
Received 21 June 2022, accepted 29 June 2022, date of publication 12 July 2022, date of current version 18 July 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3190014

Characterization of Semantic Segmentation
Models on Mobile Platforms for Self-Navigation
in Disaster-Struck Zones
RYAN ZELEK AND HYERAN JEON , (Member, IEEE)
Department of Computer Science and Engineering, University of California Merced, Merced, CA 95343, USA

Corresponding author: Hyeran Jeon (hjeon7@ucmerced.edu)

ABSTRACT The role of unmanned vehicles for searching and localizing the victims in disaster impacted
areas such as earthquake-struck zones is getting more important. Self-navigation on an earthquake zone
has a unique challenge of detecting irregularly shaped obstacles such as road cracks, debris on the streets,
and water puddles. In this paper, we characterize a number of state-of-the-art Fully Convolutional Network
(FCN)models onmobile embedded platforms for self-navigation at these sites containing extremely irregular
obstacles.We evaluate the models in terms of accuracy, performance, and energy efficiency.We present a few
optimizations for our designed vision system. Lastly, we discuss the trade-offs of these models for a couple
of mobile platforms that can each perform self-navigation. To enable vehicles to safely navigate earthquake-
struck zones, we compile a new annotated image database of various earthquake impacted regions that is
different than traditional road damage databases. We train our database with a number of state-of-the-art
semantic segmentation models in order to identify obstacles unique to earthquake-struck zones. Based on
the statistics and tradeoffs, an optimal FCN model is selected and applied to the mobile vehicular platforms.
To our best knowledge, this is the first study that identifies unique challenges and discusses the accuracy,
performance, and energy impact of edge-based self-navigation mobile vehicles for earthquake-struck zones.
Our proposed database and trained models are publicly available.

INDEX TERMS Convolutional neural networks, edge computing, self-driving, semantic segmentation.

I. INTRODUCTION
With global-wide monitoring and technology evolution, the
riskiness of natural disaster is getting lower. However, there
are still deadly incidents such as earthquakes. Earthquakes
are a geologic inevitability of some countries and states.
To reduce the effects from earthquakes, we should think about
theways to quickly search earthquake-struck zones and safely
rescue more lives. For this purpose, unmanned autonomous
vehicles will be effective, which navigate impacted sites
while localizing the people and reporting the damages with-
out risking the lives of others, such as firefighters and other
rescue workers. In the natural disaster impacted sites, edge-
based small automobiles would be more cost effective and
feasible solutions because these small cars can navigate

The associate editor coordinating the review of this manuscript and

approving it for publication was Oguzhan Urhan .

underneath collapsed buildings, unstable bridges, and narrow
walkways that are difficult to be driven in by a full-sized
vehicle, and also hidden from the viewing angles of aerial
solutions such as drones. Though the self-navigation research
and industry has been quickly evolving, most of the solu-
tions focus on detecting fairly regular-shaped objects such as
humans, buildings, and streets from a full-sized vehicle’s per-
spective. However, these solutions cannot be directly applied
to earthquake-struck zones because of the unique obstacles
such as debris, cracks, and puddles on the streets, which
the mobile edge vehicle perceives in a completely different
perspective.

In this study, we present an edge-based unmanned vehicle
that can navigate disaster-struck sites by avoiding extremely
irregular-shaped obstacles. To understand the design trade-
offs, we provide detailed characterizations of recogni-
tion accuracy, performance, and energy impact of various

73388
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0001-6171-1429
https://orcid.org/0000-0002-1767-8198
https://orcid.org/0000-0002-0352-1560


R. Zelek, H. Jeon: Characterization of Semantic Segmentation Models on Mobile Platforms for Self-Navigation

FIGURE 1. A few images from our proposed earthquake-site database.

system components. Convolutional neural network (CNN)
is known to be effective for extracting complex features
and patterns that can be found in image data [1]. Among
various CNN variants, fully convolutional network (FCN)
that uses semantic segmentation is known to be effective
to detect irregular-shaped objects through pixel-level recog-
nition. Therefore, we develop obstacle avoidance algorithm
with FCN. We compare various state-of-the-art FCN models
on multiple mobile platforms, which will give insights to
the researchers and developers about the pros and cons of
different FCN models so that they can choose the right one
for their purposes. With these results, we also show a few
optimization ideas that speedup the end-to-end execution by
75%.We compile and release a new annotated image database
of earthquake-struck sites at https://gitlab.com/thor-auto1/
thor-auto.

The main contributions of this work are as follows:

• We present a proof-of-concept vehicular system design,
namely Thor that can navigate disaster-struck sites.
It consists of amobile CPU-GPUSystem-on-Chip (SoC)
platform that can run the full pipeline of self-navigation.
The vehicular platform uses a combination of Lidar and
FCN recognition outputs to make decisions for collision
avoidance at the fields that have extremely irregular-
shape obstacles.

• Thorough evaluations and in-depth comparisons are
conducted for seven state-of-the-art FCN models
in the perspectives of accuracy, performance, and
energy-efficiency on two mobile CPU-GPU SoC plat-
forms. To the best of our knowledge, this is the first
study that shows in-depth evaluations of FCN models
on embedded platforms.

• We present various optimizations to tackle inefficien-
cies observed from the evaluations of FCN models on
embedded platforms. The experimental results show that
the optimizations improve the end-to-end performance
by 5×.

• We develop a new earthquake-site image database that is
annotated with pixel-level labels for semantic segmenta-
tion based detection algorithms. Our database contains
various obstacles that reside at earthquake-struck sites
unlike existing databases that are collections of road
cracks for road maintenance purposes.

II. RELATED WORK AND MOTIVATION
A. IMAGE DATABASES FOR SELF-NAVIGATION
In this study, we develop a new image database for nav-
igation in the earthquake-struck site. Though myriad of
image recognition algorithms have been developed for self-
navigating vehicles, most of them are designed for relatively
regular-shaped obstacles such as building, human, dogs,
road signs and so on. Cityscapes [12], KITTI [13], and
CamVid [14] are the popular databases for self-navigation
in city landscapes. They can detect the regular obstacles
such as buildings, vehicles, humans, for a full-sized vehicle
environment, but they cannot detect unique obstacles seen
at the earthquake-struck sites such as road damages, broken
bridge, cracks, debris, and unclear street borders.

In an earthquake-struck zone, the most obvious hazard to a
vehicle is severely damaged road. There are a number of such
databases that can be used to detect road damage and various
obstacles on the road, but most of them are designed for road
maintenance and hence none can be used for autonomous
navigation in earthquake-struck zones, as summarized in
Table 1. Road damage detection has been thoroughly studied
over the years, but where the end goal was to automate
the inspection process and plan the regular maintenance
repair [2]–[10], [15]. This application difference is important
because it defines the problem and how image features are
represented. From earthquakes, the road damage caused by
the seismic waves traveling through the earth is much greater
than that of normal road degradation, and requires a new
methodology for detecting road damage. Most of the current
road damage detection solutions aim to detect the smallest
of cracks [2]–[4], [8], [9], whereas in our case, such small
of cracks would minimally impact the stability of the self-
driving vehicle. We consider these minor-sized cracks as
generally within millimeters or centimeters wide, whereas
the cracks considered for self-navigation in earthquake-struck
zones are major-sized and are generally within tens of cen-
timeters wide or larger.

Furthermore, a majority of the current solutions detect
cracks from a perspective that is either at or near perpendic-
ular to the ground. Although the clearest of features can be
extracted from that perspective, the autonomous ground vehi-
cle sees them completely differently, and its perspective also
needs to be considered. For ground-based vehicles, cameras
are typically mounted on the front, and face in the forward
direction with only a slight downward angle. This type of
perspective keeps a safe distance while enabling perception
on the road, obstacles, and background.

B. SEMANTIC SEGMENTATION-BASED
OBJECT DETECTION
Thanks to the pixel-level object annotation capability, seman-
tic segmentation has been widely used for various object
detection applications. A study [16] used FC-DenseNet for
landslide detection for the photos taken by satellites in the
aftermath of earthquakes. However, their target objects are
limited to the landslide regions and the satellite images can

VOLUME 10, 2022 73389

https://gitlab.com/thor-auto1/thor-auto
https://gitlab.com/thor-auto1/thor-auto


R. Zelek, H. Jeon: Characterization of Semantic Segmentation Models on Mobile Platforms for Self-Navigation

TABLE 1. Comparison of the most relevant databases to ours.

not be used for automobile navigation. In [17], they pro-
posed a mapping model which uses semantic segmentation
as a component to identify different hazard types and assign
a risk to them. For their use case, they also evaluated accuracy
of various FCN models including FCN8. However, they did
not evaluate end-to-end performance of the tested models
and discussed the real-time aspects as their future work,
while we provide a more comprehensive evaluations of vari-
ous models and support real-time navigation capability. The
authors in [18] proposed a new model that incorporates an
holistically-nested edge detection (HED) network to capture
the edges from input images in parallel to a regular FCN.
With this additional edge information, their model performs
semantic segmentation well on raw images with improved
accuracy. However, their model results in a much slower
processing time than other FCNs such as FCN8 and SegNet,
which have performance issues to be deployed on a mobile
device that requires real-time computing. We will show the
results later in this paper. The authors in [19] developed
a self-driving vehicle to navigate autonomously in urban
environments while performing semantic segmentation on
four cameras concurrently. They used ERFNet, which is a
model that we evaluate in more detail in our paper. Unlike
this study that aims at developing a self-navigation model
with one specific FCN model, our goal is to understand
detailed performance and energy characteristics of various
FCN models (including ERFNet) to provide insights to the
developers and engineers in selections of a proper model for
their goals. DenseNet [20] was proposed to improve com-
putation efficiency of CNNs. DenseNet uses Dense Blocks to
realize an interactive concatenation of previous feature maps.
Each Dense Block consists of Batch Normalization, ReLU
activation, 3×3 convolution filter, and dropout. Instead of the
commonly used max pooling technique, they utilize average
pooling with stride-net connections to reduce computations

on upper layers. DenseNet103 [21], DenseNet10 [22], and
DenseNet13 [23] extended DenseNet to support semantic
segmentation. The postfix numbers mean the number lay-
ers used in each model. DenseNet10 extended DenseNet103
paper when they developed their model for segmenting the
different parts of human eyes. DenseNet13 also extended
DenseNet103 in a similar way as DenseNet10, but they
instead extended it for their application of only segment-
ing cracks from concrete bridge structures. DenseNet103
extended DenseNet for segmentation especially for urban
scene understanding applications where many features and
classes are present. Intuitively, DenseNet10 and DenseNet13
are lighter versions of DenseNet103, where each can detect
only 2 to 5 object classes. Due to this weaker feature and class
detection capability, we evaluate only DenseNet103 in our
paper.

There were some applications that used semantic segmen-
tation models for unique environments for robot navigation.
A study [24] proposed a new model for performing
semantic segmentation on 3D point clouds. Although their
model performs with high accuracy on a platform with
workstation-level computing power, 3D point cloud data is
often very expensive to both collect and compute with, and
such data types may not be best suited for low-power mobile
platforms, where computing power is extremely limited. The
authors in [25] used semantic segmentation as a component
to help their robot navigate in greenhouse environments with
different types of plants. In their model based on ESPNetv2
[26], the semantic segmentation is used for generic object
detection and another algorithm is used for detecting the
pixel-level traversability for their navigation. This navigation
algorithm is referred to as a Traversability Estimation Mod-
ule (TEM) and it is also trained by a neural network. Due to
a unique environmental requirements, the TEM is trained on
data sets that are collected at the same or similar environment

73390 VOLUME 10, 2022



R. Zelek, H. Jeon: Characterization of Semantic Segmentation Models on Mobile Platforms for Self-Navigation

where the actual test happens, which is strictly controlled
by human operators for the robots. On the other hand, for
a disaster impacted area such as an earthquake, the actual
test environment cannot be mapped out by the vehicle before
the vehicle is deployed for autonomous navigation; objects
can be placed anywhere, and traversable paths are rarely
organized in straight lines, unlike greenhouses. Their base-
line semantic segmentation model, ESPNetv2 does not have
superior accuracy than our tested models. For exmample,
ESPNetv2 is known to derive higher accuracy than ENet, but
lower accuracy than ERFNet [26], while using a comparable
number of parameters with ERFNet, but more than ENet.
Thus, we do not consider ESPNetv2 for our evaluations.
Another semantic segmentation model that was considered
was Ghost-UNet [27]. Their model is based on an asymme-
try encoder-decoder architecture using Ghost-Net [28] and
U-Net [29] and their end use-case was for generic mobile
robots. In their work, they also showed it to performwith high
accuracy, however, it still contained a considerable amount
of parameters more than ENet. Because of that fact and also
the fact that no latency or FPS benchmarks were presented in
their paper, we couldn’t consider this model for our project
either, due to practical reasons.

III. EARTHQUAKE SITE IMAGE DATABASE
As there is not a publicly accessible earthquake site image
database, we compile a new image database with 737 images
that contain objects and scenery that can be found from
earthquake-struck sites. The images mainly include classi-
fications of road cracks, water puddles, vehicles, humans,
road, sky, vegetation, and other irregular objects such as
debris. Of those classes, their categories are broken down into
three main types. Obstacles, which includes objects that the
vehicle should avoid driving into.Traversable path, where it
is safe for the vehicle to drive through. Lastly, the undefined
category refers to those classes that do not play a role in
obstacle avoidance, which in this work, we consider as the sky
and void label types. Void labeled pixels, such as blurry pixels
in the far background of some images, are unclear even by
human eyes, and such pixels cannot be truthfully labeled with
a classification. These void labeled pixels are not predicted by
our system and are disregarded from our loss function when
training the CNN models. Figure 2 shows the distribution of
the classes and categories in our database.

The environment of data collection includes both
non-shadowy and partially shadowy environments where
direct sunlight may not occur. To achieve a high detec-
tion accuracy on edge-based vehicles where the viewing
angle from the edge devices is much lower than that of
full-size vehicles or drones, we include images from the
same angles that can be seen by the edge-based vehicle when
it’s deployed in the field. We annotate the irregular objects
with ground truth labels using PixelAnnotationTool [30]. Our
database is used for semantic segmentation and training FCN
models.

FIGURE 2. Database distribution in terms of: (a) Per-class at a pixel level,
in percentage (b) Per-category at a pixel-level, in percentage (c) The
number of images where classes are present, out of 737 total images.

FIGURE 3. Hardware design of the proposed system.

IV. PLATFORM ARCHITECTURE
A. VEHICLE PLATFORM CONFIGURATION
Figure 3 shows the hardware design of the developed
edge-based self-navigation vehicle. We test NVIDIA Jetson
TX2 [31] and Xavier AGX [32] computing platforms
(in MAX-N mode), which are interchangable in our
design. The TX2 platform consists of a CPU cluster
of a Denver2 dual-core CPU and an ARM Cortex A57
quad-core CPU, while the GPU is Pascal-based with
256 cores. The AGX Xavier consists of an 8-core ARM
v8.2 64-bit CPU and a 512-core Volta-based GPU. A sen-
sor fusion of a Hokuyo LiDAR range-finder and a ZED
stereo camera is incorporated for the vehicle to perceive
the environment at a local level. An Adafruit Global
Positioning System (GPS) and an CMPS14 Compass glob-
alize the vehicle. The ZED camera input is fed to the
GPU for pixel-level object detection. Robotic Operating
System (ROS) Melodic is used as the framework for
controlling the various components equipped on the car
platform.

VOLUME 10, 2022 73391



R. Zelek, H. Jeon: Characterization of Semantic Segmentation Models on Mobile Platforms for Self-Navigation

FIGURE 4. Local navigation software flow.

B. OBJECT DETECTION AND NAVIGATION PIPELINE
Our vision system relies upon the camera input and Lidar
sensor to detect objects at a local level. Fig. 4 shows our
software flow for the local navigation task.

Once an image is taken by the camera, the objects are
recognized by an FCN via semantic segmentation. Then,
the object classes and location information as well as Lidar
input are used by the navigation algorithm that finalizes the
direction and speed of the driving. The Lidar input is used to
ensure the vehicle steers in the safe direction and in a timely
manner.

The semantic segmentation CNN task is executed on the
GPU while using the Caffe framework. Because this CNN
processing has the longest latency and is the bottleneck of
our design, we offload the remaining components of our
navigation algorithm to be executed on the CPU.

In terms of these CPU-based steps taken after the seman-
tic segmentation, we initially determine an aerial view
by applying a perspective transform to the segmented
mask, which is then condensed in half to allow real-time
operation.

1) LOCAL DESTINATION
From the condensed map, we first determine a safe desti-
nation in terms of a pixel-level coordinate. Inspired by the
approach used in [33], rows are scanned from the bottom
of the mask towards the top. We check all horizontal road
intervals that are wide enough for the vehicle to pass through.
The center of the largest interval on that row is marked as the
local destination. When a row is encountered that has no road
interval that’s wide enough to fit the vehicle, the row scanning
stage is complete.

2) PATH TO THE LOCAL DESTINATION
After a destination is chosen, a safe path needs to be deter-
mined that the vehicle can follow. The path we determine is
based on an Artificial Potential Field (APF) [34] approach.
During APF, the vehicle experiences two potentials, an attrac-
tive and repulsive. The attractive pushes the vehicle towards
the destination, while the repulsive pushes the vehicle away
from obstacles. The attractive force vector (Fatt ) is based
on the Euclidean distance from the vehicle (q) to the local
destination (qgoal), where those two points are defined in
terms of pixel-level coordinates:

Fatt (q) = −katt · (q− qgoal) (1)

To navigate around the irregular shaped obstacles in
earthquake-struck zones, we consider the repulsive force vec-
tor (Frep) as an accumulation from eight different vectors
surrounding the vehicle. These angles (θi) consist of all 45◦

combinations ranging from 0 to 315 degrees. Their magnitude
is based on the pixel in that direction’s distance to the nearest
obstacle (dobsti ), where a distance map is computed by a
common Brushfire algorithm. The constants katt and krep
were determined through heuristics along with trial and error.
If those constant values are not sufficient, then the vehicle will
either ignore obstacles or drive around erratically because
it would be too sensitive to obstacles. We went through a
trial and error process of tuning those constants until the
calculated trajectories treated obstacles sufficiently for our
application. The term d0 is directly related to the projected
distance away from the vehicle’s current location. If there
are no obstacles within d0 from the projected location, then
the obstacle’s repulsive force does not impact that point of the
trajectory. As a result, the repulsive force vector (Frep) can be
determined with the following equation:

Frep(q) =
8∑
i=1

krep · (
1

dobsti (q)
−

1
d0

) ·
û(θi)

d2obsti (q)
(2)

While the net force vector (Fnet ) is the sum of the attractive
and repulsive force vectors:

Fnet (q) = Fatt (q)+ Frep(q) (3)

We apply gradient descent to the net force to determine
a full trajectory. When obstacles are equally distant from
the vehicle or when an obstacle is within a threshold too
close, then an alternative repulsive force is applied. This force
is based on the gradient map, which provides a one-to-one
correlation for the direction in which the nearest obstacle
can be found, per pixel. The gradient map is computed by
iterating through the distance map and determined based on
the minimum value of neighboring pixels. There are a few
minor cases where the resulting trajectory cannot complete
due to the destination being far away while also being very
close to an obstacle, which typically occurs near the upper
boundary of the mask. In those cases, we use data from
Wavefront algorithm to complete the trajectory. There may
still be oscillations due to the nature of APF; to smooth
the path, we use four points from this trajectory as control
points for a cubic Bezier curve. The resulting curve is smooth
enough such that the vehicle can feasibly follow it.

C. SEMANTIC SEGMENTATION MODELS
To understand the impact of different model architectures,
we evaluated seven popular FCN models, which are:

• FCN-VGG16 is proposed by Long, Shelhammer, and
Darrell [35] and has shown effective performance for
object classification tasks across generic types of appli-
cations. Designed with 16 conv. layers and the heavy
encoder from VGG16-net, the output is decoded with

73392 VOLUME 10, 2022



R. Zelek, H. Jeon: Characterization of Semantic Segmentation Models on Mobile Platforms for Self-Navigation

a pixel stride width of 32. One of the most com-
monly trained databases for this network is Pascal VOC
database [36], which detects animals, furniture, humans,
amongst other basic object types from a human’s
perspective.

• FCN8 is also proposed by [35] and is an improved
version of FCN-VGG16 in that the decoder output stride
is taken at eight pixels wide instead of 32. Although this
provides additional refinement to the output mask, this is
at the cost of requiring additional layers for the decoder.

• FCN-AlexNet is again proposed by [35] from their
work on converting classical object detection CNNs to
FCN networks. Of which, they converted the lightweight
eight conv. layer AlexNet model to a fully convolutional
model for semantic segmentation.

• ERFNet is proposed by Romera et al. [37] and was
originally designed for the semantic segmentation task
for intelligent vehicle types of applications. ERFNet
consists of 23 layers but uses dilated convolutions and
residual layers as a couple of ways to keep a lowmemory
footprint.

• ENet is proposed by Paszke et al. [38] and they
designed their FCN network specifically for mobile
types of applications, including Internet-of-Things (IoT)
devices and self-driving cars where computing resources
are limited. ENet consists of 29 layers and a few of their
efficiencies are gained by the use of decomposed convo-
lutions, such as the dilated and asymmetric convolutions
they use in their bottleneck-based architecture.

• SegNet is proposed by Badrinarayanan et al. [39] and
is effective for scene-understanding types of applica-
tions, as opposed to generic object detection tasks
where background information would not have as much
consideration. The 27 conv. layer SegNet model also
uses a VGG16-based encoder, however, they improve
efficiency by their decoder design, which performs
upsampling by reusing max-pooling indices from the
encoder.

• DenseNet103 is proposed by [21] and is also effec-
tive for scene-understanding types of applications. The
model is designed to have layers to be directly connected
together in a feed-forward fashion, through the use of
Dense Blocks along with skip connections concatenat-
ing down-sampling and up-sampling blocks at various
stages of the network. This model was based off the
original DenseNet [20] model, and they extended it for
semantic segmentation.

We develop all these models in Caffe framework [40] such
that each network could be fairly compared to each other
by using the same system configuration and software frame-
work. For DenseNet103, we had to implement in PyTorch
because it uses extremely large number of layers that are
all connected to each other, which makes it unpractical to
implement in Caffe’s protocol buffer definition file, where
each layer has to be manually written. To accelerate model
training and improve the accuracy of regular objects such as

vehicles, buildings, and humans, we use transfer learning,
where each network was initially trained on larger databases
(baseline model) and then fine-tuned with our earthquake-site
image database.

Hyperparameter selection is determined based on the
parameters used by the baseline models and then optimized
to achieve the best prediction accuracy with our earthquake
image database. Table 2 shows the hyperparameters that
derive the best accuracy for each model. We use CUDA 11,
cuDNN 7.6, and an NVIDIA TITAN RTX GPU for training.
As a loss function for training, we incorporate a SoftMaxwith
loss layer and normalize it across the batch size. As regu-
larization avoids overfitting the models, we train each model
until the validation loss no longer decreases and the accuracy
becomes stable at an optimum. Images were rotated along
the vertical axis to augment the data and further improve
generalization.

In summary, before training on our earthquake database,
the models were initially trained from scratch on larger
databases (listed in the bottom row of Table 2) with a set of
hyperparameters best suited for those models. This is what
we refer to as pre-training. After the pre-training is complete,
then we fine-tune the pre-trained models with our earthquake
database with the best hyperparameters that we found (also
listed in Table 2) from our preliminary experiments in a
process that we refer to as transfer learning.

Our earthquake database is divided into two parts, a train-
ing set and a validation set. The training set consists of
687 image-label pairs while the validation set consists of
50 image-label pairs. All the models we evaluate are trained
with the same training set and tested with the same validation
set.

V. CHARACTERIZATION AND ANALYSIS
A. ACCURACY
We first evaluate prediction accuracy of the seven FCN mod-
els with 50 testing images that encompass all of the object
classes in environments with both a high and low number of
classes present. Figure 5 shows a few visualized segmentation
results of each network for the earthquake-site database. The
top row shows the image inputs that include various obstacles
such as cracks (the first and the fourth columns), another
vehicle (the third column), and debris (the fifth column).
The second row shows the ground truth where cracks, other
vehicles, and debris are indicated with orange, blue, and
light violet colors, respectively. The safe regions for driving
are marked with dark violet colored pixels. As can be seen,
most of the critical and large obstacles are well recognized
by all networks, while some networks show poor pixel-level
coverage even for the large obstacles and mis-classification
for extremely irregular obstacles such as debris. For example,
in the right-most column of Figure 5, a pile of debris is
correctly detected and classified by FCN-VGG16 and ENet.
The other networks correctly recognized the regions of debris
but mis-classified them as cracks. Likely, the crack region on
the fourth image is almost completely recognized by FCN8,

VOLUME 10, 2022 73393



R. Zelek, H. Jeon: Characterization of Semantic Segmentation Models on Mobile Platforms for Self-Navigation

TABLE 2. Hyperparameters used when training each model.

FIGURE 5. Visualization examples of image segmentation used as a
method for qualitatively comparing and evaluating the accuracy of the
models.

FCN-VGG16, and FCN-AlexNet, while notably higher num-
ber of pixels in the crack regions are classified as safe road
by ERFNet, ENet, SegNet, and DenseNet103.

However, we observed that the pixel-level accuracy does
not necessarily lead to a collision with the obstacle. As far
as the coarse-grained region of the obstacle is recognized
as not-passable obstacle, the navigation algorithm made a
detour to avoid collision. For example, in the example of
debris recognition result, even when some networks recog-
nized the debris as crack, as both are not passable obstacles,
the vehicle did not pass over them. Similarly, in the example
of the crack recognition result, even when some pixels are
classified as safe regions, the car did not fall into the crack
because majority of the pixels were correctly classified as
crack. In image recognition algorithms that use semantic

segmentation encounter, so called a pixel to application accu-
racy disparity. In other words, pixel-level recognition accu-
racy may not be the same with application-level accuracy.
To accommodate the accuracy disparity, we measure the
accuracy in two levels: pixel-level and object-level.

Deciding upon the optimal accuracy metric for semantic
segmentation models is not a completely solved problem and
is still a topic being researched in the community. For exam-
ple in [41], they attempt to solve this problem by developing
a single accuracy metric that considers both global classifica-
tion and contour segmentation when defining their proposed
singular metric. For the pixel-level accuracy evaluations in
our work, we use the already well-known accuracy metrics
such as Intersection-Over-Union (IoU), Global, Precision,
Recall, and F1 as equated like below, where TP, FP, TN,
and FN are true positive, false positive, true negative, and
false negative, respectively.With pixel-level accuracy, we can
understand how correctly each pixel is classified. The results
are shown in Figure 6 (a) where IoU takes the average of all
classes. The analysis of the results will follow shortly.

IoU =
TP

TP+ FP+ FN
(4)

Global =
TP+ TN

TP+ TN + FP+ FN
(5)

Precision =
TP

TP+ FP
(6)

Recall =
TP

TP+ FN
(7)

F1 =
2 · Prec · Recall
Prec+ Recall

(8)

As noted earlier, pixel-level accuracy does not provide
the recognition effectiveness for the navigation. Therefore,
we propose to further break down the classes into two
categories:

1) the traversable paths and 2) the non-traversable paths
that have obstacles that cause collisions. To distinguish this
from the original pixel-level recognition, we call the orig-
inal pixel accuracy as class-based and this new category
accuracy as category-based recognition.With category-based

73394 VOLUME 10, 2022



R. Zelek, H. Jeon: Characterization of Semantic Segmentation Models on Mobile Platforms for Self-Navigation

recognition, we can understand the prediction accuracy that
lead to effectiveness of the navigation algorithm.

Figure 6 shows all five metrics in (a) class-based and
(b) category-based recognition. Notable differences are
observed in mean IoU where category-based recognition
show a significantly higher accuracy than individual pixel
class-level recognition. This means that navigation decision
will be made with 80% accuracy even when 40% of pix-
els are recognized in incorrect classes. Though most of the
metrics show higher accuracy in category-based recognition,
the Global metric drops about 10% in category-based recog-
nition. This reduction in global accuracy can be explained
by the TN bias associated with the class-based measurement
due to its much higher number of classes. Note that TN
scores represent pixels where the specific class under test
correctly (truly) predicted the pixel as not belong to its class
(negative). This means that for images with a large number
of classes, the per-class representations would be dominated
by the not-belonging (negative) pixels and TN pixels would
increase as the number of classes increases. Therefore, lower
category-based Global metric is sourced by significantly
fewer category-based classes.

In terms of the other metrics, the precision was around
5-10% better than the recall in both recognition methods.
This precision vs. recall difference implies that themodels are
slightly better at predicting positive instances of the objects
than they were at capturing the entirety of the ground-truth
objects. This property benefits scenarios such as self-driving
with irregular shaped objects, where the objects need to be
detected, but their exact shape and size is not necessarily
needed to still be effective for the navigation.

Among the networks, FCN8 consistently showed out-
standing accuracy in both recognition methods, while
FCN-AlexNet and SegNet were the worst. The highest accu-
racy with FCN8 is mainly attributed to the largest number of
parameters it computes in addition to the low pixel stride it
takes at the output (eight pixels). The number of parameters
each model computes is shown in Table 3. FCN-VGG16
and FCN-AlexNet instead take the output at a larger stride
of 32 pixels, which contributes to their lower accuracy. The
per-layer parameter breakdown is plotted in Figure 10. On the
other hand, though ENet and ERFNet stride by only two
pixels at the output, they show lower accuracy than larger
models because they are originally designed for supporting
extremely resource-limited devices with significantly fewer
parameters rather than achieving higher accuracy. SegNet
also computes a larger number of parameters similar to
FCN8, but its decoder scheme is completely different from all
the other networks. Unlike the other networks that upsample
through transposed convolution layers, SegNet does not use
transposed convolution layers for upsampling. Instead, Seg-
Net reuses pooling indices from the encoder’s max pooling
layers, which led it to a lower detection capability compared
to the other models.

In the object-level accuracy, we assume that an object is
correctly recognized if the majority of the object region is

FIGURE 6. Pixel-level accuracy in terms of (a) Class-based taken from the
mean of all classes (b) Category-based taken of obstacles.

FIGURE 7. Object-level accuracy of obstacle detection.

classified as the target object. In this case, some pixel-level
prediction errors are ignored. Although the pixel-level met-
rics are useful for comparing segmentation models, the exact
shape and size is not necessarily needed to effectively detect
an obstacle, especially for the disaster-struck sites that have
extremely irregular-shaped objects. Thus, we also evaluate
the detection capability at an object-level, inspired by [42]
and [33], we use 50% coverage as the threshold to determine
object-level detection accuracy. These object-level results are
shown in Figure 7.

There are a few borderline cases where camera-based
vision may fail. In an earthquake-impacted site, the most
relevant case would be where road is broken up in such a
way that it has an altered height-angle with respect to the
vehicle. In those cases, the features from the road cracks may
not be visible from themodels or even human eyes. To handle
such cases, our system incorporates a Lidar sensor which can
detect the severely elevated or broken up road amongst the
other objects that cannot be fully detected by camera-based
vision. By using the combined inputs from an FCN model
and a Lidar, our car platform showed zero obstacle collision
at the field tests.
Observation 1: Though most of the tested models show

above 70% accuracy in all accuracy evaluation metrics, the

VOLUME 10, 2022 73395



R. Zelek, H. Jeon: Characterization of Semantic Segmentation Models on Mobile Platforms for Self-Navigation

models using more parameters and shorter output stride
showed better accuracy.
Observation 2: Pixel-wise prediction accuracy misleads

the navigation accuracy due to the emphasized true nega-
tiveness. Category-based prediction accuracy that classifies
objects into binary (either traversable or not) can provide
more reliable and stable accuracy results for navigation
systems.

B. PERFORMANCE
In this section, we show detailed system-level performance of
the tested models on SoC platforms. We compare the seven
models in all experiments except for some experiments that
have influences of framework such as real-time throughput
and power consumption. For those experiments, we exclude
DenseNet103 for fair comparisons. Note that DenseNet103
uses PyTorch while the other models are developed with
Caffe. As different frameworks can incidentally bias the
performance of one model over the other, we believe it is
unfair to make a direct comparison among the models that
use different frameworks.

To recognize obstacles while driving at real-time, the
recognition throughput capability in frames per second (FPS)
unit is used as an important performance metric in
self-navigation systems. The recognition performance is
determined by both the efficiency of FCN and the processing
hardware. Therefore, we evaluated FPS of the six FCN mod-
els on two edge-based GPU platforms that are NVIDIA TX2
and Xavier AGX. Figure 8 shows the results. As can be seen
from the figure, Xavier consistently computes with a higher
throughput than TX2, which can primarily be attributed to its
double the amount of CUDA cores, which stacks up at 512
CUDA cores when compared to the TX2’s 256 CUDA cores.
These CUDA cores are important because these cores are
directly responsible for the convolutional layers in the CNN
models. The breakdown of convolution vs non-convolution
execution time is shown in Fig. 9, which shows that the con-
volutional layers can dominate the model’s computing cost
and directly relates to the execution time of the models, and
stresses the importance of having a large number of CUDA
cores in the platform. The global memory is also important,
because that is responsible for holding the weights of these
models during execution. TX2 operates with a 128-bit 8GB
LPDDR4-3732 memory interface while Xavier operates with
a 256-bit 32GB LPDDR4x-4266 memory interface that is
both faster and more energy efficient.

Interestingly, FCN-AlexNet, ERFNet, and ENet show
2-3× better throughput than the others on both platforms.
To understand this notable performance difference, we further
investigate the per-layer parameter size and latency break-
down as shown in Figure 10. As can be seen, one of the
notable characteristics of the three models is significantly
less parameter usage. As the right-hand side Y-axis and
the violet-colored line graphs shows, ERFNet and ENet use
almost 300% less parameters than FCN8 and FCN-VGG16.
FCN-AlexNet uses more parameter than SegNet but runs

FIGURE 8. Baseline performance comparison of the FCN models in terms
of FPS.

FIGURE 9. Convolution vs non-convolution distribution.

TABLE 3. Total number of parameters computed and size of each model.

almost 30% fewer layers, and hence layer function invoca-
tion latencies are effectively eliminated. Note that each layer
needs at least one GPU kernel execution, which also require
input and output data transfer. Therefore, FCN-AlexNet
achieves good performance by reducing kernel invocation
overheads.

Next, we breakdown the performance on an end-to-end
level, from when a camera frame is received by the ROS node
executing the CNN, and until a separate ROS node determines
a vehicle direction based on that mask and our navigation
algorithm. In pre-processing stage, we convert the camera
frame to a 32-bit three-channel RGB float, then reshape and
wrap it onto the input layer of the network. The forward-
propagation delay includes the GPU processing of the CNN.
The post-processing mainly includes pulling from the CNN
output layer and formatting the data into a OpenCV grayscale
matrix. Our navigation algorithm uses the generated mask by
the CNN to determine a path for the vehicle to travel, which
operates in parallel to the other ROS nodes. Figure 11 shows
this timing breakdown for the fastest network that we tested
in ENet.

73396 VOLUME 10, 2022



R. Zelek, H. Jeon: Characterization of Semantic Segmentation Models on Mobile Platforms for Self-Navigation

FIGURE 10. Per-layer execution time vs parameter breakdown comparing
the networks. In ENet [38] these layers are referred to as modules.
In DenseNet103 [21], these layers represent a summary of the various
blocks in that model.

FIGURE 11. End-to-end latency breakdown (with ENet deployed on
the TX2).

As CNN is the most compute-intensive function,
we expected forward propagation time dominates the overall
latency. However, surprisingly, post-processing stage took
almost as long of time as the actual forward-propagation.
To find the root cause of this long latency, we dug the code of
Caffe andNVCaffe and found that the last layer of CNN is not
well parallelized in both frameworks. Though the last layer
requires a high-level of parallelism because it traverses all the
pixels to find the proper label for prediction, the frameworks

run them on a CPU. One reason may be to reduce memory
copy latency by running the last layer on CPU, which can
directly serve the final prediction in CPU side system mem-
ory. This optimization may work for server systems that GPU
uses a separate device memory. But, in the mobile systems
that use a unified shared memory, the CPU-side computation
only incur performance overhead. We provide more details
about this and propose an optimization in Section VI.
Observation 3: The number of layers and the amount of

parameters have strong impact to the overall throughput.
Though more layers and parameters help increase accuracy
for complex objects, they need to be trimmed if throughput is
the first-priority design consideration, which is true for the
systems that need real-time performance.
Observation 4: From the end-to-end latency breakdown,

the CNN post-processing needs to be carefully handled or
else it can significantly extend the end-to-end latency. Many
open-source CNN benchmarks and reference codes com-
monly overlook or ignore this important step, especially
because most of the frameworks are designed for server sys-
tems that has different CPU-GPU organizations than mobile
systems.

C. ENERGY EFFICIENCY
To understand the energy efficiency of the models with our
system, we break down the power consumption of each com-
ponent, from when the vehicle is in an idle state and until
it is steadily active while performing inference. We conduct
measurements while reading from six different INA3221
voltage/current sensors on the Jetson, approximately every
300ms. Figure 12 shows this sequence and the associated
power dissipation with ENet deployed on the system. The 5V
rail powers the ZED camera, USB-Ethernet Adapter for Lidar
communication, GPS, Compass, USB hub, and the Teensy
uC (in descending order), all of which consume a relatively
constant amount of power in our design. CPU handles naviga-
tion control along with ROS node management while GPU is
dedicated towards CNN processing which operates in parallel
to the other ROS nodes. Both Jetson platforms are designed
with unified memory, where the LPDDR4 is shared between
GPU and CPU. The SOC is responsible for a few background
operations specific to the Jetson design, such as managing the
BPMP (Boot and Power Management Processor) and IRAM.

Because CNN is always executing on GPU, the CPU-based
navigation control is limited by the throughput of the CNN.
This GPU-to-CPU dependency raises the question as to how
the CNN speed affects the power consumption of GPU and
CPU at the system-level. In Figure 13, we breakdown the
power of each component and CNN model, as well as the
accumulated system-level power. Different colors indicate
different models. As can be seen in Figure 13(a), CPU
and GPU dominates power consumption, though there are
some differences among themodels especially in GPU power.
However, one notable finding from this per-component power
consumption is that a Lidar consumes as much power as the
two processors and even more than CPU.

VOLUME 10, 2022 73397



R. Zelek, H. Jeon: Characterization of Semantic Segmentation Models on Mobile Platforms for Self-Navigation

FIGURE 12. Power monitoring sequence with ENet deployed on the TX2.

FIGURE 13. System and CNN power dissipation (a) Components on the
TX2 (b) AGX Xavier accumulation (c) TX2 accumulation.

FIGURE 14. Energy efficiency comparison of the CNN models in terms of:
(a) Frames per second per watt (b) Maximum battery lifetime of the XP-1.

Considering the net power consumption with the models,
power was generally lower as the model speed increased.
We found an exception to this trend when comparing
FCN-AlexNet and ERFNet. FCN-AlexNet was slightly
faster, however, it consumed about 1.4W more from GPU
than ERFNet. We then dug deeper to try and understand the
efficiency rates of the models, which we measure and report
in Figure 14, along with the maximum battery lifetime of our
system comparing each model and platform.
Observations 5: From the power consumption measure-

ments with ENet, the Lidar sensor (including all of its

FIGURE 15. Argmax visualization example, diagram inspired by [44].

components) consumes a very comparable amount of power
compared to the GPU chip alone.
Observations 6: From the energy efficiency comparisons,

we find that model speed is a good indicator of its energy
efficiency, but not necessarily a direct correlation.

VI. OPTIMIZATIONS
A. ACCELERATION OF ARGMAX LAYER ON GPU
We found an opportunity for Caffe [40] and NVCaffe [43]
to be optimized, which was also discovered by [44] in 2018,
but unaddressed by either Caffe developer, up until at least
this paper. From the statistics of the design mentioned in the
Performance section, we found a significant bottleneck while
the network output was being post-processed, which turned
out to be when calculating the argmax of the CNN’s final
layer. During the argmax stage, all of the possibly predicted
classes are iterated through for each pixel, and the index
consisting of the largest value contains the final prediction
for that pixel. Figure 15 shows a visualized example as to
how the iteration for this processing is done on a 2D image
with multiple classes, where the red arrows represent argmax
computations being done on each pixel of the image, and
over each class. From digging through the source code of
Caffe, we found that this layer was being processed by the
CPU, which computes the argmax primarily sequential for
each pixel. Given that our network output mask was 480 ×
360 pixels, this adds up to over 1.7M sequential operations.
Since the argmax operation for semantic segmentation does
not have dependencies among neighboring pixels, each pixel
does not need to be checked sequentially. By fully paralleliz-
ing the pixel-wise argmax towards the GPU, we can allocate
one CUDA thread per pixel to achieve a significantly higher
performance improvement. Figure 16 shows the end-to-end
timing breakdown of our system comparing both CPU-based
and GPU-based argmax implementations.

Additional performance results of the various models com-
paring the CPU-based argmax with the GPU-based argmax
are shown in Fig. 17a, when tested on our Jetson platforms
with CUDA 10 and cuDNN 7.5. Fig. 17b shows the result-
ing end-to-end latency on our Jetson boards with our opti-
mized GPU-based argmax implementation. Our mask-based
local navigation algorithm accounts for about 56ms of the

73398 VOLUME 10, 2022



R. Zelek, H. Jeon: Characterization of Semantic Segmentation Models on Mobile Platforms for Self-Navigation

FIGURE 16. Optimized end-to-end latency breakdown with ENet
deployed on the TX2. (a) Original latency using CPU-based argmax
(b) Optimized latency using GPU-based argmax.

FIGURE 17. Optimized performance with the CNN models (a) FPS
(b) Optimized end-to-end latency.

reported TX2 latencies and about 22ms of the AGX Xavier
latencies.

We also experimented themodels with TensorRT 7.1 (latest
compatible with JetPack, at the time of this writing) and
found that they didn’t support the argmax layer. However,
from experimenting with their reference code, the results
indicated that they computed the argmax via CPUwhile using
additional host-side code.

B. BOOSTING FPS WITH SENSOR FUSION
Sensor fusion is an emerging approach in the self-driving
community to further help improve the reliability and capa-
bilities of vision systems onboard autonomous vehicles. For
example, the authors in [45], [46], and [47] showed an
enhanced perceptive system accuracy when both Lidar and
Camera sensor data were fused together.

To continue accelerating the system scan rate and ensure
rapid updates to our vehicle, we apply a sensor fusion by
using the segmentedmask from our camera and our Lidar sen-
sor, as shown in Figure 18. Yellow cells represent data from
CNN and Lidar sensor. Light green cells represents checks
in our algorithm that look at the magnitude and direction
of the CNN-based trajectory while light blue cells represent
checks that look for obstacles detected by the Lidar sensor.
Darker green cells represent decisions by the algorithm that
determine a safe direction for the vehicle to travel, while
following the trajctory calculated from the CNN mask and
still considering data from the Lidar sensor. Darker blue
cells represent navigation decisions where the Lidar sensor

is prioritized over the CNN mask due to faster processing
and higher accuracy of Lidar. In such cases, the vehicle
will navigate based on the Lidar data, with a fixed angular
direction, which is referred to in the diagram as ‘‘slightly’’.
Red cells indicate no safe direction could be found, which
means that vehicle is commanded to stop and then reverse to
find a safer direction. Our sensor fusion takes both sensors
as inputs to a state machine that is continuously executing as
a ROS node (orange cell). Initially, a navigation target with
speed and direction is determined and based on themask from
the segmentation. Before finalizing a navigation decision,
the updated distance data from the Lidar is also considered
according to the velocity of the initial navigation target. If the
data from the Lidar confirms that there are no obstacles in
that targeted direction, then the vehicle follows this direction
with the appropriate speed. Otherwise when an obstacle is
detected in the target direction, then the vehicle will search
for a safe direction while prioritizing the Lidar’s sensor data.
If a safe direction still cannot be found, then the vehicle will
reverse for a few seconds and then repeat the search for a safe
direction once the Lidar sensor confirms that the vehicle is
cleared from obstacles.

Such a pair of redundant sensors not only improves the
accuracy of the vehicle perception (as mentioned earlier),
but it also improves the performance of the vehicle’s scan
rate. When sensors can operate in parallel to each other,
the amount of scans the navigation controller receives in
a given time interval is the accumulation of both of those
sensors added together, creating the overall scan rate. Our
state machine navigates and reacts to obstacles according to
the most updated data from both sensors, where each sensor
updates its data independently and at its maximum rate. This
implementation of parallel sensors enables a sensor fusion
with performance that meets the real-time frame rate standard
of 30 frames per second, because it doesn’t need to wait for
both sensors to send data and can operate with short delays
from the CNN. Figure 19 shows the scan rate speedup from
fusing lidar with our camera-based vision. This results in a
system response time that is usually less than 27ms on both
TX2 and AGX Xavier configurations.

VII. ANALYSIS AND DISCUSSIONS
Considering the accuracy, performance, and energy efficiency
tradeoffs of our systems comparing the different CNNs,
an optimal model can be correctly selected. In Figure 20,
each is equally weighted and normalized for a fair com-
parison between models. Normalization is based on the
mean and standard deviation of mIoU (accuracy), optimized
forward-pass time (performance), and net power consump-
tion (energy-efficiency).

Based on all of the statistics and results, we can rec-
ommend ENet for the mobile-edge vehicle as it achieves
more optimal performance and energy-efficiency compared
to the other CNNs, with a relatively minor reduction in
accuracy. If the accuracy for camera-based vision needs to
be improved, ERFNet would be our next recommendation

VOLUME 10, 2022 73399



R. Zelek, H. Jeon: Characterization of Semantic Segmentation Models on Mobile Platforms for Self-Navigation

FIGURE 18. Sensor fusion flow diagram.

FIGURE 19. Sensor fusion scan rate speedup when fusing our camera
(using ENet) with lidar.

as long as the speed of camera-based vision can afford
to be reduced by roughly 40%, which may be acceptable
for slower speed robots. If accuracy is the highest priority
while performance and energy efficiency can be ignored,
FCN8 and FCN-VGG16 would be the best solutions of these
models. Based on our qualitative assessment, we found that
FCN8 (stride of 8) is better for segmenting the contours of
the obstacles while FCN-VGG16 (stride of 32) is more so
suited for generic clustering of obstacles, meaning that their
edges and contours would not be as important. For naviga-
tion in earthquake-struck zones, FCN8 would be better than

FIGURE 20. Normalized comparison between the models (points closer
to the CNN name-label are better).

FCN-VGG16 due to the higher priority of needing to detect
the irregular contours of the road cracks and other irregular
types of obstacles encountered.

To further understand why some of the models do better
than others and like we discussed in the earlier sections,
we broke each model down at a per-layer level. The more
accurate models compute over 100M parameters, although
they suffer from worse performance and energy efficiency.
The models originally designed for semantic segmentation

73400 VOLUME 10, 2022



R. Zelek, H. Jeon: Characterization of Semantic Segmentation Models on Mobile Platforms for Self-Navigation

(ERFNet, ENet, SegNet) show that by widely distributing
the parameters across layers/modules, they can be designed
efficiently with a low number of total parameters. For
instance, SegNet computes fewer parameters than the mod-
els converted to FCN because the SegNet decoder reuses
max-pooling indices from the encoder when upsampling the
feature maps. However, as the accuracy results showed, this
technique turned out to be detrimental to SegNet’s accu-
racy, resulting in a worse accuracy than all the other models
we tested. ENet computes the fewest amount of parameters
because of its heavy utilization of bottleneck modules based
on dilated and asymmetric convolutions, which significantly
reduces the size and execution time of each convolution,
as shown in the graphs mentioned earlier. These design fea-
tures in ENet resulted in it as performing better than all the
other models we tested, in terms of both FPS, latency, as well
as energy-efficiency, all while not suffering from significant
tradeoffs in terms of the accuracy, making it an ideal model
for self-navigation on mobile platforms.

VIII. CONCLUSION
In this paper, we present a mobile-based unmanned vehi-
cle design that operates in real-time and can detect unique
obstacles in earthquake-struck zones amongst other areas
where road conditions are not ideal. From various field test
measurement with our proof-of-concept vehicle, we observed
unique differences of various semantic segmentation models
and identified performance bottlenecks. With optimizations
applied on computation acceleration and sensor processing,
we achieved up to 5× speedup than baseline design.
In this work, we treated different types of obstacles equally

for the proof-of-concept vehicular design, meaning that
objects were defined as either an obstacle or non-obstacle.
In future work or on a larger scale production, priority
can be given to the vehicle to further decrease the risk of
collision/damage. One such example would be if the platform
simultaneously detects road cracks to the left and gravel
(which is defined in this paper as an other ‘‘irregular object’’)
to the right. In such a scenario, the platform would still steer
straight and away from both obstacles, but it could also assess
the risk of both objects and choose to aim its trajectory more
away from the road crack (riskier obstacle) while providing
itself more margin for error, as the less-risky gravel type of
obstacle would not be as significant towards damaging the
vehicle.

ACKNOWLEDGMENT
The work was conducted with the startup fund that Hyeran
Jeon received from University of California Merced.

REFERENCES
[1] H.-H. Jebamikyous and R. Kashef, ‘‘Autonomous vehicles

perception (AVP) using deep learning: Modeling, assessment, and
challenges,’’ IEEE Access, vol. 10, pp. 10523–10535, 2022, doi:
10.1109/ACCESS.2022.3144407.

[2] R. Stricker, M. Eisenbach, M. Sesselmann, K. Debes, and H.-M. Gross,
‘‘Improving visual road condition assessment by extensive experiments
on the extended GAPs dataset,’’ in Proc. Int. Joint Conf. Neural Netw.
(IJCNN), Jul. 2019, pp. 1–8.

[3] M. Nie and K. Wang, ‘‘Pavement distress detection based on transfer
learning,’’ in Proc. 5th Int. Conf. Syst. Informat. (ICSAI), Nov. 2018,
pp. 435–439.

[4] D. Arya, H. Maeda, S. K. Ghosh, D. Toshniwal, A. Mraz, T. Kashiyama,
and Y. Sekimoto, ‘‘Transfer learning-based road damage detection for
multiple countries,’’ Aug. 2020. arXiv:2008.13101.

[5] F. Yang, L. Zhang, S. Yu, D. V. Prokhorov, X. Mei, and H. Ling, ‘‘Feature
pyramid and hierarchical boosting network for pavement crack detection,’’
IEEE Trans. Intell. Transp. Syst., vol. 21, no. 4, pp. 1525–1535, Apr. 2020.

[6] L. Zhang, F. Yang, Y. D. Zhang, and Y. J. Zhu, ‘‘Road crack detection
using deep convolutional neural network,’’ in Proc. IEEE Int. Conf. Image
Process. (ICIP), Sep. 2016, pp. 3708–3712.

[7] Q. Zou, Y. Cao, Q. Li, Q. Mao, and S.Wang, ‘‘CrackTree: Automatic crack
detection from pavement images,’’ Pattern Recognit. Lett., vol. 33, no. 3,
pp. 227–238, Feb. 2012.

[8] Y. Shi, L. Cui, Z. Qi, F. Meng, and Z. Chen, ‘‘Automatic road crack
detection using random structured forests,’’ IEEE Trans. Intell. Transp.
Syst., vol. 17, no. 12, pp. 3434–3445, Dec. 2016.

[9] H. Oliveira and P. L. Correia, ‘‘CrackIT—An image processing toolbox
for crack detection and characterization,’’ in Proc. IEEE Int. Conf. Image
Process. (ICIP), Oct. 2014, pp. 798–802.

[10] J. Huyan, W. Li, S. Tighe, Z. Xu, and J. Zhai, ‘‘CrackU-Net: A novel deep
convolutional neural network for pixelwise pavement crack detection,’’
Struct. Control Health Monitor., vol. 27, no. 8, p. e2551, Aug. 2020.

[11] P. Pinggera, S. Ramos, S. Gehrig, U. Franke, C. Rother, and R. Mester,
‘‘Lost and found: Detecting small road hazards for self-driving vehicles,’’
in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Oct. 2016,
pp. 1099–1106.

[12] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson,
U. Franke, S. Roth, and B. Schiele, ‘‘The cityscapes dataset for semantic
urban scene understanding,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2016, pp. 3213–3223.

[13] H. A. Alhaija, S. K. Mustikovela, L. Mescheder, A. Geiger, and C. Rother,
‘‘Augmented reality meets computer vision: Efficient data generation for
urban driving scenes,’’ Int. J. Comput. Vis., vol. 126, no. 9, pp. 961–972,
Sep. 2018.

[14] G. J. Brostow, J. Shotton, J. Fauqueur, and R. Cipolla, ‘‘Segmentation and
recognition using structure from motion point clouds,’’ in Proc. ECCV,
2008, pp. 44–57.

[15] H.Maeda, Y. Sekimoto, T. Seto, T. Kashiyama, and H. Omata, ‘‘Road dam-
age detection and classification using deep neural networks with smart-
phone images,’’ Comput. Aided Civil Infrastruct. Eng., vol. 33, no. 12,
pp. 1127–1141, 2018.

[16] X. Gao, T. Chen, R. Niu, and A. Plaza, ‘‘Recognition and mapping of land-
slide using a fully convolutional DenseNet and influencing factors,’’ IEEE
J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 14, pp. 7881–7894,
Aug. 2021, doi: 10.1109/JSTARS.2021.3101203.

[17] R. Ashour, M. Abdelkader, J. Dias, N. I. Almoosa, and T. Taha,
‘‘Semantic hazard labelling and risk assessment mapping during robot
exploration,’’ IEEE Access, vol. 10, pp. 16337–16349, 2022, doi:
10.1109/ACCESS.2022.3148544.

[18] J. Ji, X. Lu, M. Luo, M. Yin, Q. Miao, and X. Liu, ‘‘Parallel fully
convolutional network for semantic segmentation,’’ IEEE Access, vol. 9,
pp. 673–682, 2021, doi: 10.1109/ACCESS.2020.3042254.

[19] A. Petrovai and S. Nedevschi, ‘‘Semantic cameras for 360-degree envi-
ronment perception in automated urban driving,’’ IEEE Trans. Intell.
Transp. Syst., early access, Mar. 14, 2022, doi: 10.1109/TITS.2022.
3156794.

[20] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, ‘‘Densely
connected convolutional networks,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 4700–4708.

[21] S. Jegou, M. Drozdzal, D. Vázquez, A. Romero, and Y. Bengio, ‘‘The one
hundred layers tiramisu: Fully convolutional densenets for semantic seg-
mentation,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Work-
shops, Jul. 2017, pp. 1175–1183, doi: 10.1109/CVPRW.2017.156.

[22] A. Valenzuela, C. Arellano, and J. E. Tapia, ‘‘Towards an efficient seg-
mentation algorithm for near-infrared eyes images,’’ IEEE Access, vol. 8,
pp. 171598–171607, 2020, doi: 10.1109/ACCESS.2020.3025195.

[23] E. L. Droguett, J. Tapia, C. Yanez, and R. Boroschek, ‘‘Semantic segmen-
tation model for crack images from concrete bridges for mobile devices,’’
Proc. Inst. Mech. Eng., O, J. Risk Rel., vol. 236, no. 4, pp. 570–583, 2022,
doi: 10.1177/1748006X20965111.

[24] J. Li, Q. Sun, K. Chen, H. Cui, K. Huangfu, and X. Chen, ‘‘3D large-scale
point cloud semantic segmentation using optimal feature description vector
network: OFDV-Net,’’ IEEEAccess, vol. 8, pp. 226285–226296, 2020, doi:
10.1109/ACCESS.2020.3044166.

VOLUME 10, 2022 73401

http://dx.doi.org/10.1109/ACCESS.2022.3144407
http://dx.doi.org/10.1109/JSTARS.2021.3101203
http://dx.doi.org/10.1109/ACCESS.2022.3148544
http://dx.doi.org/10.1109/ACCESS.2020.3042254
http://dx.doi.org/10.1109/TITS.2022.3156794
http://dx.doi.org/10.1109/TITS.2022.3156794
http://dx.doi.org/10.1109/CVPRW.2017.156
http://dx.doi.org/10.1109/ACCESS.2020.3025195
http://dx.doi.org/10.1177/1748006X20965111
http://dx.doi.org/10.1109/ACCESS.2020.3044166


R. Zelek, H. Jeon: Characterization of Semantic Segmentation Models on Mobile Platforms for Self-Navigation

[25] S. Matsuzaki, H. Masuzawa, and J. Miura, ‘‘Image-based scene recog-
nition for robot navigation considering traversable plants and its manual
annotation-free training,’’ IEEE Access, vol. 10, pp. 5115–5128, 2022, doi:
10.1109/ACCESS.2022.3141594.

[26] S.Mehta,M. Rastegari, L. Shapiro, and H. Hajishirzi, ‘‘ESPNetv2: A light-
weight, power efficient, and general purpose convolutional neural net-
work,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2019, pp. 9190–9200.

[27] I. A. Kazerouni, G. Dooly, and D. Toal, ‘‘Ghost-UNet: An
asymmetric encoder–decoder architecture for semantic segmentation
from scratch,’’ IEEE Access, vol. 9, pp. 97457–97465, 2021, doi:
10.1109/ACCESS.2021.3094925.

[28] K. Han, Y. Wang, Q. Tian, J. Guo, C. Xu, and C. Xu, ‘‘GhostNet: More
features from cheap operations,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2020, pp. 1580–1589.

[29] O. Ronneberger, P. Fischer, and T. Brox, ‘‘U-net: Convolutional networks
for biomedical image segmentation,’’ in Medical Image Computing and
Computer-Assisted Intervention, N. Navab, J. Hornegger,W.M.Wells, and
A. F. Frangi, Eds. Cham, Switzerland: Springer, 2015, pp. 234–241.

[30] A. Bréhéret. (2017). Pixel Annotation Tool. [Online]. Available:
https://github.com/abreheret/PixelAnnotationTool

[31] NVIDIA. (2017). Jetson TX2. [Online]. Available: https://www.nvidia.
com/en-us/autonomous-machines/embedded-systems/jetso% n-tx2/

[32] NVIDIA. (2018). Jetson AGX Xavier. [Online]. Available: https://www.
nvidia.com/en-us/autonomous-machines/embedded-systems/jetso%
n-agx-xavier/

[33] M. Hua, Y. Nan, and S. Lian, ‘‘Small obstacle avoidance based on RGB-D
semantic segmentation,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. Work-
shop (ICCVW), Oct. 2019, pp. 886–894.

[34] O. Khatib, ‘‘Real-time obstacle avoidance for manipulators and mobile
robots,’’ in Proc. IEEE Int. Conf. Robot. Automat., vol. 2, Mar. 1985,
pp. 500–505.

[35] E. Shelhamer, J. Long, and T. Darrell, ‘‘Fully convolutional networks for
semantic segmentation,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 39,
no. 4, pp. 640–651, Apr. 2017.

[36] M. Everingham, L. VanGool, C. K. I.Williams, J.Winn, andW. Zisserman,
‘‘The PASCAL visual object classes (VOC) challenge,’’ Int. J. Comput.
Vis., vol. 88, no. 2, pp. 303–338, Sep. 2010.

[37] E. Romera, J. M. Álvarez, L. M. Bergasa, and R. Arroyo, ‘‘ERFNet: Effi-
cient residual factorized ConvNet for real-time semantic segmentation,’’
IEEE Trans. Intell. Transp. Syst., vol. 19, no. 1, pp. 263–272, Jan. 2018.

[38] A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello, ‘‘ENet: A deep
neural network architecture for real-time semantic segmentation,’’ 2016,
arXiv:1606.02147.

[39] V. Badrinarayanan, A. Kendall, and R. Cipolla, ‘‘SegNet: A deep convolu-
tional encoder–decoder architecture for image segmentation,’’ IEEE Trans.
Pattern Anal. Mach. Intell., vol. 39, no. 12, pp. 2481–2495, Dec. 2017.

[40] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, ‘‘Caffe: Convolutional architecture for fast
feature embedding,’’ 2014, arXiv:1408.5093.

[41] E. Fernandez-Moral, R. Martins, D. Wolf, and P. Rives, ‘‘A new metric for
evaluating semantic segmentation: Leveraging global and contour accu-
racy,’’ in Proc. IEEE Intell. Vehicles Symp. (IV), Jun. 2018, pp. 1051–1056,
doi: 10.1109/IVS.2018.8500497.

[42] S. Ramos, S. Gehrig, P. Pinggera, U. Franke, and C. Rother, ‘‘Detecting
unexpected obstacles for self-driving cars: Fusing deep learning and geo-
metric modeling,’’ in Proc. IEEE Intell. Vehicles Symp. (IV), Jun. 2017,
pp. 1025–1032.

[43] NVIDIA. (2021). NVCaffe. [Online]. Available: https://gith
ub.com/NVIDIA/caffe

[44] T. Sämann, K. Amende, S. Milz, C. Witt, M. Simon, and J. Petzold, ‘‘Effi-
cient semantic segmentation for visual bird’s-eye view interpretation,’’ in
Intelligent Autonomous Systems, M. Strand, R. Dillmann, E. Menegatti,
and S. Ghidoni, Eds. Cham, Switzerland: Springer, 2019, pp. 679–688.

[45] X. Zhao, P. Sun, Z. Xu, H. Min, and H. Yu, ‘‘Fusion of 3D LiDAR
and camera data for object detection in autonomous vehicle applica-
tions,’’ IEEE Sensors J., vol. 20, no. 9, pp. 4901–4913, May 2020, doi:
10.1109/JSEN.2020.2966034.

[46] Z. Zhuang, R. Li, K. Jia, Q. Wang, Y. Li, and M. Tan, ‘‘Perception-
aware multi-sensor fusion for 3D LiDAR semantic segmentation,’’ in Proc.
IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2021, pp. 16280–16290.

[47] G. A. Kumar, J. H. Lee, J. Hwang, J. Park, S. H. Youn, and S. Kwon,
‘‘LiDAR and camera fusion approach for object distance estimation in
self-driving vehicles,’’ Symmetry, vol. 12, no. 2, p. 324, Feb. 2020, doi:
10.3390/sym12020324.

RYAN ZELEK received the B.S. degree in elec-
trical engineering from the University of Illinois
at Chicago, in 2016, and the M.S. degree in
computer engineering from San Jose State Uni-
versity, in 2020. In 2014, he did an internship
with Siemens Healthcare, as an Electrical Engi-
neer. Since 2016, he has been working as a Cus-
tomer Systems Engineer with Micron Technolo-
gies. He has been collaborating with MoCA Lab at
UC Merced as an Independent Research Scientist,

since 2020. His research interests include computer architecture, efficient
computing, deep learning, and embedded systems.

HYERAN JEON (Member, IEEE) received the
Ph.D. degree in computer engineering from the
University of Southern California, in 2015. She
is currently an Assistant Professor with the
Department of Computer Science and Engineer-
ing, University of California Merced, Merced,
CA, USA. She has industry experiences as a
Systems Software Engineer and a Research Intern
at Samsung Electronics, AMD Research, and IBM
T.J. Watson Research Center. Her research inter-

ests include efficient computer architecture and systems in the perspectives
of energy, performance, and security.

73402 VOLUME 10, 2022

http://dx.doi.org/10.1109/ACCESS.2022.3141594
http://dx.doi.org/10.1109/ACCESS.2021.3094925
http://dx.doi.org/10.1109/IVS.2018.8500497
http://dx.doi.org/10.1109/JSEN.2020.2966034
http://dx.doi.org/10.3390/sym12020324

