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ABSTRACT We introduce a novel framework for continuous facial motion deblurring that restores the
continuous sharp moment latent in a single motion-blurred face image via a moment control factor. Although
a motion-blurred image is the accumulated signal of continuous sharp moments during the exposure time,
most existing single image deblurring approaches aim to restore a fixed number of frames using multiple
networks and training stages. To address this problem, we propose a continuous facial motion deblurring
network based on GAN (CFMD-GAN), which is a novel framework for restoring the continuous moment
latent in a single motion-blurred face image with a single network and a single training stage. To stabilize
the network training, we train the generator to restore continuous moments in the order determined by our
facial motion-based reordering process (FMR) utilizing domain-specific knowledge of the face. Moreover,
we propose an auxiliary regressor that helps our generator produce more accurate images by estimating
continuous sharp moments. Furthermore, we introduce a control-adaptive (ContAda) block that performs
spatially deformable convolution and channel-wise attention as a function of the control factor. Extensive
experiments on the 300VW datasets demonstrate that the proposed framework generates a various number of
continuous output frames by varying the moment control factor. Compared with the recent single-to-single
image deblurring networks trainedwith the same 300VW training set, the proposedmethod show the superior
performance in restoring the central sharp frame in terms of perceptual metrics, including LPIPS, FID and
Arcface identity distance. The proposed method outperforms the existing single-to-video deblurring method
for both qualitative and quantitative comparisons. In our experiments on the 300VW test set, the proposed
framework reached 33.14 dB and 0.93 for recovery of 7 sharp frames in PSNR and SSIM, respectively.

INDEX TERMS Continuous facial motion deblurring, AC-GAN, control-adaptive block.

I. INTRODUCTION
Facial motion deblurring for a single image is a specific but
critical branches of image deblurring, aimed at restoring a
sharp image latent in a motion-blurred face image. Besides
being visually unpleasant, blurry face images also degrade
the performance of many facial-related computer vision
tasks such as face detection [6]–[8], face recognition [9],
[10], facial emotion recognition [11], [12], and face medical
image segmentation [13]. Therefore, face deblurring studies
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in computer vision and image processing have received much
attention.

Recently, deep neural networks (DNNs) have become
widespread in image restoration fields [14]–[17]. Among
them, it has been achieved remarkable success in single image
face deblurring [18]–[24]. Most of these methods recover
only a single sharp image from amotion-blurred facial image.
However, motion-blurred images are the integration of con-
tinuous sharp moments during the exposure time [16], [25].
Thus, recovering such aggregated sharp moments from the
blurred image can be considered the ideal goal of single
image deblurring.
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FIGURE 1. Comparison of single-to-video deblurring network architectures. The proposed method can restore continuous sharp motion of the face with a
single network. (a) Jin et al. [1], (b) Purohit et al. [2], (c) Argaw et al. [3], (d) Zhang et al. [4], and (e) proposed CFMD.

Several methods [1]–[4] have been proposed to restore
sharp sequences from a blurry image. However, most of these
methods have several drawbacks. First, the temporal ordering
problem is extremely challenging, because it is difficult to
uniquely define the temporal order of the motion of an object
in a blurry image [1]–[3]. For this reason, most existing
methods fail to extract the accurate temporal order. This tem-
poral ambiguity of the underlying motion in blurry images
remains unsolved issue [3]. Second, as shown in Fig. 1, most
existing models aim to only restore fixed frames, owing to
architectural design or training strategies. Jin et al. [1] pro-
posed a cascaded architecture consisting of four deblurring
networks. As depicted in Fig. 1a, each network is assigned
to restore neighboring frames using the outputs from the
previous networks. Thus, this method requires a large number
of networks according to the number of output frames to

be extracted. Purohit et al. [2] proposed the using a recur-
rent neural network (RNN) so that they can handle various
numbers of frames without architectural changes (Fig. 1b).
They first extracted the middle frame using a pre-trained
deblurring network and extracted nine frames using an RNN.
However, their model is fixed to restore the entire sequence
with nine frames, which is the predefined number of iterations
of the RNN in the training phase. Argaw et al. [3] proposed
a single encoder-multiple decoder architecture trained in a
single training step. However, as shown in Fig. 1c, this archi-
tecture requires as many decoders as output frames. Recently,
Zhang et al. [4] have shown promising results by restoring
42 frames from a blurry image. They trained three generative
adversarial networks (GANs) by repeating the reblurring and
deblurring processes (Fig. 1d). However, they restore a fixed
number of frames and require multiple training steps.
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FIGURE 2. Exemplar deblurring results. ‘‘GT’’ denotes the ground-truth sharp frames in 300VW dataset [5]. ‘‘# Fr’’ in parentheses denotes the
number of frames. The results in (e) and (f) denote the outputs of the same network. By adjusting the control factor value, our single network can
restore any number of sharp movements from a given blurry face image. This figure contains videos that are best viewed using Adobe Reader.

To address the problems described above, as shown in
Fig. 1e, we propose a facial motion-based reordering (FMR)
process and a continuous facial motion deblurring network
based on GAN (CFMD-GAN), a novel framework for restor-
ing continuous moment latent in a single motion-blurred face
image with a single training stage.

To alleviate the difficulty of resolving temporal ambiguity,
we estimate the reordered frames instead of estimating the
frames in the original temporal order. To this end, we apply
a facial motion-based reordering (FMR) process, which
reorders frames in the dataset based on the position of the
left eye in the face (e.g. from top-left to right-bottom posi-
tion) [26]. This reordering process helps the network stabilize
training.

On the other hand, we introduce CFMD-GAN that restores
sharp moments by varying the continuous moment con-
trol factor to estimate frames under continuous scenario.
This approach is primarily inspired by conditional GANs
(cGANs) [27]–[31], which are effective for training gener-
ators to synthesize diverse and realistic data conditioned on
interpretable information, such as class labels. In our case,

a single image deblurring network serves as the generator,
and the conditional information for sharp image generation
is the moment control factor. However, we have found that
there are two main challenges in effectively incorporating
cGANs into a single image deblurring framework.First, most
existing cGANs are primarily developed for image synthe-
sis conditioned on discrete labels (e.g. class labels) [32].
In contrast, we aim to restore the output images conditioned
on the continuous control factor. Unlike most cGANs [28],
[33]–[35] that use an auxiliary classifier for discrete class
labels, we propose an auxiliary regressor to estimate the
continuous control factor. It allows the proposed deblurring
network to learn the image deblurring as a function of the
continuous control factor. Second, an effective network mod-
ule is required to apply the control factor into the deblurring
network. Most existing single image deblurring approaches
directly learn image-to-image mapping functions without the
use of control factor. Recently, DNNs-based controllable
image restoration models [36]–[38] have been extensively
studied. Generally, these methods use a channel-wise atten-
tion module as a function of the control factor to resolve
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the Gaussian blurs and noise in static scenes. However,
spatially-variant blurs with dynamic scenes must be consid-
ered. To this end, we present a control-adaptive (ContAda)
block to effectively incorporate a control factor into recent
deblurring architectures. The proposed block learns the mod-
ulation weights using a spatially deformable convolution and
channel-wise attention as functions of the control factor.

Extensive experiments show that the proposed
CFMD-GAN restores continuous sharp moments latent in a
blurry face image using a single network and a single training
process. Fig. 2 exemplifies our results, and compares our
method with previous method [1].

The main contributions of this study are summarized as
follows.

• We introduce the FMR process to stabilize the network
training. It allows the network to utilize rich and accurate
information of the ground-truth frames corresponding to
the control factor during training.

• We propose a CFMD-GAN for continuous facial motion
deblurring that restores continuous sharp frames latent in
a single motion-blurred face image via a moment control
factor.

• We present a ContAda block to learn the feature modu-
lation weights of the deblurring network using spatially
deformable convolution and channel-wise attention as
functions of the control factor.

II. RELATED WORKS
In this section, we briefly review recent single image deblur-
ring methods and conditional GANs, which are closely
related to the present work.

A. SINGLE IMAGE DEBLURRING
Traditionally, the motion-blur process is formulated as the
accumulation of continuous sharp moments that occur dur-
ing exposure [16], [39]. By mimicking this, large-scale
deblurring datasets [16], [40]–[42] have been proposed by
synthesizing a blurry image by averaging consecutive sharp
frames. By leveraging such datasets, DNNs-based methods
have become widespread for single image deblurring. In the
following, we introduce existing DNNs-based single image
deblurring methods into three categories.

1) SINGE-TO-SINGLE, GENERAL DEBLURRING
Single-to-single image deblurring aims to restore a single
sharp image when a blurry image in a general scene is
given. Earlier studies [43]–[45] estimated the blur kernel
using DNNs and obtained the resulting image using deconvo-
lution methods. Chakrabarti et al. [43] proposed a network
that predicts the complex Fourier coefficients of a decon-
volution filter and applies the predicted deconvolution filter
to the input patch. Sun et al. [44] proposed a deep learn-
ing approach that estimates motion blur kernels from local
patches using aMarkov randomfieldmodel. Gong et al. [45]
developed a DNN to predict the motion flow from blurred

images, whichwas used to recover deblurred images.Without
estimating the deconvolution kernel, Nah et al. [16] utilized
a coarse-to-fine network to directly restore a sharp image
using their synthesized large-scale dynamic scene blur
dataset. Following the success of [16], variants of coarse-to-
fine networks have been proposed, such as multi-recurrent
networks [46], [47], multi-patch networks [48] and effi-
cient multi-scale networks [49]. Concretely, Tao et al. [46]
designed a scale-recurrent network that shares network
parameters across scales. Zhang et al. [48] cascaded a
multi-patch network to restore sharp images based on dif-
ferent patches. In addition, Cho et al. [49] reduced computa-
tional costs by utilizing a U-Net [50]-based architecture that
exploits multi-scale features extracted from an input image
and outputs.

2) SINGE-TO-SINGLE, FACE DEBLURRING
Face deblurring is a domain-specific task of single image
deblurring that aims to obtain a sharp face from a blurry
face image. Most existing methods have been studied in
a manner that utilizes strong prior knowledge of the face,
such as reference faces [51], [52], face landmark [19],
[20], face sketches [53], multi-task embedding [21], 3D
face models [54], facial parsing maps [18], [22], [23] and
deep feature priors [24]. Specifically, Shen et al. [18] pro-
posed to estimate the facial parsing map from the blurry
face and then utilize it for restoring the sharp image.
To avoid side effects caused by incorrect parsing maps,
Yasarla et al. [22] utilized an uncertainty-basedmulti-stream
architecture. Lee et al. [23] proposed restoring the face pro-
gressively from large components, such as skin, to small
components, such as the eyes and nose. More recently,
Jung et al. [24] utilized the rich information of feature maps
extracted from a pre-trained deep neural network on the face.

However, all single-to-single deblurring methods, includ-
ing the general and facial image domains, focus on restoring
only one of the many moments accumulated in the blurred
image. Unlike these methods, the proposed method restores
various numbers of moments from a blurred image.

3) SINGE-TO-VIDEO, GENERAL DEBLURRING
Instead of restoring a single output image, single-to-video
deblurring is to predict multiple sharp frames from a sin-
gle blurred image. In the pioneering work of Jin et al. [1],
a sequentially cascaded architecture consisting of multiple
networks trained with the corresponding number of training
steps was utilized. In their method, each network is assigned
to predict pre-specified frames among all sharp frames. Thus,
this method requires changing the number of networks based
on the desired number of output frames and training them
from scratch. Purohit et al. [2] proposed a recurrent neural
networks (RNNs)-based method trained with two stages.
In the first stage, they trained a video autoencoder to learn the
motion and frame generation from sharp frames. It addresses
the problem of the number of network scales with respect to
the number of output frames. However, they still have to be
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trained anew each time the number of output frames changes.
The method proposed by Zhang et al. [4] was one of the first
attempts to restore continuous frames. Their method extracts
a total of 42 sharp frames from a blurry image by cascading
three GANs trained in three stages. However, this approach
is limited to restoring a fixed number of frames. Instead of
training the entire model in multiple stages, Argaw et al. [3]
proposed a single framework that can be trained in an end-
to-end manner. They proposed a feature transformer network
consisting of a single encoder and multiple decoders, where
each decoder was specified to output a specific frame. Thus,
this method still requires changing the number of decoders
when the number of output frames changes.

In short, existing studies are inherently limited in restoring
only a fixed number of frames, owing to their rigorous archi-
tectural design or training strategies. In contrast, the proposed
method differs in that 1) it restores continuous sharp frames
beyond a fixed number, 2) a single deblurring network with
a single training step is utilized, and 3) the proposed method
can be trained in an end-to-end manner.

B. CONDITIONAL GENERATIVE ADVERSARIAL NETWORKS
Generative Adversarial Networks (GANs) [55] are among the
most widely used frameworks in image generation and have
been extensively studied over the past few years. Conditional
GANs (cGANs) [27] are variants of GANs that synthesize
realistic and diverse images using conditional information,
such as class labels. Depending on how the framework incor-
porates the data and class labels, most cGANs can be cat-
egorized into classifier-based cGANs [28], [33]–[35] and
projection-based cGANs [29], [30], [56], [57]. Classifier-
based cGANs utilize conditional information (class labels)
by training an additional classifier as well as a standard GAN
discriminator. Meanwhile, projection-based cGANs propose
a projection discriminator that takes an inner product between
the embedded class labels and the feature vector extracted
from the data.

The proposed method draws inspiration from all existing
cGANs. To the best of our knowledge, this is the first attempt
to apply continuous conditional information to deblurring
task.

III. PRELIMINARIES
Generative Adversarial Networks (GANs) [55] are well-
establishedmethod for mimicking the probability distribution
of the real data by playing a min-max game between the
generator G and discriminator D. Whereas G learns to fool D
by generating realistic samples, D learns to classify whether
the given samples are true data (real) or generated data (fake).
Their objective, V (G,D) is formulated as follows.

min
G

max
D

V (G,D) = Ex∼p(x)[log(D(x))]

+Ez∼p(z)[log(1− D(G(z)))], (1)

where p(x) denotes the real data distribution, and p(z) denotes
a pre-defined distribution, e.g. , Gaussian distribution. A key

property of GANs is that a well-trained G successfully cap-
tures the data manifold even if there are missing data in the
training set [58]–[60].
Conditional GANs (cGANs) [27]–[29] are an extended

GAN framework developed for conditional image synthe-
sis. Given a pair of images x and class labels c sampled
from the joint distribution of the real dataset (x, c) ∼
p(x, c), the goal of G is to learn the class-conditional
image synthesis by utilizing c as an additional input with z.
Let pG(x|c) denote the generative distribution specified by
G(x, c) and pG(x, c) := pG(x|c)p(c). The objective of generic
cGANs [27], VcGAN(G,D), minimizes the Jensen-Shannon
Divergence (JSD) between p(x, c) and pG(x, c) as

min
G

max
D

VcGAN(G,D)

= E(x,c)∼p(x,c)[log(D(x, c))]

+Ez∼p(z),c∼p(c)[log(1− D(G(z, c), c))]. (2)

As one of the most representative classifier-based cGANs,
AC-GAN [28] introduces an auxiliary classifier Q to pro-
vide feedback on the class-conditional image synthesis of
G. In AC-GAN, D and Q share all weights of the feature
extractor, except for the final output layer. Let pQ(c|x) denote
the conditional distribution induced by classifier Q. Then,
their loss, VAC-GAN(G,Q,D) can be expressed as follows

min
G,Q

max
D

VAC-GAN(G,Q,D) = E(x,c)∼p(x,c)[log(D(x))]

+Ez∼p(z),c∼p(c)[log(1− D(G(z, c)))]
−λc E(x,c)∼p(x,c)[log(pQ(c|x)]︸ ︷︷ ︸

(a)

−λc E(x,c)∼pG(x,c)[log(pQ(c|x))]︸ ︷︷ ︸
(b)

, (3)

where λc is the balancing weight between the GAN and the
auxiliary classification losses. In Eq. (3), the first two lines are
loss functions similar to the original GANs (Eq. (1)), where
D serves as a binary classifier that distinguishes between real
and fake samples. Terms (a) and (b) represent the auxiliary
classification losses that enable Q to determine the class
labels of the input samples. Through this auxiliary classifier,
AC-GAN can generate class-conditional image synthesis.

IV. PROPOSED METHOD
In this section, we first introduce the facial motion-based
reordering (FMR) process, which is proposed to mitigate
the temporal ambiguity problem by utilizing human face
information (Sec. IV-A). Next, detailed explanation of the key
components of the proposed CFMD-GAN is provided, which
recovers the continuous moment latent in a blurry face image
via a moment control factor (Sec. IV-B). Lastly, we introduce
the training objectives of the proposed model (Sec. IV-C).

A. FACIAL MOTION-BASED REORDERING
One of the main challenges in restoring multiple images from
a single blurred image is to resolve the temporal (sequence)

VOLUME 10, 2022 76083



T. B. Lee et al.: Continuous Facial Motion Deblurring

FIGURE 3. An overview of our CFMD-GAN framework. Given a single motion-blurred face image, the proposed generator
restores the multiple sharp moments by varying a moment control factor. Subsequently, the proposed auxiliary regressor in
the discriminator helps the generator learn to estimate more accurate result during training.

FIGURE 4. Facial motion-based reordering process (FMR). We rearrange
the original sequence based on the position of the left eye i.e. from
top-left to right-bottom.

ambiguity of sharp moments. A motion-blurred image is the
averaged result of a continuous sharp sequence during the
exposure time [16], [39]. As averaging destroys the informa-
tion of the temporal order [1], [3], [4], reconstructing the orig-
inal sequence of sharp moments is non trivial. For example,
suppose a blurry facial image and its corresponding original
sharp sequence are given, as shown in Fig. 4. The problem
is that the same blurry image can be obtained even if the
face moves in a reverse or shuffled order during the exposure
time. Owing to this ill-posed nature of the temporal ambi-
guity, finding the underlying sequence of the blurry image
is one of the unsolved issues [3]. In this regard, previous
studies [1]–[3] have found that temporal ambiguity causes
unstable training of the network because it is difficult to
uniquely define the temporal sequence of object movements.

To alleviate this, we leverage the information of the human
face to apply effective yet strong constraints. In a recent study
on face landmark detection, Sun et al. [26] proposed defin-
ing the intensity of facial motion as the movement of the left
eye during the time unit. Inspired by this, we devised a facial
motion-based reordering (FMR) that enables the network to
restore sharp face images in a generalized order based on the
position of the left eye.

Specifically, as depicted in Fig. 4, FMR is a motion-based
reordering process of the ground-truth (GT) sequence in a
training dataset consisting of a single facial motion per single

video clip. Let St be a time-ordered set of GT frames sampled
from a high-frame-rate facial video, which is denoted by

St = {s[i] ∈ RH×W×3
| i ∈ [1,N ]}, (4)

where i denotes the frame index within the total number
of frames N . Then, a blurry image b ∈ RH×W×3 can be
approximated by averaging these GT frames as follows:

b ' g(
1
N

∑N

i=1
s[i]), (5)

where g(·) denotes the camera response function [16].
We rearrange s[i] according to the position of the left eye
(x, y) 1 in each s[i] so that the frame that includes the eye in the
top-left position comes first, and the frame that includes the
eye in the bottom-right position follows the last. Concretely,
the proposed FMR process rearranges the sharp sequence
according to the following criteria: (c1)The order is primarily
determined by the ascending order of x values. It generalizes
the erratic movement of the face as a left-to-right movement.
(c2) If there are frames with the same x values, those frames
are sorted in ascending of y values. It also regularizes the
direction of facial motion to a top-to-bottom movement. (c3)
When frames have the same (x, y), they are sorted in ascend-
ing order of temporal sequence.

Following the above procedure, we further transform the
frame index i into a continuous motion index value u ∈ [0, 1]
by applying u = i−1

N . Then, we can denote this reordered set
Sr as follows:

Sr = {s(u) ∈ RH×W×3
| u ∈ [0, 1]}. (6)

Note that the real number u becomes amoment control factor
in the proposed framework.

In this study, the network learns to restore the facial
motion-based order in Sr. It should be noted that this
reordered sequence does not match the temporal sequence.
Instead, the proposed framework restores all possible sharp

1 We utilize the public landmark detector provided by OpenCV [61] to
obtain the position of the left eye in the face image.
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FIGURE 5. The architecture of our generator consisting of a mapping network and a deblurring network. In the deblurring network, the proposed
control-adaptive block incorporates features of control factors and features of blurred image.

moments latent in a blurry facial image. The FMR process
allows the frames in the sequence Sr to have regularity of
face motion, which helps the network stabilize the training.
The effects of the FMR are analyzed in Sec. V.

B. CONTINUOUS FACIAL MOTION DEBLURRING GAN
Inspired by the success of AC-GAN [28], the proposed con-
tinuous facial motion deblurring framework CFMD-GAN
consists of a generatorG and a discriminatorDwith an auxil-
iary regressorQ. An overview of the CFMD-GAN is depicted
in Fig. 3. Given a blurry face image and a control factor, G
performs the role of a deblurring network to perform condi-
tional image restoration. Unlike most single image deblurring
methods that only recover a single deblurred image from a
single blurry image, the proposedG is a function that restores
a deblurred image conditioned on a control factor. That is, G
predicts continuous sharp moments latent in a blurry image
by changing the value of the control factor. To achieve this,
D learns to predict 1) decisions of images belonging to real or
fake [62] and 2) regression for control factor at the additional
output layer Q.

1) OVERALL PIPELINE OF GENERATOR
Given a blurry face image b ∈ RH×W×3 and moment control
factor u ∈ [0, 1] as the condition, G generates a restored face

image ŝ(u) ∈ RH×W×3, which is defined as

ŝ(u) = G(b, u). (7)

Specifically, the proposed G comprises two parts, a mapping
network GM and a deblurring network GR. First, GM trans-
lates the moment control factor u ∈ [0, 1] into the feature
control factor uf ∈ RH×W×64. Second, GR incorporates uf
with features extracted from b and then outputs the final
deblurred face image ŝ(u). In the proposed deblurring net-
work, we deign a ContAda block so that G can focus on
important spatial locations and channels of features extracted
from b according to cf .

a: MAPPING NETWORK
In recent GANs studies [63]–[66], the additional mapping
network has proven to provide more disentangled semantics
for the generator than directly using input codes. Inspired by
this, we set the mapping networkGM that outputs the feature
map control factor uf ∈ RH×W×64 from the given moment
control factor u ∈ [0, 1] as

uf = GM(u). (8)

As shown in Fig. 5, GM first expands u into a 2-dimensional
matrix u2D ∈ RH×W where each position is filled with u.
Then, GM outputs uf from u2D through several convolutional
layers. Similar to [63], we design GM consisting of eight
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FIGURE 6. A structure of the proposed control-adaptive block.

layers, each of which includes 1×1 convolutions and a leaky
ReLU [67].

b: DEBLURRING NETWORK
As mentioned earlier, the deblurring network GR generates a
restored image ŝ(u) ∈ RH×W×3 from the blurry face image
b ∈ RH×W×3 and the feature map control factor uf ∈
RH×W×64, as

ŝ(u) = GR(b, uf ). (9)

In this work, we employ the high-level structure of
MIMO-UNet [49], which has exhibited impressive per-
formance in a single image deblurring field. Specifically,
as shown in Fig. 5, MIMO-Unet is based on the
encoder-decoder architecture and comprises three encoder
blocks (EB1,EB2 and EB3) and three decoder blocks
(DB1,DB2 and DB3). Each of these encoder and decoder
blocks contain eight modified residual blocks [46]. Unlike
the originalMIMO-UNet, the network developed in this study
can focus on important spatial positions and channels of the
feature map depending on the control factor by replacing
the residual blocks with the proposed ContAda blocks. Note
that SCM, FAM and AFF are modules used in the origi-
nal MIMO-UNet that represent the shallow convolutional
module, feature attention module and asymmetric feature
fusion module, respectively. The details of each module,
including the high-level architecture, can be found in [49].
In the following section, we discuss the proposed control-
adaptive (ContAda) block.

2) CONTROL-ADAPTIVE BLOCK
There is a major challenge in applying existing building
blocks (e.g. variants of residual blocks [68] ) that are
widely used in single image deblurring networks in the

proposed continuous facial motion deblurring. First, standard
convolution-based layers have an inherent drawback in mod-
elling geometric transformations. This drawback stems from
the fact that a convolutional unit samples the input feature
map at fixed spatial locations [69]–[71]. To alleviate this,
deformable convolution [69], [70] has exhibited promising
results in object detection by learning the offsets of the convo-
lution grid to adjust the receptive field dynamically. Inspired
by this, several motion deblurring studies [72]–[74] applied
a deformable convolution module to handle the complex and
various latent movements in a given blurred image [72], [73].
However, these methods are still inadequate for our task
because of the inability to focus on the adaptive positions of
the feature maps depending on the control factor.

To this end, as shown in Fig. 6, we propose a Control-
Adpative (ContAda) block that comprises a control-adaptive
deformable convolution (CADC) module and a control-
adaptive channel-attention (CACA) module. Let FIm ∈

RHn×Wn×Cn denote an input feature map of the ContAda
block extracted from the input blurred image b ∈ RH×W×3.
Here,Hn,Wn and Cn represent the height, width, and number
of channels in the nth encoder/decoder block, respectively.
The ContAda block starts with a 3 × 3 convolutional layer
and LeakyReLU to extract the initial feature map Fo ∈
RHn×Wn×Cn . Meanwhile, the feature control factor uf ∈
RH×W×C , which is the output of the mapping network GM,
is reshaped to u(n)f ∈ RHn×Wn×Cn using bilinear interpolation

and 1 × 1 convolutional layer. Then, u(n)f is concatenated
with Fo along the channel dimension and then reshaped into
Fu ∈ RHn×Wn×Cn by applying 1 × 1 convolution layer.
Fu is utilized as an input feature for the CADC and CACA
modules. In the following section, we introduce CADC and
CACA distinctly.
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a: CONTROL-ADAPTIVE DEFORMABLE CONVOLUTION
(CADC) module is based on deformable convolution [69],
[70] that enhances the ability of network in modeling spatial
variations. Unlike [69], [70], where deformable offsets and
attention weights are solely determined by internal informa-
tion regarding the features of the input image, the proposed
CADC learns the offsets and attention weights from the com-
bined features of the control factor and image features. Let
K denote the sampling locations of a convolutional kernel.
We denote the weight and pre-specified offset for the k th

location as wk and pk , respectively. For example, 3 × 3
convolutional kernel of dilation 1 has 9 sampling locations
(K = 9) and pk ∈ {(−1,−1), (−1, 0), . . . , (1, 1)}. Let Fu(p)
and Fdc(p) denote the features at location p of the input
feature map Fu and output feature map Fdc, respectively.
Accordingly, the proposed CADC can be formulated as

Fdc(p) =
K∑
k=1

wk · Fu(p+ pk +1pk ) ·1mk , (10)

where 1pk and 1mk denote the learned offset and attention
weight scalar for the k th location, respectively. As shown in
Fig. 6, 1pk and 1mk are determined by separate convolu-
tional layers. The output of the sampling offsets branch has
2K channels, corresponding to {1pk}Kk=1. The output of the
attention weights branch is of K channels, as {1mk}Kk=1, and
each 1mk is in the range of [0, 1] by the sigmoid function.
Following [70], the initial values of 1pk and 1mk are set to
0 and 0.5, respectively.

b: CONTROL-ADAPTIVE CHANNEL ATTENTION
(CACA) module is mainly motivated by [75]–[77], which
benefits from applying the channel-wise attentionmechanism
for convolutional layers. In short, both CADC and CACA
can be considered as attention functions of two variables:
features extracted from blurry images and those extracted
from the control factor. They are complementary in that
CADC performs spatial attention to select important geo-
metric properties of features, whereas CACA focuses on
significant semantic and contextual attributes [75], [77].
Given Fu, as can be seen in Fig. 6, global average pooling
is applied to transform channel-wise information into chan-
nel descriptors, following [77]. Subsequently, we obtain the
channel-wise attention weights from two 1×1 convolutional
layers and a sigmoid function. The learned attention weights
are multiplied by Fdc, the output of the CADC, in an element-
wise manner.

3) DISCRIMINATOR
As shown in Fig. 3, the proposed discriminator D is based
on the U-net structure discriminator [62] with an auxiliary
regressor. In our framework, G receives as inputs a blurred
face image b and a control factor u, and outputs an image
ŝ(u) = G(b, u). Following [78], the discriminator D takes as
inputs as a blurred face image and the corresponding sharp
face image. Here, a face image is either a real sharp image s(u)

drawn from the training dataset or a restored image ŝ(u) from
G. Then, D provides three types of outputs from the encoder
output layer Denc, decoder output layer Ddec, and auxiliary
regression layer Q.

Following [62], Denc determines whether the global input
context is real or fake. Similarly, the final outputs of Ddec
are used to classify whether the local context of the input
is sampled from the real or fake. On the other hand, the
proposed Q provides a regression value for the estimated
control factor. Instead of predicting a single scalar value
of c, our Q outputs û2D ∈ RH×W and is trained to estimate
the ground-truth control factor u2D ∈ RH×W .

C. MODEL OBJECTIVES
Following [55], D and G are optimized alternately using loss
functions, which are described as follows.

1) DISCRIMINATOR LOSS
To estimate the global and per-pixel probability distributions,
the encoder loss LDenc and decoder loss LDdec are formulated
as follows:

LDenc = − logDenc(b, s(u))+ logDenc(b,G(b, u)),

LDdec =
1
WH

W ,H∑
i,j

(
− log[Ddec(b, s(u))](i,j)

+ log[Ddec(b,G(b, u))](i,j)
)
. (11)

Here, [Ddec(·)](i,j) represents the decision of the discriminator
decoder at pixel coordinate (i, j).

To ensure that the restored image is an accurate moment of
the blurry image, the auxiliary regression loss LQ is defined
by

LQ =
1
WH

W ,H∑
i,j

(
‖u2D − Q(b, s(u))‖22

+‖u2D − Q(b,G(b, u))‖22
)

(12)

The total loss of D is formulated as the sum of the above
objectives:

LD = LDenc + LDdec + λQLQ, (13)

where λQ denotes a weight parameter, which is empirically
set to 0.05.

2) GENERATOR LOSS
a: AUXILIARY REGRESSION LOSS
To accurately restore the output image conditioned by the
control factor, an auxiliary regression loss Lar is optimized
as follows:

Lar =
1
WH

W ,H∑
i,j

‖u2D − Q(b,G(b, u))‖22 . (14)
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TABLE 1. Configuration of facial motion deblurring testset synthesized
using 300VW dataset [5].

b: ADVERSARIAL LOSS
We use the Unet-discriminator to ensure that the generated
image is indistinguishable from the real data for both global
and local contexts. The adversarial loss Ladv is formulated as
follows:

Ladv = −
(
logDenc(b,G(b, u))

+
1
WH

W ,H∑
i,j

log[Ddec(b,G(b, u))](i,j)
)
. (15)

c: PIXEL-WISE LOSS
To restore accurate pixel intensities, following [79],
we employ the Charbonnier loss [80] to minimize the
pixel-wise distance between a ground-truth moment and a
restored image as follows:

Lpix =
3∑

n=1

1
WnHn

Wn,Hn∑
i,j

√
‖s(u)n − G(b, u)n ‖2 + ε2, (16)

where n denotes the number of multi-scale levels. Hn andWn
represent the height and width at the corresponding nth level
of output image, respectively. Following [79], ε is set to 10−3.

d: PERCEPTUAL LOSS
Furthermore, we use perceptual loss to obtain perceptually
satisfactory images. Similar to [81], LPIPS [82] is employed
for perceptual loss.

Lper =
M∑
l

ωl
∥∥∥φl(s(u))− φl(G(b, u))∥∥∥2

2
(17)

Here, φ(·) is a feature extractor, ω denotes a learned vector to
measure the LPIPS score, and the total score is averaged over
M layers.

In overall, the total loss ofG combines the aforementioned
loss functions,

LG = λarLar + λadvLadv + λpixLpix + λperLper , (18)

where λar , λadv, λpix and λper denote the balancing weights
empirically set to 0.05, 0.1, 1 and 0.01, respectively.

V. EXPERIMENTS
A. EXPERIMENTAL SETUP
1) DATASET
We use the 300VW dataset [5] which consists of a large num-
ber of high-quality facial videos recorded in the wild. Each

TABLE 2. Quantitative comparison of single-to-single general deblurring
methods. The best and the second best results are highlighted in bold
and underline, respectively.

TABLE 3. Quantitative comparison of single-to-single face deblurring
methods. The best and the second best results are highlighted in bold
and underline, respectively.

video has a duration of about oneminute at 25-30 fps. Follow-
ing the face deblurring study by Ren et al. [54], the training
and test datasets are extracted from 83 videos and 9 videos,
respectively. Each blurry image is synthesized by averaging
various numbers (5-13) of consecutive sharp frames, as in
recent motion deblurring studies [16], [54]. Thus, the testset
consists of total 13,058 blurred images and 116,188 sharp
frames. The details of the number of test images are listed
in Table 1.

2) IMPLEMENTATION DETAILS
The proposed framework is implemented with Pytorch [83]
and trained with NVIDIA TITAN-RTX GPUs. We train our
networks using the Adam optimizer [84] with β1 = 0.9, and
β2 = 0.999. The initial learning rate is set as 1× 10−4 and it
decayed exponentially by a factor of 0.99 for every epoch. For
data augmentation, we randomly scale the image from 1.0 to
1.5 and then randomly crop the image with a spatial size of
256×256×3. During training, we set the batch size as 8 and
train our model for 200 epochs.

3) EVALUATION METRICS
For a quantitative evaluation, we measure the PSNR and
SSIM [85], which are traditionally used for image quality
assessment. We also report two metrics of learning-based
perceptual quality, FID [86] and LPIPS [82]. Moreover,
we employ the ArcFace [10] model to measure the distance of
facial identity between the ground truth (GT) and the resulting
image, as [87].

B. COMPARISONS WITH THE STATE-OF-THE-ARTS
To the best of our knowledge, the proposed method
is the first attempt for single-to-video face deblurring.
Hence, we conduct extensive and faithful comparisons with
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FIGURE 7. Qualitative comparisons of single-to-single general deblurring methods. Zoom in for the best view.

FIGURE 8. Qualitative comparisons of single-to-single face deblurring methods. Zoom in for the best view.

state-of-the-art methods in single image deblurring. Specif-
ically, the proposed CFMD-GAN is compared with single-
to-single (s2s) general deblurring ( i.e. Nah et al. [16],
SRN [46], DMPHN [48], MIMO [49]), s2s face deblur-
ring (i.e. Shen et al. [18], UMSN [22], MSPL [23] ), and
single-to-video (s2v) general deblurring ( i.e. Jin et al. [1]).
To facilitate fair comparisons, we retrain the existingmethods
using the same training dataset used in this study. The
retrained models are marked with asterisks (*). All experi-
ments are performed using the official codes provided by the
authors.

1) SINGLE-TO-SINGLE GENERAL DEBLURRING
In this comparison, we evaluate the performance of the center
frame prediction, asmost s2s generalmethods are proposed to
restore the center frame. For the proposedmethod, the control
factor is set to c = 0.5 to obtain the center frame results.

TABLE 4. Quantitative comparison of single-to-video deblurring methods.
‘‘# of GT’’ indicates the number of GT frames per a single blurry image,
‘‘ # of pairs’’ is the total number of test GT frames, and ‘‘ALL’’ represents
the entire results of 300VW testset. Note that all the results of CFMD-GAN
are measured with the same model. The best results are highlighted in
bold.

Table 2 reports the comparisons of s2s general deblurring
methods. Despite the significant improvements in the per-
formance of retrained DMPHN* and MIMO* compared to
the original DMPHN and MIMO, our CFMD-GAN shows
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FIGURE 9. Qualitative comparisons of single-to-video deblurring methods. Due to space constraints, the initial frame (Frame 1), and the center
frame (Frame 4) and the last frame (Frame 7) are displayed in this figure. To clearly observe the face movements between successive frames,
horizontal and vertical lines are displayed in the center coordinates of each image. Please refer to the supplementary material for comparisons
on restored video sequences.

the best results in LPIPS, FID and ArcFace distance, and the
second best in PSNR and SSIM.

As investigated in recent GAN-based restoration stud-
ies [81], [87]–[92], PSNR and SSIM may be lower because
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FIGURE 10. Qualitative results of the proposed CFMD-GAN on REDS dataset [93] (1st row) and Lai dataset [94] (2nd and 3rd rows). Our resulting
frames (Frame 1 to 5) are the outputs when the control factors are set to [0.0, 0.25, 0.5, 0.75, 1.0], respectively. To clearly observe the face
movements between successive frames, horizontal and vertical lines are displayed in the center coordinates of each image. Please refer to the
supplementary material for videos restored with various frame rates.

the GAN-based model tends to generate fake yet realistic
details and textures [92]. This effect of GANs can be clearly
observed in the visual comparisons in Fig. 7. Compared
with other methods, the proposed CFMD-GAN restores more
realistic textures and finer details of facial components, such
as the eyes, nose, and eyelids. Based on these results, we can
confirm that the proposed model can predict a more accurate
center frame than the other methods.

2) SINGLE-TO-SINGLE FACE DEBLURRING
Most existing s2s face deblurring methods [18], [22], [23]
are developed to remove spatially-uniform blurs. However,
our training and test datasets contain spatially-variant blurs.
Besides, their models only handle input images of 128 ×
128 × 3. For these reasons, we downsample our dataset to
128 × 128 × 3 and use it to retrain UMSN [22], MSPL [23]
and our model (termed as CFMD-GAN128). The retrained
models, UMSN* andMSPL*, are trained to predict the center
frame, similar to the s2s general deblurring approaches. Note
that we do not retrain Shen et al. [18] because they do not
release the training code.

Table 3 and Fig. 8 provide the quantitative and qualitative
comparisons of the s2s face deblurring methods, respectively.
In this experiment, the proposed method achieved signifi-
cantly better performance on SSIM, LPIPS, FID and ArcFace
than the existing face deblurring methods. For PSNR, our
method achieved the second best. Shen et al. [18] fails to
restore plausible results because they are not trained to
remove spatially-variant blurs, as shown in Fig. 8. Although
the retrained models (UMSN* and MSPL*) show improved
performance, they are still inferior to the CFMD-GAN.

3) SINGLE-TO-VIDEO GENERAL DEBLURRING
For s2v general deblurring methods, we compare our method
with Jin et al. [1] which officially released their test model.
Since this method is strictly fixed to extract seven sequential
frames from a single blurry image, we compare the results
only for blurry images averaged by seven sharp frames. None
of the s2v deblurring methods [1]–[4] have released their
training codes. [1] is the only work that provides the test code.

Table 4 reports quantitative comparisons with Jin et al. [1]
and detailed results of our model according to the number of
GT frames. Themodel of Jin et al. [1] is limited to predicting
only a fixed number of frames when the model is trained
once. However, it is worth to note that the proposed single
model can predict various numbers of output frames without
additional network changes or training processes.

Visual comparisons are shown in Fig. 9. Among the
restored sequences, the initial, central and last frames are
reported due to space constraints. The results for the entire
restored frames are provided in the supplementary material.
The results of the proposed method are visually more plausi-
ble than those of Jin et al. [1].

C. ANALYSIS ON CFMD-GAN
1) EVALUATION ON OTHER TEST DATASETS
Since our model is trained and evaluated with synthetically
blurred images using the 300VW dataset [5], we verify
how our model performs on other motion-blur benchmark
datasets such as REDS [93] and Lai et al. [94]. The REDS
dataset is generated using 120 fps videos, synthesizing blurry
frames by merging consecutive frames. The Lai dataset con-
tains real-blur images where the GT images do not exist.
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TABLE 5. Ablations on the proposed ContAda block. The best results are
highlighted in bold.

We manually crop the facial regions of images in the REDS
validation set and the Lai dataset.

Fig. 10 shows that our method restores satisfactory images
for recent benchmark deblurring datasets. In 1st row of
Fig. 10, we can see that our method produces not only a sharp
face, but also the background that was occluded by the face
in the previous frame. For the real-blurred images in 2nd row
of Fig. 10, our model restores plausible results containing
consecutive frames. Our framework can provide all sharp
moments that user wants from a single motion-blurred face
image.

2) ABLATION STUDY
In Table 5, we evaluate the impact of the proposed
ContAda block consisting of ContAda deformable convolu-
tion (CADC) and ContAda channel attention (CACA). With
the CADC module, the proposed method can focus on the
spatially important sampling points of the feature maps by the
feature map control factor. Notably, using only CACA mod-
ule improves the average PSNR by about 0.5dB compared to
using only CADCmodule. This demonstrates that the channel
attention plays a more important role in the proposed model.
More importantly, using both CADC and CACA achieves the
best results. This indicates that both spatial and channel-wise
modulations are required for the continuous facial motion
deblurring. Furthermore, we conduct an ablation study to
investigate the contribution of FMR to the network training.
The 3rd row in Table 5 indicates that without FMR, the
performance of the model drops drastically when it learns the
original temporal order.

VI. CONCLUSION
In this study, we introduce CFMD-GAN, a novel framework
for continuous facial motion deblurring with a single network
and a single training process. Subsequently, we apply facial
motion-based reordering (FMR) to mitigate the difficulty of
temporal ordering by utilizing domain-specific facial infor-
mation. This ensures a stable learning process for the frame-
work. We devise an auxiliary regressor to learn continuous
motion deblurring by integrating the concept of conditional
GANs into a single image deblurring framework. In addition,
we propose a control-adaptive (ContAda) block that focuses
on deformable locations and important channels according to
the control factor. In our extensive experiments, we demon-
strate that the proposed method outperforms state-of-the-art
methods in facial image deblurring. The proposed framework
can provide continuous sharp moments that users want to

obtain from a single motion-blurred facial image. Since the
proposed method restores facial motion in the order of FMR,
there may be a limitation in predicting the accurate temporal
order of the facial motion. However, we believe that the
proposed method will be the basis for future studies on con-
tinuous facial motion deblurring. In addition, incorporating
various facial priors can be a fundamental issue for future
research to improve the quality of this study.

REFERENCES
[1] M. Jin, G. Meishvili, and P. Favaro, ‘‘Learning to extract a video sequence

from a single motion-blurred image,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2018, pp. 6334–6342.

[2] K. Purohit, A. Shah, and A. N. Rajagopalan, ‘‘Bringing alive blurred
moments,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2019, pp. 6830–6839.

[3] D. M. Argaw, J. Kim, F. Rameau, C. Zhang, and I. S. Kweon, ‘‘Restoration
of video frames from a single blurred image with motion understand-
ing,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. Workshops
(CVPRW), Jun. 2021, pp. 701–710.

[4] K. Zhang, W. Luo, B. Stenger, W. Ren, L. Ma, and H. Li, ‘‘Every moment
matters: Detail-aware networks to bring a blurry image alive,’’ in Proc.
28th ACM Int. Conf. Multimedia, Oct. 2020, pp. 384–392.

[5] J. Shen, S. Zafeiriou, G. G. Chrysos, J. Kossaifi, G. Tzimiropoulos, and
M. Pantic, ‘‘The first facial landmark tracking in-the-wild challenge:
Benchmark and results,’’ in Proc. IEEE Int. Conf. Comput. Vis., Workshop
(ICCVW), Dec. 2015, pp. 50–58.

[6] Y. Sun, X. Wang, and X. Tang, ‘‘Deep convolutional network cascade for
facial point detection,’’ inProc. IEEEConf. Comput. Vis. Pattern Recognit.,
Jun. 2013, pp. 3476–3483.

[7] K. Zhang, Z. Zhang, Z. Li, andY. Qiao, ‘‘Joint face detection and alignment
using multitask cascaded convolutional networks,’’ IEEE Signal Process.
Lett., vol. 23, no. 10, pp. 1499–1503, Oct. 2016.

[8] F. Saeed, M. J. Ahmed, M. J. Gul, K. J. Hong, A. Paul, and M. S. Kavitha,
‘‘A robust approach for industrial small-object detection using an improved
faster regional convolutional neural network,’’ Sci. Rep., vol. 11, no. 1,
pp. 1–13, Dec. 2021.

[9] H. Wang, Y. Wang, Z. Zhou, X. Ji, D. Gong, J. Zhou, Z. Li, and W. Liu,
‘‘CosFace: Large margin cosine loss for deep face recognition,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2018,
pp. 5265–5274.

[10] J. Deng, J. Guo, N. Xue, and S. Zafeiriou, ‘‘ArcFace: Additive angular
margin loss for deep face recognition,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2019, pp. 4690–4699.

[11] H. Yang, U. Ciftci, and L. Yin, ‘‘Facial expression recognition by de-
expression residue learning,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jul. 2018, pp. 2168–2177.

[12] Z. Zhang, P. Luo, C. C. Loy, and X. Tang, ‘‘From facial expression recog-
nition to interpersonal relation prediction,’’ Int. J. Comput. Vis., vol. 126,
no. 5, pp. 550–569, May 2018.

[13] K. Sanjar, O. Bekhzod, J. Kim, J. Kim, A. Paul, and J. Kim, ‘‘Improved
U-Net: Fully convolutional network model for skin-lesion segmentation,’’
Appl. Sci., vol. 10, no. 10, p. 3658, May 2020.

[14] J. Kim, J. K. Lee, and K. M. Lee, ‘‘Accurate image super-resolution using
very deep convolutional networks,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2016, pp. 1646–1654.

[15] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, ‘‘Beyond a Gaussian
denoiser: Residual learning of deep CNN for image denoising,’’ IEEE
Trans. Image Process., vol. 26, no. 7, pp. 3142–3155, Jul. 2017.

[16] S. Nah, T. H. Kim, and K. M. Lee, ‘‘Deep multi-scale convolutional neural
network for dynamic scene deblurring,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 3883–3891.

[17] S. Din, A. Paul, and A. Ahmad, ‘‘Lightweight deep dense demosaicking
and denoising using convolutional neural networks,’’ Multimedia Tools
Appl., vol. 79, nos. 45–46, pp. 34385–34405, Dec. 2020.

[18] Z. Shen, W.-S. Lai, T. Xu, J. Kautz, and M.-H. Yang, ‘‘Deep semantic
face deblurring,’’ inProc. IEEE/CVFConf. Comput. Vis. Pattern Recognit.,
Jun. 2018, pp. 8260–8269.

[19] G. G. Chrysos and S. Zafeiriou, ‘‘Deep face deblurring,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW), Jul. 2017,
pp. 69–78.

76092 VOLUME 10, 2022



T. B. Lee et al.: Continuous Facial Motion Deblurring

[20] G. G. Chrysos, P. Favaro, and S. Zafeiriou, ‘‘Motion deblurring of faces,’’
Int. J. Comput. Vis., vol. 127, nos. 6–7, pp. 801–823, Jun. 2019.

[21] Z. Shen, T. Xu, J. Zhang, J. Guo, and S. Jiang, ‘‘A multi-task approach to
face deblurring,’’ EURASIP J. Wireless Commun. Netw., vol. 2019, no. 1,
pp. 1–11, Jan. 2019.

[22] R. Yasarla, F. Perazzi, and V. M. Patel, ‘‘Deblurring face images using
uncertainty guided multi-stream semantic networks,’’ IEEE Trans. Image
Process., vol. 29, pp. 6251–6263, 2020.

[23] T. B. Lee, S. H. Jung, and Y. S. Heo, ‘‘Progressive semantic face deblur-
ring,’’ IEEE Access, vol. 8, pp. 223548–223561, 2020.

[24] S. H. Jung, T. B. Lee, and Y. S. Heo, ‘‘Deep feature prior guided face
deblurring,’’ in Proc. IEEE/CVFWinter Conf. Appl. Comput. Vis. (WACV),
Jan. 2022, pp. 3531–3540.

[25] M. Hirsch, C. J. Schuler, S. Harmeling, and B. Schölkopf, ‘‘Fast removal
of non-uniform camera shake,’’ in Proc. IEEE Int. Conf. Comput. Vis.,
Nov. 2011, pp. 463–470.

[26] K. Sun, W. Wu, T. Liu, S. Yang, Q. Wang, Q. Zhou, Z. Ye, and C. Qian,
‘‘FAB: A robust facial landmark detection framework for motion-blurred
videos,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019,
pp. 5462–5471.

[27] M. Mirza and S. Osindero, ‘‘Conditional generative adversarial nets,’’
2014, arXiv:1411.1784.

[28] A. Odena, C. Olah, and J. Shlens, ‘‘Conditional image synthesis with
auxiliary classifier GANs,’’ in Proc. 34th Int. Conf. Mach. Learn. (ICML),
Aug. 2017, pp. 2642–2651.

[29] T. Miyato and M. Koyama, ‘‘cGANs with projection discriminator,’’ in
Proc. Int. Conf. Learn. Represent., Jan. 2018, pp. 1–21.

[30] A. Brock, J. Donahue, and K. Simonyan, ‘‘Large scale GAN training for
high fidelity natural image synthesis,’’ in Proc. Int. Conf. Learn. Repre-
sent., May 2019, pp. 1–35.

[31] H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena, ‘‘Self-attention gen-
erative adversarial networks,’’ in Proc. Int. Conf. Mach. Learn., Jun. 2019,
pp. 7354–7363.

[32] X. Ding, Y. Wang, Z. Xu, W. J. Welch, and Z. J. Wang, ‘‘CcGAN:
Continuous conditional generative adversarial networks for image genera-
tion,’’ in Proc. Int. Conf. Learn. Represent., May 2021, pp. 1–30. [Online].
Available: https://openreview.net/forum?id=PrzjugOsDeE

[33] M. Gong, Y. Xu, C. Li, K. Zhang, and K. Batmanghelich, ‘‘Twin auxi-
lary classifiers GAN,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 32,
Dec. 2019, p. 1328.

[34] M. Kang and J. Park, ‘‘ContraGAN: Contrastive learning for condi-
tional image generation,’’ in Proc. Adv. Neural Inf. Process. Syst. (NIPS),
Dec. 2020, pp. 1–31.

[35] M. Kang, W. Shim, M. Cho, and J. Park, ‘‘Rebooting ACGAN: Auxiliary
classifier GANs with stable training,’’ 2021, arXiv:2111.01118.

[36] J. He, C. Dong, and Y. Qiao, ‘‘Interactivemulti-dimensionmodulation with
dynamic controllable residual learning for image restoration,’’ in Proc.
Eur. Conf. Comput. Vis. (ECCV). Cham, Switzerland: Springer, Nov. 2020,
pp. 53–68.

[37] H. Kim, S. Baik, M. Choi, J. Choi, and K. M. Lee, ‘‘Searching for
controllable image restoration networks,’’ in Proc. IEEE/CVF Int. Conf.
Comput. Vis. (ICCV), Oct. 2021, pp. 14234–14243.

[38] H. Cai, J. He, Y. Qiao, and C. Dong, ‘‘Toward interactive mod-
ulation for photo-realistic image restoration,’’ in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW), Jun. 2021,
pp. 294–303.

[39] T. H. Kim, B. Ahn, and K. M. Lee, ‘‘Dynamic scene deblurring,’’ in Proc.
IEEE Int. Conf. Comput. Vis., Dec. 2013, pp. 3160–3167.

[40] M. Noroozi, P. Chandramouli, and P. Favaro, ‘‘Motion deblurring in
the wild,’’ in Proc. German Conf. Pattern Recognit. (GCPR). Cham,
Switzerland: Springer, Aug. 2017, pp. 65–77.

[41] S. Su, M. Delbracio, J. Wang, G. Sapiro,W. Heidrich, and O.Wang, ‘‘Deep
video deblurring for hand-held cameras,’’ inProc. IEEEConf. Comput. Vis.
Pattern Recognit., Jul. 2017, pp. 1279–1288.

[42] Z. Shen, W. Wang, X. Lu, J. Shen, H. Ling, T. Xu, and L. Shao, ‘‘Human-
aware motion deblurring,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis.,
Oct. 2019, pp. 5572–5581.

[43] A. Chakrabarti, ‘‘A neural approach to blind motion deblurring,’’ in Proc.
Eur. Conf. Comput. Vis. (ECCV). Cham, Switzerland: Springer, Sep. 2016,
pp. 221–235.

[44] J. Sun, W. Cao, Z. Xu, and J. Ponce, ‘‘Learning a convolutional neural
network for non-uniform motion blur removal,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015, pp. 769–777.

[45] D. Gong, J. Yang, L. Liu, Y. Zhang, I. Reid, C. Shen, A. Van Den Hengel,
and Q. Shi, ‘‘From motion blur to motion flow: A deep learning solution
for removing heterogeneous motion blur,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2017, pp. 2319–2328.

[46] X. Tao, H. Gao, Y. Wang, X. Shen, J. Wang, and J. Jia, ‘‘Scale-recurrent
network for deep image deblurring,’’ in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit., Feb. 2018, pp. 8174–8182.

[47] D. Park, D. U. Kang, J. Kim, and S. Y. Chun, ‘‘Multi-temporal recurrent
neural networks for progressive non-uniform single image deblurring with
incremental temporal training,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV).
Cham, Switzerland: Springer, Oct. 2020, pp. 327–343.

[48] H. Zhang, Y. Dai, H. Li, and P. Koniusz, ‘‘Deep stacked hierarchical multi-
patch network for image deblurring,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2019, pp. 5978–5986.

[49] S.-J. Cho, S.-W. Ji, J.-P. Hong, S.-W. Jung, and S.-J. Ko, ‘‘Rethinking
coarse-to-fine approach in single image deblurring,’’ 2021,
arXiv:2108.05054.

[50] O. Ronneberger, P. Fischer, and T. Brox, ‘‘U-Net: Convolutional networks
for biomedical image segmentation,’’ in Proc. Int. Conf. Med. Image Com-
put. Comput.-Assist. Intervent. Cham, Switzerland: Springer, Oct. 2015,
pp. 234–241.

[51] J. Pan, Z. Hu, Z. Su, and M.-H. Yang, ‘‘Deblurring face images with
exemplars,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV). Cham, Switzerland:
Springer, Sep. 2014, pp. 47–62.

[52] K. Grm, W. J. Scheirer, and V. Struc, ‘‘Face hallucination using cascaded
super-resolution and identity priors,’’ IEEE Trans. Image Process., vol. 29,
pp. 2150–2165, 2020.

[53] S. Lin, J. Zhang, J. Pan, Y. Liu, Y. Wang, J. Chen, and J. Ren, ‘‘Learning to
deblur face images via sketch synthesis,’’ in Proc. AAAI Conf. Artif. Intell.,
vol. 34, Apr. 2020, pp. 11523–11530.

[54] W. Ren, J. Yang, S. Deng, D. Wipf, X. Cao, and X. Tong, ‘‘Face video
deblurring using 3D facial priors,’’ in Proc. IEEE/CVF Int. Conf. Comput.
Vis. (ICCV), Oct. 2019, pp. 9388–9397.

[55] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, ‘‘Generative adversarial nets,’’ in
Proc. Adv. Neural Inf. Process. Syst., Jun. 2014, pp. 2672–2680.

[56] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, ‘‘Spectral normaliza-
tion for generative adversarial networks,’’ 2018, arXiv:1802.05957.

[57] L. Han, M. R. Min, A. Stathopoulos, Y. Tian, R. Gao, A. Kadav, and
D. Metaxas, ‘‘Dual projection generative adversarial networks for con-
ditional image generation,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis.
(ICCV), Oct. 2021, pp. 14438–14447.

[58] I. Goodfellow, ‘‘NIPS 2016 tutorial: Generative adversarial networks,’’
2017, arXiv:1701.00160.

[59] A. Dosovitskiy, J. T. Springenberg, M. Tatarchenko, and T. Brox, ‘‘Learn-
ing to generate chairs, tables and cars with convolutional networks,’’ IEEE
Trans. Pattern Anal. Mach. Intell., vol. 39, no. 4, pp. 692–705, Apr. 2017.

[60] A. Kumar, P. Sattigeri, and T. Fletcher, ‘‘Semi-supervised learning with
GANs: Manifold invariance with improved inference,’’ in Proc. Adv. Neu-
ral Inf. Process. Syst., vol. 30, Dec. 2017, pp. 1–11.

[61] G. Bradski, ‘‘The OpenCV library,’’ Dr. Dobb’s J., Softw. Tools Prof.
Programmer, vol. 25, no. 11, pp. 120–123, 2000.

[62] E. Schonfeld, B. Schiele, and A. Khoreva, ‘‘A U-Net based discriminator
for generative adversarial networks,’’ in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2020, pp. 8207–8216.

[63] T. Karras, S. Laine, and T. Aila, ‘‘A style-based generator architecture for
generative adversarial networks,’’ inProc. IEEEConf. Comput. Vis. Pattern
Recognit., Jun. 2019, pp. 4401–4410.

[64] Y. Shen, J. Gu, X. Tang, and B. Zhou, ‘‘Interpreting the latent space of
GANs for semantic face editing,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2020, pp. 9243–9252.

[65] E. Härkönen, A. Hertzmann, J. Lehtinen, and S. Paris, ‘‘GANSpace:
Discovering interpretable GAN controls,’’ 2020, arXiv:2004.02546.

[66] J. Zhu, Y. Shen, D. Zhao, and B. Zhou, ‘‘In-domain GAN inversion for
real image editing,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV). Cham,
Switzerland: Springer, Aug. 2020, pp. 592–608.

[67] A. L. Maas, A. Y. Hannun, and A. Y. Ng, ‘‘Rectifier nonlinearities improve
neural network acoustic models,’’ in Proc. ICML, 2013, vol. 30, no. 1,
pp. 1–6.

[68] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for
image recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Feb. 2016, pp. 770–778.

VOLUME 10, 2022 76093



T. B. Lee et al.: Continuous Facial Motion Deblurring

[69] J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei, ‘‘Deformable
convolutional networks,’’ in Proc. IEEE Int. Conf. Comput. Vis., Oct. 2017,
pp. 764–773.

[70] X. Zhu, H. Hu, S. Lin, and J. Dai, ‘‘Deformable ConvNets V2: More
deformable, better results,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2019, pp. 9308–9316.

[71] X. Zhu, W. Su, L. Lu, B. Li, X. Wang, and J. Dai, ‘‘Deformable
DETR: Deformable transformers for end-to-end object detection,’’ 2020,
arXiv:2010.04159.

[72] X. Wang, K. C. K. Chan, K. Yu, C. Dong, and C. C. Loy, ‘‘EDVR: Video
restoration with enhanced deformable convolutional networks,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW),
Jun. 2019, pp. 1–10.

[73] K. Purohit and A. Rajagopalan, ‘‘Region-adaptive dense network for
efficient motion deblurring,’’ in Proc. AAAI, Feb. 2020, vol. 34, no. 7,
pp. 11882–11889.

[74] Y. Yuan,W. Su, and D.Ma, ‘‘Efficient dynamic scene deblurring using spa-
tially variant deconvolution network with optical flow guided training,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 3555–3564.

[75] L. Chen, H. Zhang, J. Xiao, L. Nie, J. Shao, W. Liu, and T.-S. Chua,
‘‘SCA-CNN: Spatial and channel-wise attention in convolutional networks
for image captioning,’’ inProc. IEEEConf. Comput. Vis. Pattern Recognit.,
Aug. 2017, pp. 5659–5667.

[76] J. Hu, L. Shen, and G. Sun, ‘‘Squeeze-and-excitation networks,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 7132–7141.

[77] Y. Zhang, K. Li, K. Li, L. Wang, B. Zhong, and Y. Fu, ‘‘Image super-
resolution using very deep residual channel attention networks,’’ in Proc.
Eur. Conf. Comput. Vis. (ECCV), Sep. 2018, pp. 286–301.

[78] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, ‘‘Image-to-image translation
with conditional adversarial networks,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2017, pp. 1125–1134.

[79] S. W. Zamir, A. Arora, S. Khan, M. Hayat, F. S. Khan, M.-H. Yang,
and L. Shao, ‘‘Multi-stage progressive image restoration,’’ 2021,
arXiv:2102.02808.

[80] P. Charbonnier, L. Blanc-Féraud, G. Aubert, and M. Barlaud, ‘‘Two
deterministic half-quadratic regularization algorithms for computed imag-
ing,’’ in Proc. IEEE Int. Conf. Image Process. (ICIP), vol. 2, Sep. 1994,
pp. 168–172.

[81] Y. Jo, S. Yang, and S. J. Kim, ‘‘Investigating loss functions for extreme
super-resolution,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recog-
nit. Workshops (CVPRW), Jun. 2020, pp. 424–425.

[82] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, ‘‘The unrea-
sonable effectiveness of deep features as a perceptual metric,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 586–595.

[83] A. Paszke et al., ‘‘PyTorch: An imperative style, high-performance deep
learning library,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 32,
Dec. 2019, pp. 8026–8037.

[84] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’
in Proc. 3rd Int. Conf. Learn. Represent. (ICLR), Y. Bengio and Y. LeCun,
Eds., May 2015, pp. 1–15.

[85] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, ‘‘Image quality
assessment: From error visibility to structural similarity,’’ IEEE Trans.
Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004.

[86] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter,
‘‘GANs trained by a two time-scale update rule converge to a local Nash
equilibrium,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 30, Dec. 2017,
pp. 1–12.

[87] X. Wang, Y. Li, H. Zhang, and Y. Shan, ‘‘Towards real-world blind face
restorationwith generative facial prior,’’ inProc. IEEE/CVFConf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2021, pp. 9168–9178.

[88] C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunningham, A. Acosta,
A. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi, ‘‘Photo-realistic
single image super-resolution using a generative adversarial network,’’
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 4681–4690.

[89] Y. Blau, R. Mechrez, R. Timofte, T. Michaeli, and L. Zelnik-Manor,
‘‘The 2018 PIRM challenge on perceptual image super-resolution,’’ in
Proc. Eur. Conf. Comput. Vis. Workshops (ECCVW), Sep. 2018, pp. 1–22.

[90] X. Wang, K. Yu, S. Wu, J. Gu, Y. Liu, C. Dong, Y. Qiao, and C. C. Loy,
‘‘ESRGAN: Enhanced super-resolution generative adversarial networks,’’
in Proc. Eur. Conf. Comput. Vis. Workshops (ECCVW), 2018, pp. 1–16.

[91] Y. Chen, Y. Tai, X. Liu, C. Shen, and J. Yang, ‘‘FSRNet: End-to-end
learning face super-resolutionwith facial priors,’’ inProc. IEEE/CVFConf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 2492–2501.

[92] J. Gu, H. Cai, C. Dong, J. S. Ren, Y. Qiao, S. Gu, and R. Timofte,
‘‘NTIRE 2021 challenge on perceptual image quality assessment,’’ inProc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW),
Jun. 2021, pp. 677–690.

[93] S. Nah, S. Baik, S. Hong, G. Moon, S. Son, R. Timofte, and K. M. Lee,
‘‘NTIRE 2019 challenge on video deblurring and super-resolution: Dataset
and study,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
Workshops (CVPRW), Jun. 2019, pp. 1–10.

[94] W.-S. Lai, J.-B. Huang, Z. Hu, N. Ahuja, and M.-H. Yang, ‘‘A comparative
study for single image blind deblurring,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2016, pp. 1701–1709.

TAE BOK LEE received the B.S. degree in
electrical and computer engineering from Ajou
University, Suwon, South Korea, in 2018, where
he is currently pursuing the integrated M.S. and
Ph.D. degrees with the Department of Artificial
Intelligence. His research interests include com-
puter vision, deep learning, and image restoration.

SUJY HAN received the B.S. degree from the
Department of Electrical and Computer Engi-
neering, Ajou University, Suwon, South Korea,
in 2021, where she is currently pursuing the
M.S. degree with the Department of Artificial
Intelligence. Her research interests include com-
puter vision, deep learning, image restoration, and
image generation.

YONG SEOK HEO received the B.S. degree
in electrical engineering and the M.S. and
Ph.D. degrees in electrical engineering and com-
puter science from Seoul National University,
South Korea, in 2005, 2007, and 2012, respec-
tively. From 2012 to 2014, he was with Samsung
Electronics, Digital Media and Communications
Research andDevelopment Center. Currently, he is
with the Department of Electrical and Computer
Engineering and theDepartment of Artificial Intel-

ligence, Ajou University, as an Associate Professor. His research interests
include segmentation, stereo matching, 3D reconstruction, and computa-
tional photography.

76094 VOLUME 10, 2022


