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ABSTRACT This paper proposes a vector-based localization system that uses both distance and angle
information. In wireless sensor networks, the positions of nodes are commonly determined by a range-based
localization system using distance information. If both distance and angle information are available, it is
possible to improve the accuracy of estimating the positions of nodes compared to a positioning system
with only distance information. Existing studies using distance and angle information assume that all the
nodes are directly connected to one another and do not consider a method for measuring angle information
between the nodes that are not directly connected. However, this assumption may not be valid for real-world
wireless sensor networks especially with a large number of nodes having a limited communication range.
The proposed localization algorithm solves this problem by a vector combination that transforms the vectors
on the local coordinate system to the network-wide global coordinate system. The proposed algorithm is
shown to be robust especially even in a network with 1-edge connectivity. Simulation results show that the
proposed algorithm has up to 70% higher positioning accuracy compared to the existing iterative range-based
algorithm such as MDS-MAP(C,R).

INDEX TERMS Angle of arrival (AOA), distance, localization, positioning, communication range, vector
combination, wireless sensor network.

I. INTRODUCTION
The position of nodes is very useful for wireless networks
because it allows great opportunities like location-based ser-
vices and transmit power optimization. The global position-
ing system (GPS) is currently very popular for positioning,
in which the distances between satellites and a receiver are
measured and the location of the receiver is estimated by
the trilateration method. GPS, however, may not be an effec-
tive solution for wireless sensor networks since the signals
from satellites do not work indoors and, more importantly,
it requires high cost and high power consumption for small
devices. Therefore, it is of prime importance to estimate
the locations of the nodes more efficiently without GPS.
In wireless sensor networks with numerous nodes, it is com-
mon that the nodes in the network exchange necessary infor-
mation, such as distance and connectivity information, and
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estimate the locations of the nodes by range-based localiza-
tion algorithms.

Recently, advances in hardware development and wire-
less communication technology have made it possible to
measure the angle of arrival (AOA) of signal and apply
it into range-based algorithms in large network scenarios.
Accordingly, high positioning performance can be achieved
by methods of calculating the position of nodes using angle
information. Although most of the existing range-based
research uses only distance information or only angle infor-
mation for estimating the position of nodes, some algorithms
for positioning using both distance and angle information are
proposed [1]–[4]. The method that uses both information can
provide higher positioning accuracy compared to the conven-
tional distance-based methods in exchange for some resource
costs (e.g., hardware cost, system complexity, power con-
sumption). Improving node positioning performance through
additional resource costs may be considered a good approach,
since issues related to cost, complexity, and even power
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consumption can be overcome as technology advances. But
it is assumed that the AOA between every single node pair in
the network is known or measured in those algorithms. In the
real world, however, two nodes can measure AOA only when
they are in close proximity (within the communication range),
and it is difficult to know the AOA between two nodes that are
far away from each other (beyond the communication range).
Thus, such an assumption about the full knowledge of all the
AOA in the network is not practical and is hardly feasible in
large networks.

In addition, for a large network, there are likely to be
1-edge connectivities in some parts of the network. When
a network is presented in a graph, it is said to be k-edge
connected if and only if it remains connected even after the
removal of any k − 1 edges [5]. If a network is 1-edge con-
nected, some nodes have only one connected node. In such
a case, it is possible to measure the distance between those
1-edge connected nodes, but it is difficult to estimate the
location of those nodes because either at least two distances or
a distance and anAOAare required to calculate the location of
nodes. Since the conventional range-based algorithms usually
use either distance or AOA, not both, it is difficult, if not
possible, to estimate the location of the nodes in a network
with 1-edge connectivity.

Based on the aforementioned motivation, the goal of this
paper is to overcome the aforementioned limitations of the
conventional localization algorithms in large networks by
vector combinations between nodes with both distance and
angle information. In practical wireless sensor networks,
generally, each node does not have any knowledge of the
geographical coordinate system, such as GPS, and only has
the AOA information in its local coordinate system due to the
cost and power consumption budget of the nodes. Since the
AOA information of each node is measured in its local coor-
dinate system, it is necessary to define a network-wide global
coordinate system and transform every AOA information in
the local coordinate system to the global coordinate system
so that the absolute orientation in every AOA information is
identified in the global coordinate system. In other words, the
proposed algorithm processes the angle information based
on the relationship of the local coordinate systems of the
nodes to create a global coordinate system. Then, every vector
between all nodes in local coordinate systems is transformed
to another vector on the global coordinate system by vector
combination, in which a new vector can be defined between
the nodes that are beyond the communication range. The
proposed algorithm is referred to as an enhanced hybrid
localization system (EHLS) in this paper. The contributions
of this paper are summarized as follows:

1) A hybrid localization algorithm with both distance
and angle information is proposed for large networks.
Unlike the existing algorithms, the proposed algorithm
does not assume that every node in the network is
directly connected to each other. Instead, for those
nodes that are far beyond the communication range,

vector combination is used to find the angle informa-
tion between the nodes.

2) The proposed algorithm is robust with a high posi-
tioning performance especially even in a network with
1-edge connectivity, in which the existing localization
algorithms do not work well.

3) An extensive number of simulations are performed
to consider multiple nodes distributions, and var-
ious amounts of distance and angle measurement
errors to analyze the positioning performance of
the proposed algorithm for large networks. EHLS
can provide up to 70% higher positioning accuracy
than the conventional range-based localization method
(MDS-MAP(C,R)) [6].

The remainder of this paper is organized as follows:
Focusing on the existing localization algorithms, several
studies related to this research is introduced in section II.
The proposed algorithm is described in detail in section III.
The performance results of the comparison between the pro-
posed algorithm and the existing algorithms have shown in
section IV. In the last, a simple conclusion is described in
section V.

II. RELATED WORKS
The traditional algorithms for range-based localization (e.g.,
least-squares minimization (LSM), simulated annealing,
genetic algorithms) can estimate the position of nodes
through iterative calculations using distance information, but
the convergence speed is generally very slow or there is a
problem of being stuck in the local minima without finding
the optimal solution. To mitigate this problem, a multidimen-
sional scaling (MDS)-based localization method is often used
to provide a very good starting point to the LSM method [6].

Studies on MDS-based localization systems have been
active over the past decade. The most basic MDS method,
classical MDS (CMDS) [7], uses the property of the
scalar product and eigenvalue decomposition to calculate
the position of a node in a matrix of squared distance.
It is easy to calculate and can provide a good starting
point for all nodes because all information is calculated
at once. but, it does not guarantee good positioning per-
formance in irregular topology or large networks because
the error of each component expands to the positioning
performance error of all nodes. The result of the CMDS
method is the relative position of the nodes, and it can
be further converted into the absolute position using a lin-
ear transformation technique such as procrustes analysis
(PA) [8]. Shang applied the MDS-based positioning method
even in an environment containing connectivity information
instead of measured distance values [6], [9]. He also intro-
duced a general MDS-based calculation method through the
MDS-MAP series (i.e., MDS-MAP(C), MDS-MAP(C,R),
MDS-MAP(P), MDS-MAP(P,R)). MDS-MAP(C) has the
same advantages and disadvantages as CMDS because it
is a positioning method similar to CMDS, except that
connectivity information can replace distance information.
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MDS-MAP(C,R) has the advantage of being able to improve
the positioning performance of nodes through repeated cal-
culations, it has the disadvantage of requiring that much
calculation time. MDS-MAP(P) which is a method of com-
bining local maps generated by each node has the advantage
of showing superior positioning performance compared to
MDS-MAP(C) in an irregular network. However, there is a
disadvantage in that errors may be accumulated in the process
of combining each local map. MDS-MAP(P,R) corrects the
incorrectly anticipated location of nodes occurring in the
cumulative process through repeated LSMcalculations. Since
the calculation of the position of each node takes place after
updating the location information of its own neighboring
nodes, it has the disadvantage of requiring continuous com-
munication between the nodes and lengthening the calcula-
tion time.

In order to perform the range-based positioning even
in complex network topology, many studies on dis-
tributed or cluster-based calculation methods have also
been conducted. Stojkoska et al. [10], Yu and Wang [11],
Shon et al. [12], [13] proposed algorithms that divide the net-
work into several clusters and perform calculations based
on MDS or triangulation for each cluster, and combine the
results later. These studies are a realistic approach to cluster-
based localization, but there is a disadvantage in that the
clustermap could not be synthesized if the number of gateway
nodes was insufficient or an error occurred when selecting
the cluster head. Costa et al. [14] assumed that each node
only knows the distance to the neighboring nodes and intro-
duced a distributed calculation that updates the map through
communication with each other. Zhang et al. [15] proposed
distributed localization system based on MDS-MAP. it can
reduce the computational complexity of MDS-MAP of cen-
tralized type. These algorithms have the same advantages and
disadvantages as the MDS-MAP(P,R) has.

Additionally, there have been studies to improve position-
ing performance through the prediction of additional infor-
mation. For range-based algorithms, the distance between
the nodes that cannot communicate directly can be estimated
by a sum of the distances between the intermediate nodes
using shortest path algorithms such as Dijkstra or Floyd.
However, since this estimated distance is different from the
actual Euclidean distance, there is some performance loss in
localization accuracy. To reduce the performance loss, it is
necessary to estimate the distance more accurately. Iyengar
and Sikdar [16] classified quadrilateral formations and esti-
mated more accurate distances using triangulation. In this
method, there is a disadvantage that cannot be applied when
the number of gateway nodes is less than two. Jia et al. [17]
and Wang and Qiu [18] used a heuristic method to estimate
the distance and merge local maps created for each cluster.
Through this, a method combining local maps was suggested
even under insufficient conditions (commonly, η+ 1 number
of nodes are required for the positioning system to merge
local maps, where η is the number of dimensions of space).
But, there is a limitation in that a method of avoiding the

FIGURE 1. Wireless sensor network model with 1-edge connectivity.

accumulation of errors in positions of nodes that occurred in
the merging process is not presented.

Meanwhile, localization algorithms using angle informa-
tion have also been studied. Ash and Potter [19] proposed
a RAST algorithm that calculates the position of a node in a
network using only AOAmeasurements.Watabe [20] devised
a node localization system using AOA through a two-step
calculation process through the LSM approach. However,
these AOA-based algorithms has the limitation that at least
each node must have at least two adjacent nodes. In addition,
a positioning system using both distance and angle informa-
tion as an input value was also proposed by Abreu and Des-
tino [1]. This algorithm, referred to as super MDS (SMDS),
is a node localization method that estimates vectors using the
angle between neighboring nodes and calculates the position
of nodes using the vectors. Since then, several SMDS-based
studies have been conducted [2]–[4]. These algorithms that
use distance and angle information at the same time have high
positioning performance than the existing algorithms that use
only distance information. And the performance of position-
ing estimation of those algorithms is closer to or better than
the iterative LSM-based method. However, the SMDS-based
algorithms require all the angles for every node pair, and
it is difficult to know the angle between nodes that are far
apart and not directly connected. Due to this limitation, it is
practically difficult to implement the SMDS-based algorithm
in large networks.

III. PROPOSED ALGORITHM
The main feature of the proposed algorithm is to improve the
positioning accuracy by generating vectors between nodes
that are not directly connected. The existing hybrid (use
both distance and angle information) localization algorithms
require distance and angle information between all nodes to
generate a kernel matrix for calculating the positions of all
nodes [1]–[4]. However, obtaining such information (espe-
cially, angle information) between two nodes that are not
directly communicated is difficult, if possible. The proposed
algorithm calculates distance and angle values by generating
vectors between nodes that are not directly connected and cal-
culates the positions of all nodes by reconstructing necessary
information in a large network.

Fig. 1 shows the wireless sensor network model with
1-edge connectivity in a two-dimensional space. Some nodes
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in the network are only connected with one neighboring node,
which is called 1-edge connectivity. A large network with
a random node distribution is often likely to have 1-edge
connectivity around the outermost part of the network. If the
communication link at the 1-edge connectivity fails, the con-
nectivity of the whole network is broken and some nodes in
the network are unreachable.

It is assumed that the proposed algorithm is applied to the
network with the following conditions:

• All nodes have no or little mobility.
• There are one or more routing paths between any pair of
nodes in a network.

• Every node can estimate distance and angle values from
the neighboring nodes within the communication range.

• The network can have 1-edge connectivity.

There are several reasons to limit the mobility of nodes.
Mobility of sensor nodes can lead to the deterioration of the
quality of communication links and the failure of data trans-
mission [21]. Also, mobility leads to frequent route changes,
and it causes a considerable packet delivery delay. Joins to the
network sometimes occur due to their movement, but nodes
cannot start transmitting data as soon as they connect to the
network. In addition, mobility brings additional effects, such
as small-scale fading (e.g., Doppler shift, time variations)
[22]. The proposed localization method has three steps: dis-
tance and angle estimation, vector combination, and position
calculation. The details of each step (how to manufacture
the distance and angle information, how to construct vector
between nodes, etc.) are described below.

A. DISTANCE AND ANGLE ESTIMATION
This section describes the contents of estimating distance and
angle and aligning them for EHLS localization. It consists
of three steps: 1) estimating distance information between
neighboring nodes, 2) transforming every node’s local coordi-
nate system to the global coordinate system, and 3) estimating
every node’s angle information from neighboring nodes in the
global coordinate system.

1) ESTIMATING DISTANCE INFORMATION
Each node calculates the distance value from each neighbor
node within its communication range, in which the calcula-
tion is often conducted by utilizing signal measurement data
such as received signal strength indicator (RSSI) or time of
flight (TOF), etc. RSSI technique requires no additional hard-
ware, so it can be applied to almost wireless sensor networks.
RSSI technique measures the signal strength decreases as
the signal propagates outward from the transmitter. For this
reason, RSSI techniques are highly influenced by noise in the
environment. TOF technique uses signals that move close to
the speed of light, advanced hardware is needed to accurately
record the arrival time of wireless signals [23]–[25]. After
estimating distance values, it is possible to perform adjust-
ments of distance values for all estimated distance values
between neighboring nodes for better performance.

However, the estimated distance between nodes k and l
based on the measurement at node k and the estimated dis-
tance between the same nodes (nodes k and l) at node l may
be slightly different in an actual wireless network. Generally,
there is no way to find the accuracy of the sensor in each
node, it is difficult to see which estimation is more accurate
in practical systems. Thus, an estimated distance value d̂kl is
required to take an average by following equations:

d̂kl =

{
dkl+dlk

2 if (k, l) ∈ E,
∞ Otherwise,

(1)

where E is the set of directly connected node pairs. This
procedure of estimating distance values may be simple and
common in practical wireless networks.

Note that, in a wireless network, measured distance values
contain multiplicative noises which increase in proportion to
distance [26]–[28] like the following equation:

ρkl = dkl + dklN (0, nf 2), (2)

where ρkl and dkl mean the measured distance value and
the true distance value, respectively. nf is the distance noise
factor.

2) COORDINATE TRANSFORMATION
Since each node measures relative angle information in its
local coordinate system, those relative angle values of the
nodes can not be simply aligned together. Thus, the rela-
tive angle value measured on each local coordinate system
requires a coordinate transformation, which is the angle sys-
tem conversion of each local coordinate to the unified coor-
dinate (global coordinate) system, in order to get the absolute
arrival angle on the global coordinate system. In other words,
the offset angle value (i.e., orientation) of every local coor-
dinate system with respect to the global coordinate system
is estimated and then the relative arrival angle measured on
every node’s local coordinate system is converted by adding
the offset angle value to get the absolute arrival angle on the
global coordinate system.

As shown in Fig. 2, angle information consists of orienta-
tion information and AOA measurements. The angle values
at node k from node l can be represented by the following
equation:

θkl = φkl + αk , (3)

where θkl is the absolute arrival angle at node k from node l
on the global coordinate system, φkl is relative arrival angle
at node k from node l on the local coordinate system (i.e.,
AOA measurement), and αk is the offset angle value (i.e.,
orientation) of node k on the global coordinate system.
The method of calculating the orientations of nodes is

studied in the literature [19], where each orientation of the
nodes can be calculated by using a relaying technique. The
equations for calculating the set of orientations α = {αm}ᵀ

are expressed in (4)-(11). In angular calculations, the modulo
2π angular format is used. First, the set of relative arrival
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FIGURE 2. Representation of angle information: local coordinate system
and global coordinate system.

angles 8 is defined in matrix form as

8 = {φm} =


0 φ21 φ31 · · · φN1
φ12 0 φ32 · · · φN2
φ13 φ23 0 · · · φN2
...

...
. . .

φ1N · · · φ1N−1 0

 , (4)

where a relative arrival angle φkl is set to 0 when node k and
node l are not neighboring.

Next, by substituting (3) into the fact θkl = θlk + π , which
is obtained by using the alternate interior angles theorem,
the equation expressed in absolute angle and orientation is
obtained as

αk − αl = φlk − φkl + π. (5)

Let a(α) = {ei(αm)}ᵀ be the set of exponentiation of
orientations. By using the modulo 2π angular format, the
fundamental relation matrix B = a(α)a(α)∗ is calculated as

B = ei9 + 2I, (6)

where 9 = 8ᵀ
− 8 + π1N1

ᵀ
N , 1N is a column vector with

all components of 1, I is an identity matrix, and ei9 means
element-wise exponentiation of 9.
Then, in order to complete the matrix B, some elements

of B that correspond to the nodes which are not directly
connected have yet to be computed. The element Bkl , the
element in the k-th row and the l-th column of the matrix B,
is obtained as

Bkl = ei(αk−αl )

= ei((αk−αh(1))+(αh(1)−αh(2))+···(αh(L)−αl )), (7)

where L is the number of intermediate nodes between nodes
k and l, and h(1), · · · , h(L) are the indices for the interme-
diate nodes between nodes k and l which are determined by
the shortest path algorithm (e.g., Dijkstra algorithm). (7) is
converted using the fact αk − αl = φlk − φkl + π to

Bkl = ei((φh(1)k−φkh(1)+π )+(φh(2)h(1)−φh(1)h(2)+π )+

+···+(φlh(L)−φh(L)l+π )). (8)

Finally, the set of exponentiation of estimated orientations
a(α̂) is calculated by using the eigen-decomposition of matrix
B. The eigenvector corresponding to the largest eigenvalue of
matrix B is a(α̂). The eigen-decomposition is expressed as

B = QB3QB
ᵀ, (9)

where QB is a matrix with eigenvectors as column vectors of
B and3 is a diagonal matrix with eigenvalues as diagonal ele-
ments. By using phase angle, the set of estimated orientations
α̂ is calculated as

α̂ = 6 a(α̂), (10)

where 6 a(α̂) is element-wise phase calculation of a(α̂). Each
local coordinate system of a node is rotated onto the global
coordinate system by the corresponding element of α̂.

3) ESTIMATING ABSOLUTE ANGLE INFORMATION
Once the coordinate transformation is done, the relative angle
of each node is represented on the global coordinate system.
The estimated absolute arrival angles θ̂kl between neigh-
boring nodes k and l on the global coordinate system are
obtained by adding the corresponding estimated orientation
α̂k to relative arrival angle φkl as

θ̂kl = φkl + α̂k . (11)

Note that, for N nodes, the above process is done by a matrix
calculation as

2̂ = 8+ α̂1ᵀN , (12)

where the set of relative angles8 on local coordinate systems
is in (4), the set of estimated absolute arrival angles 2̂ is
defined as

2̂ = {θ̂m} =


0 θ̂21 θ̂31 · · · θ̂N1

θ̂12 0 θ̂32 · · · θ̂N2
...

...
. . .

θ̂1N · · · θ̂1N−1 0

 , (13)

and α̂ = {α̂1, · · · , α̂N } is the set of estimated orientations.

B. VECTOR COMBINATION
This section deals with the construction of vectors between
nodes that are one or more hops away from each other. After
estimating distance and angle values between neighboring
nodes, the distance and angle values at each node need to
be gathered in one place (e.g., central server or main node)
to calculate all the inter-node distances and absolute angle
values between nodes that are not directly connected. For the
common range-based localization system, the distance value
between nodes that are not directly connected is determined
by the shortest path algorithm (e.g., Dijkstra or Floyd). But,
these distance values are calculated by utilizing vector com-
bination techniques in the proposed method.

In the conventional range-based positioning algorithms
with no angle information, the distance between two nodes
over more than one hop is commonly calculated by the
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FIGURE 3. Example of the generated vector from node A to node F (three
hops).

shortest path algorithm, such as Dijkstra or Floyd. Fig. 3
shows a network with six nodes where, for instance, nodes
A and F are located far away enough to take three hops to
reach. The distance between nodes A and F is estimated as
a sum of the distances over the intermediate nodes d̂AF =
dAC + dCD + dDF , where dAC is the distance between the
nodes A and C, by the shortest path algorithm. Although this
estimated distance is different from the actual distance, it is
commonly used as an effective distance value between the
two nodes over more than one hop.

If the absolute angle information between neighboring
nodes is calculated, the distance value closer to the actual
distance can be obtained by a combination of vectors. That
is, more accurate distance values between two nodes can
be derived. In Fig. 3, the vector from node A to node C is
computed as

EvAC = dAC , (14)

where dAC is the distance between nodes A and C and θ̂AC is
the absolute angle between nodes A and C given in (11). Sim-
ilarly, the vector from node C to node D and the vector from
node D to node F are computed as EvCD and EvDF , respectively.
Then, the vector from node A to node F is finally calculated
by a combination of the vectors as

EvAF = d̂AF = EvAC + EvCD + EvDF . (15)

In order to minimize the effect of multiplicative noise, the
vector from one node to another is obtained by combining
the vectors along the intermediate nodes of the routing path
selected by the shortest path algorithm. As shown above, the
vector from node A to node F is computed by the combination
of the vectors along the shortest path, having the nodes C
and D as intermediate nodes, since it is least affected by
multiplicative noise.

As a result of the above vector combinations,
M = N (N − 1)/2 different vectors are obtained. The set of
estimated vectors V̂ containing vector information between
all pairs of nodes can be represented as

V̂ = [v̂1, v̂2, . . . , v̂M ]ᵀ, (16)

where the estimated vector v̂k = [ρkcosθ̂k , ρksinθ̂k ]ᵀ is
the k-th estimated vector and M is the total number of
node pairs.

FIGURE 4. Flow diagram of the proposed algorithm.

C. POSITION CALCULATION
This section deals with finding the location of nodes. The set
of absolute positions X̂ is obtained as [1, eq. (19)]

X̂ = C+ · V̂, (17)

where C+ is the pseudo-inverse matrix of the coefficient
matrix C which is defined as

C =


1N−1×1 −IN−1×−1
0N−2×1 1N−2×1 −IN−1×N−1

. . .
. . .

. . .

01×N−2 1 −1

 . (18)

The set of absolute positions X̂ is expressed as

X̂ = [x̂1, x̂2, . . . , x̂N ]ᵀ, (19)

where a absolute position value x̂k = [x̂k,1 x̂k,2]ᵀ is the
estimated position of k-th node and x̂k,1 and x̂k,2 are the first
and second coordinate of two-dimensional space. The overall
process of the proposed algorithm is indicated in Fig. 4.

IV. PERFORMANCE EVALUATION
Extensive simulations are performed to evaluate the local-
ization performance of the proposed algorithm. Among
many localization algorithms in the literature, three exist-
ing range-based algorithms (CMDS, MDS-MAP(C,R) [6],
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FIGURE 5. Node localization in an environment where nodes are
randomly distributed(nf = 0.05, σφ = 5◦): (a) EHLS(proposed algorithms),
(b) CMDS, (c) MDS-MAP(C,R) with 20 refinement iterations [6], and
(d) RAST [19].

RAST [19]) can operate in a large network even when there
are nodes that are not directly connected, so these algo-
rithms are suitable for a fair comparison with the proposed
algorithm.

In simulations, 64 nodes(N ) were randomly distributed in
a square area with 20m × 20 m. The communication range
for all the nodes is set to 5m. The positioning errors for
each algorithm are obtained by an average of as many as
5000 simulations. MDS-MAP(C,R) was tested by setting the
number of repetitions of the refinement process to 1 or 20.
The measured distance value is modeled through the change
of the distance noise factor nf in (2). For accurate perfor-
mance evaluation, we evaluate the positioning accuracy of the
proposed algorithm from various perspectives (i.e., distance
and angle error, node density, the number of routing nodes).
In addition, the measured angle value is modeled through the
change of the standard deviation of angle error σφ as

φ̃kl = φkl + N (0, σ 2
φ ), (20)

where φ̃kl and φkl refer to the measured AOA value and the
real AOA value, respectively.

A. VISUALIZATION OF THE NODE DISTRIBUTIONS
Fig. 5 visualizes the node distributions, in which 64 nodes
are randomly distributed when distance noise factor nf is
0.05 (average error for distance at 5m is 0.2m) and standard
deviation of angle error is σφ = 5◦ (average error for angle
is 4◦). The actual node locations and the estimated loca-
tions by each algorithm are plotted for comparison purposes.
As shown in the figures, the proposed algorithm provides
higher positioning accuracy than the conventional algorithms
in a random node distribution with small angular error. Note
that RAST calculates the position of the node with only angle
information and shows relatively good positioning results in
an environment with little error in angle measurements.

FIGURE 6. Node localization in an environment where nodes are
randomly distributed with 1-edge connectivity(nf = 0.05, σφ = 5◦):
(a) EHLS(proposed algorithms), (b) CMDS, (c) MDS-MAP(C,R) with
20 refinement iterations [6], and (d) RAST [19].

Fig. 6 shows the node distributions with randomly dis-
tributed nodes with 1-edge connectivity when distance noise
factor is nf = 0.05 and the standard deviation of angle error
is σφ = 5◦. As illustrated in the figures, the conventional
range-based algorithms show poor positioning performance
in a network with 1-edge connectivity. In particular, as shown
in Fig. 6, the positioning error of RAST is very high because
of the node with the 1-edge connectivity at the bottom left
of the network. Since RAST requires each node to have
connections with at least two neighboring nodes to compute
the distance, it fails to predict the size of the whole network
with 1-edge connectivity and thus it is confirmed that huge
positioning errors occur. On the other hand, the proposed
algorithm is more robust and provides higher positioning
accuracy than the conventional algorithms even in a network
with 1-edge connectivity.

B. DISTANCE AND ANGLE ERROR
Measurement error is a very important parameter in a wireless
sensor network. Fig. 7 shows the positioning error of the algo-
rithms as a function of distance noise factor nf in a random
node distributed environment with a certain angle error. Since
the positioning error of RAST is often very high in networks
with 1-edge connectivity, RAST is excluded in the figure
to make a fair performance comparison with the proposed
algorithm. Fig. 7(a) shows a comparison of positioning errors
when the reliability of measured AOA was high (σφ = 5◦).
In all cases, the proposed algorithm hasmore than 50%higher
positioning performance than the conventional algorithms.
In particular, in an environment where distance noise factor
nf is less than 0.05, the proposed algorithm has about 62%
improvement of positioning error performance in compared
to MDS-MAP(C,R) with 20 refinement iterations. Fig. 7(b)
shows a comparison of positioning errors when the standard
deviation of angle error σφ is 13◦ (average error for angle is
10.4◦). It is clear that the proposed algorithm shows higher

VOLUME 10, 2022 73443



I. Kang, H. Nam: Robust Localization System Using Vector Combination in Wireless Sensor Networks

FIGURE 7. The effect of the distance measurement error on positioning
accuracy when there is angle measurement error: (a) σφ = 5◦ and
(b) σφ = 13◦ (N = 64).

FIGURE 8. The effect of the distance measurement error on positioning
accuracy when there is angle measurement error (N = 100, σφ = 5◦).

positioning performance than the conventional algorithms
in all cases. In particular, the proposed algorithm has 10%
higher positioning performance improvement compared to
MDS-MAP(C,R) with 20 refinement iterations even in the
environment where distance noise factor nf is low (nf = 0.2:
average error for distance at 5m is 0.8m).

Fig. 8 shows the positioning error of the algorithms as
a function of distance noise factor nf in a random node
distributed environment when set to a different node density
(N = 100, σφ = 5◦). The proposed algorithm shows higher
positioning performance than the conventional algorithms
in this environment. Through the above simulations, it is
confirmed that the proposed algorithm has higher positioning
performance than the conventional algorithms in an envi-
ronment with small angular errors. Also, it is worth noting
that the positioning performance of the proposed algorithm
increases as the angle error becomes smaller with a given
distance noise factor nf .

C. NODE DENSITY
In order tomore accurately evaluate the effect of node density,
the positioning accuracy was calculated using node density
as a variable. The distance noise factor nf was fixed at
0.1 and the standard deviation of angle error σ 2

φ was fixed
at 5◦ in these simulations. Fig. 9 shows the positioning
error of the algorithms while changing the density of the
nodes. It is confirmed that as the density of nodes increases,
the difference in positioning accuracy between the proposed

FIGURE 9. The effect of node density on positioning accuracy (nf = 0.1,
σφ = 5◦).

FIGURE 10. The effect of the number of routing nodes on positioning
accuracy (nf = 0.1, σφ = 5◦).

algorithm and the existing algorithm is reduced. This can
be interpreted as the result that the increase in node density
reduces the 1-edge connectivity situation, resulting in few
unpredictable situations in the conventional distance-based
algorithms. In other words, the proposed algorithm is robust
with a high positioning performance even in the network with
1-edge connectivity.

D. NUMBER OF ROUTING NODES
To evaluate the effect of this parameter, we calculated the
positioning accuracy as the size of the node distribution area
changes while maintaining the node density. Fig. 10 shows
the positioning error of the algorithms while changing the
number of routing nodes. In order to maintain the node den-
sity, when the sizes of the node distribution area are 20m ×
20m, 25m × 25m, 30m × 30m, and 35m × 35m, the number
of nodes (N ) is set to 64, 100, 144, and 196, respectively. The
distance noise factor nf was fixed at 0.1 and the standard devi-
ation of angle error σ 2

φ was fixed at 5◦ in these simulations.
Even if the network size increases in an environment with
small angular errors, the proposed algorithm shows higher
positioning performance compared to other algorithms.

V. CONCLUSION
A novel hybrid localization algorithm is proposed in this
paper. For large networks with some nodes that are not
directly communicated, the positions of all the nodes in the
network are estimated using distance and angle information.
The proposed algorithm can compute the vector between two
nodes with multi-hops by utilizing the vector combination.
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Even though the proposed method is a noniterative form that
is calculated at once, better results can be obtained when
compared with the iterative method in a random node distri-
bution environment with small errors in AOA. In particular,
in an environment where distance noise factor nf is low
(σφ = 2.25◦), the proposed algorithm improves the position-
ing performance up to 70% as compared to the conventional
iterative method such asMDS-MAP(C,R) with 20 refinement
iterations. In addition, the proposed algorithm is shown to be
robust such that little positioning performance degradation is
observed even in a network with 1-edge connectivity.
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