of group G, the f is the
symmetric convolutional operation and f is normal convolu-
tional operation. When the group G is a discrete group, the
1(G) becomes the element counting measure, that is, the Card
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of the group set Card(G). The G-equivariant operation for the
discrete group is the average of all possible results under the
symmetry group.

For example,there exists Z, symmetry in co-polarized
reflection 7 in our dataset (see Appendix.A). We convolute
the input 4 times with the different kernels under different
Z5 operations. Note that such converting only works on CNN
operation with stride s = 1. For s > 1, CNN operation
with a certain kernel config would fail to maintain a complete
symmetry property. For example, if we take kernel k = 3,
stride s = 2 and padding p = 1, the symmetric CNN module
would produce half size (w x h) feature map for even size
input (2w x 2h) but fail to maintain Z2 equivariant property
since there is a extra line wouldn’t get counted. We would
call this CNN type “unfilled.” Some operations in our NAS
search space are unfilled, so the naive symmetric processing
is partially symmetry injecting in strict. To overcome this
problem, we would carefully modify CNN’s hyper config and
result in a completely different search space. For example, the
(k =3,5=2,p=1)CNN layer would be replaced by (k =
2,5 = 2,p = 0) CNN layer for even size input. The cross
convoluting operation named factorized-reduce layer will
also be prohibited. It may alter our model’s learning ability
and result in the searched architect being harder to compare
with the previous results. By default, we would demonstrate
the performance after naive symmetric converting. We will
note if we are using the completely symmetric model.

IIl. PERFORMANCE EVALUATION TASK
To test the effectiveness of the NAS method, we apply
the method to two ML problems: the Maximum-peak-
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FIGURE 2. (a) One sample pattern from RDN class of metasurface. (b) MR task: The corresponding magnitude spectrum, | R|, for the pattern in (a).
(c) MPBC task: The histogram of location of maximum peak in the magnitude spectra, | R |, of RDN class of metasurface. The binary label represents
that the peak locates at the left or right side of the middle number (red line) .

binary classification (MPBC) task and the Magnitude Regres-
sion (MR) task.

MPBC task aims to predict whether the maximum peak in
a spectrum is located at a frequency larger than a threshold
frequency. If the maximum peak is at a frequency larger than
the threshold, the binary image is assigned a positive label;
otherwise, a negative label. We will focus on the RDN dataset
in this Section and set the threshold as fy = 8.31GHz, which
is the median peak frequency of the RDN dataset. It would
provide balanced positive and negative labels and avoid
unbalanced classification (see Fig.2c). The RDN dataset has
110,000 samples, 108,000 are used as training samples, and
the remaining 3000 are test samples. There are 55,364 posi-
tive labels and 52,636 negative labels in the training dataset,
and 1508 positive labels and 1492 negative labels in the
test dataset. The non-trained classifier produces a baseline
accuracy of around 1508/3000 = 50.27% according to the
roughly equal positive and negative classes in the training
dataset.The reason why we choose MPBC is because it will
provide the least level for distilling physics knowledge only
from images. In this benchmark, we can see the Resnet
model and other deep learning models may face overfitting
issues when the testing accuracy is poor. For more detail,
please refer the Supplementary Material. On the other hand,
most DARTS models can converge into a relatively higher
accuracy. Meanwhile, the classification task is validated by
accuracy rather than Mean Square Error (MSE) loss, where
the MSE is a soft metric. For example, when the MSE is
small, we are not able to evaluate properly the ‘“matching of
curves’’ via MSE. A MSE = 0.005 model may perform worse
of a MSE = 0.006 model when later only perform badly on
some large number. By contrast, the accuracy of classification
is a very solid metric that directly reflect the performance of
predictor.

MR task uses the same dataset in our previews work
[62] which pair the input random pattern images and
their corresponding EM responses as shown in Fig.2a and
Fig.2b. From the prior work, [62], we achieve a prelimi-
nary performance for the accurate forward prediction, and
we want to figure out whether the NAS model and extra
symmetry information would help to improve the forward
prediction.
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Following a similar methodology in [62], we perform a
cross comparison study to evaluate the generalization perfor-
mance of the new proposed model across different type of
patterns. For more details about the dataset, please see the
Supplementary Material.

IV. RESULTS
A. NAS
In this section, we benchmark the performance of the DARTS
framework to existing ML models using the MPBC task.
With the help of the NAS method, we can achieve success
on the MPBC task in contrast to failed results by using the
conventional machine learning and deep learning method.
Nevertheless, we can figure out some key features that a
model should have for the physics-embedding dataset.
Firstly, we apply traditional machine learning models such
as random forest classifier (RFC) and linear/log support
vector machine (SVM) classifier and off-the-shelf neural
network architectures, such as deep multi-layer percep-
tion (MLP), Resnetl8 (RS18), Resnet34 (RS34), ResSim-
ple(RSSM), and SqueezeNet (SQN1) to tackle the MPBC
task. ResSimple is a tiny model consisting of 3 layers of
Resnet block, which has a similar parameter number to the
DARTS model. To our surprise, the results are marginally
better than the non-train accuracy (50%). For example, the
RFC and SVM achieve 53%, and 56%, respectively. None of
them can identify the location of the maximum peak. While
deep learning architectures are well known to perform excel-
lent with CV-related tasks, to our surprise, all these neural
network models do not score above 60% accuracy, as shown
in Fig.3. Note in our prior work [62], a modified version of
Resnet18 was reported to achieve excellent performance in
a related regression problem formulated to predict the EM
response of the RDN class in the SUTD-PRCM dataset. With
the initial findings from [62], we speculate that the architec-
ture of the existing neural network used for the SUTD-PRCM
dataset might not be optimal yet. To exclude the influence of
the size and data normalization, we also test the same combi-
nation of ML/DL models on a scaled binarized handwritten
digits (MNIST) dataset with the same characteristics of the
image as the SUTD-PCRM dataset (binary colored 16 x
16 image). It shows that those ML models can perform very
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FIGURE 3. Every scattering point is representing one trial with different hyper parameters. Different colors represent
different machine learning models. Each model is trained to convergence. The models (on the left with lower accuracy) are
the traditional machine learning models listed from top to bottom: RS18 (Resnet18s), RS34 (Resnet34S), SQN1
(SqueezeNet1S), SVM (support vector machine),MLP(Multilayer perceptron),RSSM(ResSimple), RFC (random forest
classification machine). The one on the right with much higher accuracy is the best NAS based model (DARTS), which

represents the state-of-the-art performance in MPBC task.

TABLE 1. The accuracy of selected ML models on MNIST and MPBC dataset. The red accuracy is the best test accuracy during training; its corresponding
training accuracy at that epoch is shown in blue. It means that post-training after that epoch is overfitting, and we will take an early stop.

SVM RFC MLP | SQN1 | RSSM | RS18 | RS34 | DARTS
MNIST | .91/.91 | .96/.99 | .96/.97 | .95/.95 | .87/.88 | .96/.95 | .98/.98 | .97/.97
MPBC | .56/.56 | .53/.770 | .56/.56 | .57/.57 | .66/.70 | .61/.67 | .60/.64 | .75/.81

well: SVM (91%),RFC (96%),MLP(96%),ResSimple(87%)
and SqueezeNet1S (95%), Resnet18S (96%), DARTS (97%),
and Resnet34S (98%) as shown in Table 1. Notice, we did
not try for finetuning the model’s performance on MNIST.
So, the affinity between dataset and model is the only reason
to explain the failures of traditional models. The optimal
architecture searched out by the DARTS framework is able to
achieve accuracy over 75% as shown in the last row in Fig.3,
which surpasses all the ML models.

The failure of those traditional classification methods is
due to the significant differences between the random meta-
surfaces (RDN) patterns and the MNIST. For example, each
image of MNIST is a centralized and continuous image, and
each digit (0-9) can smoothly deform to each other. This
property restricts the possible patterns to a small subset of a
16 x 16 binary image domain. On the other hand, the pattern
in RDN can be any random binary 16 x 16 image. Apparently,
the complexity of the MPBC problem studied here in our
dataset is higher than that of the MNIST digit recognition
and thus explains the less accuracy as summarized in Table.1.
Notice that if we use an MNIST-like dataset like the PLG
dataset of SUTD-PRCM, the deep learning-based model can
also do excellent classification as well as DARTS model.
A new table is now added in the Supplementary Material.
This result implies that the DCNN model is not suitable
for dealing with the complex metasurface dataset. Thus it
requires new architects and new fundamental components to
help AI understand latent physics.

Furthermore, the optimal network architecture suggested
by NAS-DARTS converges into a relatively simple struc-
ture shown in Fig.4a and Fig.4b which requires only
233, 682 parameters. It is only about 1/5 and 1/10 of the
requirements from Resnet18S and Resnet34S, respectively.
On the other hand, the operation numbers of DARTS, like the
number of adding and producing, are much larger than others.
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TABLE 2. The comparison between different neural architectures and
NAS based neural architecture. The parameters are referring to the total
free parameters in all operations. For example, convolution with kernel
size (C,, Cy, w, h) is one operation with w x h x C; x C, parameters.

Model No. Operations | No. Parameters
ResSimple 62 242434
SqueezeNet1S 51 742306
MLP 30 5659074
Resnet18S 62 11174338
Resnet34S 110 21282498
DARTS 194 232034

Table 2 shows the number of parameters and operations of
different models used in the SUTD-PRCM (RDN Class)
dataset.

Intuitively, more parameters accompanying a bigger model
will provide a better capability to capture the inherent
relationship between inputs and outputs. Surprisingly, the
NAS-DARTS approach suggests an alternative shallow and
smaller architecture will perform better than the other models.
ResSimple is a tiny model consisting of 3 layers of Resnet
block, which has a similar parameter number to the DARTS
model.. Such a phenomenon highlights the importance of
suitable neural network architecture. Designing a suitable
meta-operation may be more effective than building a large
and deep neural network architecture. The detailed struc-
ture of our NAS-based DL model (see Fig.4) has shown
that convolution stacking is not the dominant element of
the architecture anymore. It preferred low-level features over
deep hierarchical high-level features, which is common for
traditional CNN. Thus, CNN-based models like Resnet and
SqueezeNet are not performing well in the RDN-SUTD-
PRCM dataset. By investigating different search results for
the different performances, we can conclude that a wide net-
work with a fruitful operation combination is more suitable
for a deep network with simple stacked operations. More
searched out structures can be found in the Supplementary.
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FIGURE 4. The final truncated architecture produced by NAS. (a) is the normal branch. (b) is the reduce branch. Only the first and the second important
path are kept for each node.

The successful implementation of the MPBC task gives
us confidence that the NAS method is a valid technology
for investigating the influence of architecture on the machine
learning of our random complex metasurfaces dataset. One
concern is that the performance of DARTS cannot reach
the same level of accuracy demanded by the traditional
dataset like MNIST. One possible reason is the fundamen-
tal operation used in our NAS presented above is still
based on the traditional CNN network, which may not fully
fit the inductive bias of the Metasurface dataset. We then
would investigate the influence of fundamental operation by
changing the search space to improve the search strategy
of DARTS.

B. EFFECT OF SYMMETRY

To reduce the reliance on large data and improve the interpret
ability of ML models, there is growing research that effort
to incorporate prior knowledge into training. The symmetry,
which is a recurring theme in understanding a physics-based
problem, is of our interest to enforce physical consistency
in DL models. After performing an exploratory study on the
SUTD-PRCM dataset, we identified a few symmetry groups,
P12, and Z,, that are associated with the cross-polarized
(y—) and co-polarized (x—) reflection magnitude spectrum,
|R| and | T, respectively.

We test the effectiveness of symmetry by using the MPBC
problem mentioned above which theoretically holds the Z2
symmetry since it bases on the |7| branch. The DARTS
model in the previous section is, hereinafter, referred to
as DartsB (without symmetry information). The convolu-
tional layers in DartsB are replaced by their P42, and
Z, symmetric version with the resulting models denoted as
DartsB_P4Z72 and DartsB_Z2, respectively. Next, we will
search a new architecture with the symmetric DARTS search
space to see whether it can reach a structure better than
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Darts_Z2. We name this architecture DartsB_Z2R. Notice,
the symmetry information in above structure is not neces-
sarily be retained throughout all the layers. Notice, sym-
metry information in above structure is not necessarily be
retained throughout all the layers.Firstly, there are con-
ventional convolutional layers in the pre-processing steps
as shown in Fig.4. These layers do not preserve symme-
try. Secondly, it is impossible to preserve symmetry under
some kernel configurations. Under these settings, only par-
tial symmetry is enforced. The network will be biased
towards preserving symmetry but not fully compliant. Fur-
thermore, we create a fully symmetry compliant version
that allows only kernel configuration capable of preserving
symmetry as shown in Section.II-C, denoted as DartsB_Z2P.
For comparison, Resnetl8S is adapted to a fully sym-
metric version denoted as SymResnet. All the models are
initialized randomly and trained to convergence. The per-
formances are summarized in Table 3. By simply replac-
ing the operation with the symmetric version, we observe
0.87% improvement from DartsB_NORMAL to DartsB_Z2.
Replacing the operation with an inappropriate symmetry
version will degrade the performance as demonstrated from
DartsB_NORMAL to DartsB_P4Z2 (a drop of 7.2%). Sur-
prisingly, the DartsB_Z2R architecture searched from a
sketch will perform poorer than the modified model. It is
because of the inconsistent symmetry information in pass-
ing its influence during the searching processing, which
will cause a structure deeper than the DartsB_NORMAL.
However, the MPBC gains more benefits from a wide and
shallow network. Thus, the partial symmetry injection may
make the searching and training unpredictable. On the other
hand, if full symmetry is preserved, a 1.77% improvement is
observed from DartsB_ NORMAL to DartsB_Z2P. For com-
parison, SymResnet gains 8% accuracy after conversion from
Resnet18S to the full symmetric version.
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TABLE 3. The accuracy of best performing DARTS binary classifier (DartsB) with different symmetry configuration tested on MPBC problem. The
DartsB_Z2 and DartsB_P4Z2 are the symmetric version of the DartsB model (DartsB_NORMAL) - without prior knowledge of symmetry. The DartsB_Z2R is
the new architecture searched out from the Z2 symmetry operation space directly. The DartsB_Z2P is the new architecture searched out not only from the
72 symmetry operation space but also modified all the operations carefully that make the whole model symmetry equivalent. The SymResnet is the
symmetry equivalent version of Resnet structure.The accuracy is tested on the same MPBC dataset, which contains the Z, symmetry. The results suggests
that directly adding proper symmetry would slightly improve the performance of the MPBC task. The DartsB_Z2P shows the symmetric searched model
would perform about 2% better than the non-symmetry model. The DartsB_Z2R and DartsB_Z2 results show the comparison between the influence of

architecture and operation.

dataset/model  DartsB_Z2  DartsB_P472

DartsB_NORMAL

DartsB_Z2R  DartsB_Z2P  SymResnet

MPBC(Z5) 75.97% 67.90%

75.10%

73.14% 76.87% 70.01%

To study the impact of injecting symmetry on the spec-
trum prediction problem, we look into the co-polarized
and cross-polarized magnitude spectrum |7| and |R| in
the SUTD-PRCM dataset. Symmetry group P42, and
Z, are identified for |R| and |7, respectively. For each
set of data corresponding to different polarization, the
NAS-GAEA-DARTS method (see Sec.IV-A) will search
for the best-performing architecture within DARTS_Z2,
DARTS_P4Z2, and DARTS_NORMAL search space.
DARTS_NORMAL search space does not have symmetric
operations. DARTS_Z2 contains operation with Z€ sym-
metry, which is the most suitable symmetry for |77| but not
the most ideal for |R|. DARTS_P4Z2 includes the operation
with P42, symmetry, which is the most suitable symmetry
for |R| but not appropriate for |7|. The DARTS_NORMAL
search space consists of 7 block candidates, including 1 zero
operation block, 2 pooling blocks, and 4 convolutional blocks
as shown in Fig.1. The DARTS_P4Z2 and DARTS_Z2 search
space will convert 4 CNN blocks into corresponding sym-
metry versions. Although the symmetry group Z; is subsets
‘P42, there is no subset relationship between the two search
spaces, DARTS_Z2 and DARTS_P4Z2, since an average is
involved as illustrated in Eq. (1).

Table 4 summarizes the best performing model resulting
from each search space of different symmetric properties,
Z5, P42, and without-symmetry. The scores under the same
column are the performances of the best architecture obtained
from the NAS method searching in the same search space
but with different datasets. The scores in the same rows are
the performance of the best performing model resulting from
the NAS method searching in different search spaces for the
same dataset. For example, the performance of DARTS_Z2
on |7 is obtain from two step: Firstly, we apply DARTS_Z2
model(whose search space are symmetric modules) on the
RDN-|7| dataset and search out the best architecture; Sec-
ondly, we train this architecture on RDN-|7| dataset and
produce the score in Table 4 It is evident that injecting appro-
priate symmetry has led to better performance (lower error
shown in the table) as observed from DARTS_NORMAL
to DARTS_Z2 for |7] and from DARTS_NORMAL to
DARTS_P4Z2 for |R|. On the hand, injecting inappropriate
symmetry may degrade the performance. Note if the model
gets the wrong symmetry information, it must overcome
the inconsistency, which will produce poorer performance.
Note the Z2 symmetry contain the P4Z2 symmetry which
means that if a system has P4Z2 symmetry it much have Z2
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symmetry; By contrast, if the system has only Z2 symmetry,
it may not have P4Z2 symmetry. Thus the Z_2 model can
still performance well on P4Z2 dataset. Overall, injecting
appropriate symmetry into an existing model is beneficial.
If fully symmetric architecture is searched from scratch, fur-
ther improvements can be achieved.

C. GENERALIZATION VERSUS PERFORMANCE

In our previous work [62], we find the RDN108000 model
can perform well on its RDN dataset but lose its gener-
alization on its subset dataset: PLG and PTN. In Table.5,
we can see that the models searched by DARTS under proper
symmetry can achieve better performance than the Deep
Neural Network as well as the test score on PLG and PTN.
This comparison directly shows that the symmetry NAS
model holds more generalization than the DNN model. If the
DARTS_NORMAL model is searched under unsymmetric
candidate spacing, we find that its performance score can
also reach a good value close to the DCNN model. However,
the smaller scores on PLG and PTN patterns suggested it
has better generalization than DCNN. Symmetric realization
of RDN108000 is impossible because most CNN operations
are unfilled, and the tail-layer of RDN108000 will flatten
the feature map, which destroys the symmetry passing. Par-
tially symmetric converting would make the model hard to
train. From our results, only the pure symmetric version of
RDN108000, which replaces all CNN kernels to a filled hyper
configuration and applies an all-in-one pooling layer at the
tail, can achieve successful training. We note this model as
Z2_RDN. However, such a model is quite different from the
original model proposed [62]. Our findings also show that
the RDN108000 and Z2_RDN can achieve similar perfor-
mance but take less generalization than the DARTS model.
The DARTS_Z2 model so far is the best architecture and
model for our regression task. It shows better performance
in both the native score (in RDN) and cross scores (in PLG
and PTN). We notice that the DARTS searched architecture
on regression usually has more trainable operation than the
architecture search from MBPC to enhance the ability to
parse curve information. Thus it can gain benefit from partial
symmetry injecting. We also searched for the DARTS model
named DARTS_Z2P from a pure symmetric search space
and modified its pre-processing branch following the same
spirit as DartsB_Z2P. The pure-symmetric requirement will
change some CNN kernels and remove some operations as
introduced in Sec.II-C. Such modification will decrease the
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FIGURE 5. 16 randomly selected prediction results (reflection coefficient as a function of frequency) from test dataset. Differing from Resnet18S [62],
there is no mode collapse issue in the DARTS model. The overall shapes of the spectra are captured with location of dips correctly identified.

TABLE 4. The best performance that DARTS_Z2, DARTS_P4Z2 and
DARTS_NORMAL can achieve for each dataset. Notice the models in same
colume, for example DARTS_Z2 for | 77| and |R| are totally different
architecture but only with same architecture search spacing. The result
shows with property symmetry adding, the performance can indeed get
improvement. Lower score is better performance.

Dataset/Model  DARTS_Z2  DARTS_P4Z2  DARTS_NORMAL
[T1(Z2) 0.00322 0.00522 0.00521
[R[(P1Z2) 0.00549 0.00498 0.00736

ability of the DARTS model, resulting in a slightly worse
performance than the DARTS_Z2. However, it still performs
better than the Sequential model RDN1080000, as shown in
Table 5. In Table.5, one can find that RDN10800 outper-
forms the DARTS_NORMAL on the RDN dataset, which is
quite surprising since the DARTS architecture is supposed
to be suitable for the task. From the view of minimizing
loss, the DARTS_NORMAL does perform poorer than the
RDN108000. We speculate there are several reasons. Unlike
the MPBC task, now the model can receive more information
for the curve side. Some parts of the artificial architecture
models may naturally be good at dealing with the curve
information. This explains why the Resnet model can train
well on the Regression task but fail in the classification task—
for example, the tail layer. In RDN108000, it is a dual-layer
Linear block but only has one plain Linear operation at the
end of DARTS. Those settings in DARTS are fixed and do
not join the architecture optimization, which may limit the
ability of NAS. We believe a better score is possible if we
use the pre-trained DARTS model and vary the tail layer
structure. Such a problem will be studied in the future. More-
over, the MSE score is a soft metric. A small difference in
such a low score may not well reflect the difference between
“performance of curve matching”’. Our previous study shows
that the RDN108000 has become an extremely statistical
performance fitting. Thus, it loses part of the ability to be
aware of the fruitful peak-curve behavior among datasets (the
physical findings we want to achieve eventually). This can be
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proven by looking at its cross score, where the Z2_RDN and
DARTS_NORMAL perform better than RDN 108000, while
their native score is worse than RDN108000. For a normal
model, if it eventually acts as a fitting machine, we think
it has a tradeoff behavior between better generalization and
accuracy since the statistic behaviors between RDN, PLG,
and PTN are totally different: a better accuracy means better
statistic fitting on the native dataset and worse performance
on other datasets. Under this scenario, our goal is to find
a way to help the model to escape from the statistic-fitting
trap and to handle both accuracy and generalization. The
first step is using the Symmetry information as shown in
the DARTS_Z2 model, which will improve both naive and
cross scores. However, the bad cross score suggests that more
improvements are required in the future studies. These results
prove the feasibility of NAS method studied in this paper.

In Fig.5, we show 16 predicted results that are randomly
selected from the test dataset. Notice we train on the fully
random complex dataset and completely isolate the train-
ing set and test dataset. Thus it is quite difficult to realize
perfect prediction like DL model on transitional task. The
improvements we made in this paper, like using the NAS
approach and symmetry information, have greatly improved
our prior works [62]. Our improved model can now cor-
rectly predict the peak resonance location with a small error
between the predicted values and the target ones. Although
the model will sometimes make “less estimation’ for the
peak value, it can accurately predict the trend of the curve
and the location of peaks which is excellent in the complex
metasurface regression task so far. There is still room for
improvement in our NAS framework, like we still register the
CNN block as the main equivariant layer. The RDN dataset
of SUTDPRCM shows much “weaker” transition symmetry
than our PLG dataset or other traditional computer vision
tasks (see Appendix.A and Supplementary Materials). Thus
we may design other equivariant operations in future works
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TABLE 5. The comparison of generalization performance using mean square error. RDN108000, PLG27000 and PTN27000 are the best performing
Resnet18S models obtained previously [62]. The DARTS_Z2 and DARTS_NORMAL model are consistent with Table 4. The Z2_RDN model is the fully
symmetric version of Resnet18S. However, its kernel configuration is adapted to preserve full symmetry as discussed in Sec.ll-C. The models are tested on
SUTD-PRCM dataset for co-polarized (x— reflection) reflection of PLG, PTN, and RDN classes of metasurfaces.

dataset DARTS_Z2  DARTS_Z2P RDNI108000 Z2_RDN  DARTS_NORMAL PLG27000 PTN27000
PLG [T 0.010433 0.012654 0.014787 0.012210 0.011804 0.000408 0.016790
PTN [T 0.011838 0.010720 0.013552 0.012102 0.010357 0.007517 0.004382
RDN [T 0.003216 0.003891 0.004209 0.004522 0.004713 0.017448 0.012390

to solve this “weak’ transition and connect symmetry of the
SUTD-PCRM dataset to achieve better performance.

V. CONCLUSION

In this paper, we use the Differentiable Architecture
Search (DARTS) based Neural Architecture Search (NAS)
method to achieve better performance than our prior
paper [62]. We show the advantages over the conventional
ML methods such as SVM and Resnet for the dataset that is a
physics-based problem such as our complex random meta-
surfaces (SUTD-PRCM dataset). The NAS-DARTS results
could achieve high accuracy on the Maximum-peak-binary
classification (MPBC) task reported above, while the conven-
tional deep learning models fail to predict. Apart from pro-
viding a straightforward method to investigate the influence
of the model’s architecture, it can also help us to understand
the fundamental operation’s effect. We show this advantage
by introducing proper symmetry into the search space. The
NAS-DARTS framework would provide a better architecture
that performs better than our previews work [62]. From the
results searched by NAS-DARTS, we find the SUTD-PRCM
dataset prefers shallow and wide neural networks, which is
a surprizing finding as compared to the normal experience
in computer vision. To realize a feasible and general Deep
learning model for the complex metasurface problem, it is
essential to implement proper fundamental operations with
the correct symmetry information from the dataset. With the
modern approach of inverse design, which often features a
fast surrogate model in terms of DNN, this finding has a
profound impact on the Al design applications of complex
metasurfaces.

In future work, one can probably improve by fine-tuning
the NAS method, which is beyond the scope of this paper.
In particular, making a tradeoff for search space of neural
architecture can be tedious and frustrating. The inverse design
framework for the complex metasurface problem was intro-
duced in our previous work [62], so it is also an interest-
ing question on how to use the NAS method or symmetry
effect in such an inverse design problem. Through performing
exploratory analysis with this physics-based SUTD-PRCM
dataset, we also hope to alleviate some of the difficulties,
and this will be investigated in our future works, including
in using complex number-based DL models. It is clear that
the CNN block is not the best choice to match the inductive
bias of this physics based dataset (SUTD-PCRM). We may
also design other equivariant operation that fits the “weak”
transition and connect symmetry condition (see Appendix).
By posting the details of our dataset in the Supplementary
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and public domain, we welcome the Al community to use
our physics-based dataset (SUTD-PCRM) to find the most
suitable DL model.

APPENDIX A SYMMETRY OF DATASET

The SUTD polarized reflection of complex metasurfaces
(SUTD-PRCM) dataset has global transitional symmetry,
local transitional symmetry and connecting symmetry as
shown in Fig.6. Firstly, the 1stimage /1 and 2nd image /5 hold
the same pattern - a binary dog - at different corners in the
16 x 16 design panel. Figure 7 shows |R1| and |R|, which
are their corresponding EM- response simulated curve. These
two curves (blue and green) are overlapping as the same under
the machine precision limitation, which means the dataset
holds the global transition symmetry, which implies that by
moving the whole pattern in any direction, and any distance,
the response curve will not be affected. Such property is
similar to the traditional computer vision classification task -
no matter where the dog is, the label is always set 1. A quick
explanation is that we use the periodic boundary condition
in simulation, so the symmetry spontaneously hold global
transition property.

In Fig.6, the 3rd image /3 and 4th image I4 break this
symmetry by adding fixed pixels at three corners. In such
a case, translation invariance would not conserve anymore.
However, their response curves |R3| and |R4| (in Fig.7) show
that a transition operation in the pattern side only induces a
negligible influence. It implies that the deformation stability
could hold under transition symmetry. From the geometric
view points [79], the dataset holds the “approximate” local
transition symmetry, which is noted as 7 -equivariant. Such
a property implies a good affinity between convolutional
operation and the dataset.

If we continuously move the ‘dog’ pattern from the
right-down corner to the left-down corner (5th image Is) and
check the variation in the response side. We find those vari-
ations would remain very small until this ‘dog’ encounters
another metasurface unit. In Fig.7, it shows that the response
|R 5| becomes extremely large and induces a metasurface res-
onance peak at a certain frequency. A possible physics expla-
nation is that the induced current suddenly changes when two
isolated blocks meet, so the EM response appears to be a
phase transition. This scenario shows that the SUTD-PRCM
dataset (a physics based dataset) differs from the traditional
Computer Vision (CV) task, which is usually interpreted as
a divisible pattern segment [93]. In this scenario, the pattern
in I5s should not be regarded as ‘dog at the corner’; Instead,
it should be viewed as a new image that integrates two blocks.
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FIGURE 6. Five dog patterns demonstrate the “transition symmetry” in the SUTD-PRCM dataset. Patterns
1 and 2 reveal the global transition symmetry. Patterns 3,4 and 5 have three extra corner patches which
break the global transition symmetry but hold'weak’ 7-equivariant. Pattern 5 reveals the
contact/connect property of the SUTD-PRCM dataset which does not hold overlapping invariant.
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FIGURE 7. The target Response for Fig.6. The Response |R ;| to |R,4| is very close to each other which proves
the 7 -equivariant property of the dataset. The Response | R 5| has a sharp peak induced by the encounter of
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FIGURE 8. The global rotation reflection symmetry test. The 1st row is 1 random pattern and its 7 symmetry partners. From left to right, they are identity,
horizontal flip, 180 degree rotation, vertical flip, 90 degree rotation, flip along the lower-left upper right diagonal, 270 degree rotation and flip along the
lower-right upper left diagonal. We use an asymmetry ladder to clearly view the direction situation for each pattern at the left-upper corner. The ladder is
not a part of pattern. The colour varying from blue to green represents the frequency varying from 2 to 12 GHz. The 2th row shows the magnitude value of

two branch |R| and | 77|. It shows the indensity of cross-polarized reflection shows complete rotation reflection P, Z, symmetry and indensity of

co-polarized reflection only has =Z, symmetry.

In comparison, for most CV tasks, the active responses
(label or segment) are required to distinguish from the over-
lapping object. In our metasurface dataset, latent physics
is not divisible by pattern, so the Deep learning model is
required to handle these type of scenario. On the other
hand, the metasurface fabrication industry may focus more
on those resonance peaks induced by the irregular block
combination. Thus, generating these kind of examples, which
break the local transition symmetry will be important for
the inverse design using Al deep learning. We may call this
property in the SUTD-PRCM dataset “‘connect character or
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connect symmetry”’. Since it only breaks the 7 -equivariant
when overlapping, we will name such symmetry as ‘weak’
T -equivariant.

The SUTD-PRCM dataset has global rotation P4 symme-
try and reflection Z; symmetry as shown in Fig.8. More spe-
cific, different branches in SUTD-PRCM dataset has different
rotation/reflection
symmetry:

o The co-polarized reflection | 7| has flip symmetry Z,.

o The cross-polarized reflection |R| has full rotation and

flip symmetry Ps + 2».
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FIGURE 9. The local rotation reflection symmetry test on ‘dog’ image. The 1st row is 1 dog pattern and its 7 symmetry partners. The ‘A3’ suffix indicate

there are 3 corner pixels to break the global transition symmetry.
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FIGURE 10. The norm of co-polarized reflection from 2 to 12 GHz for 8 different local rotation reflection objects. They will be clearly divided
into two classes by a Ry0 difference, which implies the Z, symmetry of co-polarized reflection. The high frequency curve will get slight
variation. This variation is much smaller than the difference caused by structure difference, and it followed the deformation stability

condition, so the dataset holds the local Z,-equivariant.
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FIGURE 11. The norm of cross-polarized reflection from 2GHz to 12GHz for 8 different local rotation reflection objects. They are almostly
same at low frequency and get slight diff at high frequency region. This shows consistent P, Z, symmetry of global cross-polarized
reflection. The difference is much smaller than the difference caused by structure and it follows the deformation stability condition, so the

dataset holds the local P,-equivariant + =,-equivariant.

« The totally reflection P = /|7|? + |R|? only has flip
symmetry 2.

Fig.8 shows the full behavior of a fully random metasur-
face under global rotation-reflection(P4 Z,) symmetry. The
first row gives the view of a random pattern and its seven
symmetry partners under P4 2> symmetry. At the left-upper
corner, there is an anisotropy ladder to point out the rota-
tion and reflection direction. It is not part of the pattern.
It shows the intensity of cross-polarized reflection shows
complete rotation reflection P4 Z, symmetry and intensity of
co-polarized reflection only has Z, symmetry.

The local rotation and reflection symmetry will be shown
via the ‘dog’ image too. In Fig.9, we show all the ‘dog’
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images under P42, symmetry. Notice there is no exact centre
of the ‘dog’, so we apply the symmetry operation on the
10 x 10 block at the lower-right corner. There are only slight
differences between the eight symmetry curves. Fig.10 and
Fig.11 show the norm values (|7 | and |R|) of the 8 curves.
The Fig.10 shows the local Z, symmetry of the co-polarized
reflection. The eight curves are divided into two groups (see
the sub figure), and each group holds only small variation
within. Compared with the inter-groups gap and intra-groups
variation, we know the variation caused by the symmetry is
much smaller than the difference due to the structure. Thus
for local rotation symmetry and reflection, it is better to
consider P42 or Z; symmetry under deformation stability
conditions.
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APPENDIX B DATA AVAILABILITY STATEMENT
The data that support the findings of this study are openly
available at the following URL/DOI:

« https://github.com/veya2ztn/SUTD_PRCM_dataset
« https://github.com/veya2ztn/MetaSurface
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