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ABSTRACT Nowadays, it is common for applications to require servers to run constantly and aim as close as
possible to zero downtime. The slightest failure might cause significant financial losses and sometimes even
lives. For this reason, security and management measures against network threats are fundamental and have
been researched for years. Software-defined networks (SDN) are an advancement in network management
due to their centralization of the control plane, as it facilitates equipment setup and administration over
the local network. However, this centralization makes the controller a target to denial of service attacks
(DoS). In this study, we aim to develop a network anomaly detection and mitigation system that uses gated
recurrent unit (GRU) neural networks combined with fuzzy logic. The neural network is trained to forecast
future traffic, and anomalies are detected when the forecasting fails. The system is designed to operate in
software-defined networks since they provide network flow information and tools to manage forwarding
tables. We also demonstrate how the neural network’s hyperparameters affect the detection module. The
system was tested using two datasets: one with emulated traffic generated by the data communication and
networking research group called Orion, from computer science department at state university of Londrina,
and CICDDoS2019, a well-known dataset by the anomaly detection community. The results show that GRU
networks combined with fuzzy logic are a viable option to detect anomalies in SDN and possibly in other
anomaly detection applications. The system was compared with other deep learning techniques.

INDEX TERMS Anomaly detection, deep learning, fuzzy logic, gated recurrent unit, software-defined
networks.

I. INTRODUCTION
Over the years, it has become more common for applications
that require the Internet to be developed with availability as
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one of its main principles. It is common for those applica-
tions to require multiple servers to respond users’ requests,
demanding complex infrastructure to share resources and
forward requests. With the constant growth of networks, their
management has become increasingly complex, making them
harder to upgrade and maintain due to the incompatibility
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of heterogeneous hardware and software in addition to other
possible issues [1], [2].

Software-defined networks (SDN) present a solution to
management problems by having a centralized control plane,
separated from network devices, that coordinates a data
plane [2]. From the control plane, the network set of rules
and policies are established to the data plane, which is only
responsible for the data forwarding while it collects traffic
statistics from the network [3]. Therefore, the control plane
works as an interface for the applications that manage the
network to control the hardware devices through a protocol
(e.g., OpenFlow [4]), thus making possible more straightfor-
ward management of the network. SDN traffic is represented
in the form of flows which are groups of packets exchanged
between two hosts using the same port during a period of
time.

With the interface created through the control plane,
management applications such as resource allocation and
anomaly detection can be used in the network [5], [6]. In this
paper, a distributed denial of service (DDoS) and portscan
attack detection andmitigation systemwas developed towork
using SDN to collect flow information from the network and
block traffic from specific malicious Internet protocol (IP)
addresses. Thus, SDN is fundamental to simplify the flow
collection and mitigation of attacks due to the control plane
centralization mentioned above [7].

Denial of service attacks (DoS) as well as DDoS attacks
can be especially harmful to SDN due to the centralization
of the control plane since every new entry in a forwarding
table needs to be evaluated by the network’s controller, which
can get overwhelmed by numerous requests [1], [8]. If the
controller is not able to respond all these requests, the network
switches buffers can get saturated, resulting in the switch not
being able to handle legitimate flows from known sources.
Thus, intrusion detection systems (IDS) have an essential role
in SDN. The distributed characteristic from this type of attack
makes it harder to mitigate since various hosts need to be
recognized and blocked by the controller [9]. Portscan attacks
are the other anomaly studied in this article since they can act
as an enabler for DDoS and other threats. This type of attack
is used to gather information about open ports from hosts and
can result in exposure of vulnerabilities [10].

Intrusion detection techniques can be signature-based,
in which the system keeps a signature of previous attack
behavior and uses it to match with actual network traffic [11].
Since it needs previous information of an attack to work,
these systems have a hard time detecting unknown attacks
that do not match any signature. Another technique is called
anomaly-based, in which the system uses a baseline to match
with normal network behavior, raising an alarmwhen anoma-
lous traffic is detected [12]. This type of system can be used
to detect anomalies but may not be as accurate in identifying
the type of the ongoing attack as the signature-based tech-
nique. Contrastingly, anomaly-based systems are more likely
to detect novel or unknown attacks [13], [14]. In this work,
an anomaly-based system was used.

Deep neural networks (DNN) were used to draw the
baseline of the network traffic in this study due to its capa-
bilities in pattern recognition [15]. DNN have been used
in numerous pattern recognition solutions such as image
classification [16], anomaly detection [17], and time series
prediction [18]. Neural networks have evolved into different
types of configurations as a form of improving their perfor-
mance on different types of problems. Recurrent neural net-
works (RNN) have been used in sequential problems where
previous iterations affect future ones such as time series [19].

A subtype of RNN is the gated recurrent Unit (GRU)
network, which utilizes gates to influence what information
to keep and discard. With reset and update gates, the network
can learn what information is worth remembering while dis-
carding useless details [20]. When compared to other RNN,
such as long short-term memory networks (LSTM), GRU
presents an advantage of having less trainable parameters,
thus being more efficient on training [21].

In this work, a baseline is drawn from six different traffic
features (we also call them flow dimensions). A decision
boundary could be defined to classify if the analyzed flow is
anomalous or not. However, to avoid defining a hard thresh-
old and risk missing anomalies that are less disturbing and
barely noticed, a fuzzy inference system was used to decide
about the presence of an anomaly. This way, each feature has
a membership function and a sum of their result compared
to a boundary calculated based on the performance in each
dataset. This model was tested using two datasets: the first
with emulated traffic generated by the data communication
and networking research group called Orion, from the Com-
puter Science Department at State University of Londrina.
The second is CICDDoS2019, a well-known dataset by the
anomaly detection community that includes different types of
DDoS attacks (MSSQL, SSDP, CharGen, NTP, TFTP, SYN
flood, UDP flood and UDP-Lag) [22].

The main contributions of this paper are listed as follows:
• Present a combination of regression GRU networks and
a Fuzzy Logic classifier for anomaly detection;

• Present a detailed description of the proposed system so
it is reproducible and possible to validate;

• Compare the method with other deep learning tech-
niques presenting better results;

• Present a mitigation algorithm to block attacks before
the network controller gets overloaded and applications
stop.

The rest of this work is organized as follows: section II
presents related works; section III presents each module of
the developed system; section IV presents the test scenarios
and their results; and section V presents conclusions.

II. RELATED WORK
Network anomaly detection and intrusion detection are two
important and heavily studied fields, and numerous combina-
tions of techniques can be used to detect and mitigate attacks
from a network [23]–[27]. On top of that, the software-
defined networking (SDN) paradigm brings an evolution to
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network management and has been used as a flexible solution
to manage heterogeneous networks [3]. Thus, SDN intrusion
detection is an important field of study to be improved.

Novaes et al. [28] presented a detection and mitigation
system applied in a SDN environment using deep learning
and fuzzy logic techniques. In their work, long short-term
memory (LSTM) networks were trained to characterize traf-
fic by predicting 6 flow dimensions. A fuzzy membership
function was used to combine the network outputs with the
SDN real values and decide if the networkwas being attacked.
Then, a mitigation policy was used to identify and drop the
malicious flows. This study is an example of how effective
deep learning and fuzzy logic can be in traffic characteriza-
tion and how SDN can simplify the attack mitigation process.
Our study uses a similar methodology, but differs in the
type of neural network used, the mitigation algorithm, and
hyperparameter tuning.

X. Tao et al. [19] applied an anomaly detection algorithm
in a distributed parallel computing platform called Spark [29]
to train independent models as a way to increase the data rate
and prepare for 6G wireless communications. This algorithm
used a gated recurrent unit network to create a long term traf-
fic behavior and a subsample aggregation method to reduce
the dimensionality of the traffic before the detection.

Jing Yu et al. [30] described an intrusion detection system
that uses a convolutional neural network to detect intrusion
behavior. The model was compared to recurrent neural net-
works and presents a faster convergence, with better accuracy.

Kwadwo Boahen et al. [31] proposed an anomaly detec-
tionmethod using a random forest classifier. A particle swarm
optimization algorithm and a gravitational search algorithm
were used to optimize the random forest classification by
selecting relevant features from the datasets. In their study,
well known datasets were used to present the model’s effi-
ciency: NSL-KDD andUNSW-NB15. Despite not using deep
learning techniques, this work highlights how feature selec-
tion is an important topic in network anomaly detection due
to the high number of features collected from traffic. In our
work we use six features extracted from traffic that proved to
be successful in previous works.

Brajabidhu Singh et al [32] presented a framework based
on deep transfer learning using gated recurrent unit networks.
The model called WideDeep consists of a regression com-
ponent (wide) and a classification component (deep). The
method was also tested on well known datasets: KDDCup99
and UNSW-NB15. In this work, a feature selection pro-
cess is described using principal component analysis. Long
short-term memory network is also mentioned to have a
similar performance as GRU, something we confirmed with
our study.

Assis et al. [33] also used deep learning to detect and
mitigate network attacks with an anomaly based approach.
Convolutional neural networks were utilized to analyze IP
flow dimensions an recognize a pattern on network normal
traffic, pointing out anomalies as they occur. The mitigation
module receives IP data and recognizes themalicious IPwhen

an anomaly is detected. The system operates in one second
intervals to detect and mitigate anomalies.

Novaes et al. [34] presented a generative adversarial
network framework to detect and mitigate anomalies.
It addresses the vulnerabilities that deep neural networks
have against adversarial attacks. This way, a generator and
a discriminator are trained against themselves, resulting in a
discriminator that classifies traffic as normal or anomalous.
As for mitigation, an algorithmic module takes actions using
the detection as a basis. To validate the proposed system, two
datasets were used, one of them being generated by the group,
and the other being CICDDoS2019 dataset.

Andresini et al. [35] proposed an autoencoder-based intru-
sion detection system using a novel deep metric learning
methodology (DML) named ‘‘RENOIR’’. In their work,
autoencoders and triplet networks are combined to analyse
flow based samples from a network. The system was tested
with three datasets: KDDCUP99, AAGM177 and CICIDS17.
The work did not present a mitigation module, but concluded
that the appliedmethodology is comparable to state-of-the-art
DML algorithms.

Bhuvaneswari et al. [36] presented an framework that
detects anomalies in internet of things traffic using fog com-
puting to decentralize the security system. Fog nodes were
used to distribute the traffic load thus reducing the latency and
increasing the accuracy. Convolutional deep neural networks
were used to classify the traffic between normal and attack.

Ren-Hung et al. [37] described a system that aims to detect
anomalies as fast as possible by analysing only the first few
packets from each flow. To do so, they preset a framework
called D-PACK that uses a convolutional neural network and
an autoencoder to analyse packets. The presented results
show that the detection can be made with as few as two
packets from each flow.

Priyadarsini et al. work [3] is a survey about software
defined networks. In the study, an analysis was presented
about the state-of-the-art of traffic management and its
details, including efficient routing, control implementation,
architecture, security, etc. The study also highlighted some
unexplored problems that could be discussed on future works.

At last, articles [1] and [38] are reviews about detection
and mitigation of DDoS attacks in SDN. The former sys-
tematically reviewed security mechanisms and characterized
them in four categories: Information theory-based, Machine
learning-based, Artificial Neural Networks based andmiscel-
laneous methods. It also presents challenges on SDN security
and its research. The latter provided taxonomy based on
detection strategies such as statistical and machine learning
while also presented emerging approaches (e.g. honeynet,
network slicing etc.).

It is noticeable that network anomaly detection is widely
studied field and, despite that, there is still room for evo-
lution. It is not common for other works to present regres-
sion approaches and mitigation solutions. This study aims
to combine gated recurrent unit neural networks with fuzzy
logic to detect and mitigate portscan and denial of service
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FIGURE 1. System overview.

attacks. We also aim to show how hyperparameters affect the
algorithm’s performance and why they were chosen.

III. THE PROPOSED SYSTEM
As represented in Fig. 1, the proposed system utilizes
software-defined networks’ capabilities of quickly gathering
flow information to feed a deep learning model that detects
and mitigates anomalies every second. To do so, six neural
networks are trained to predict one of the following flow
dimensions: bits per second, packets per second, source port
entropy, source IP entropy, destination port entropy, and des-
tination IP entropy. The reason for choosing to use six models
during development is to improve performance throughout
the tests, since the difference in order of magnitude between
the features could harm the learning process. Each prediction
is then compared to the actual traffic in a fuzzy membership
function. Finally, a defuzzification threshold is defined based
on attack data to classify the flow as normal or anomalous.

Shannon’s entropy, represented in (1) [39], is used to
transform IP and port information from a qualitative mea-
surement to a quantitative one. This is necessary since the
neural network requires numeric values to work with. In this
formula, i represents each individual event, pi the probability
for it to happen, and N is the number of possible events. The
resulting entropy (H ) tend to be lower when the probability
of a specific event is significantly higher than the others.
In the proposed system, for example, a denial of service attack
would notably lower the destination entropy and probably be
detected for this reason.

H = −
N∑
i=1

pi log2(pi) (1)

The rest of this chapter is organized as follows:
section III-A explains how the gated recurrent unit (GRU)
networks were utilized, section III-B describes fuzzy logic

and how it was applied, and section III-C details how the
system mitigates attacks.

A. GATED RECURRENT UNIT NEURAL NETWORKS
Recurrent neural networks such as LSTM and GRU are com-
monly used in problems in which sequence and correlation
between data entries are relevant, namely in time-series fore-
casting or sequence generation [40]–[42]. This happens due
to gates in the structure of those networks that utilize previous
data entries to influence next predictions while update them-
selves. The influence comes in the form of decisions on rather
keep an information or discard it [6], [43].

GRU neurons have two sets of weights:W , which is com-
bined always with the neuron input (the input is represented
by x), and V , which will always get combined with the neu-
ron’s hidden state. Both are adjusted during training phase,
as well as the bias set (represented by letter b) which has the
same role as in traditional neural networks.

GRU neurons also have two gates: ‘‘reset gate’’ and
‘‘update gate’’. The former is responsible to adjust how much
information from the last output will be discarded and is
represented by rt in (2), while the latter will balance the
amount of information sent to the next state and is represented
by zt in (4). The reset gate value is applied to compute h̄t in (3)
while the update gate is used to determine the current hidden
state ht in (5) [44], [45].

rt = σg(Wrxt + Vrht−1 + br ) (2)

h̄t = tanh(Whxt + Vh(rt · ht−1)+ bh) (3)

zt = σ (Wzxt + Vzht−1 + bz) (4)

ht = (1− zt ) · ht−1 + zt · h̄t (5)

The functions sigmoid and tanh are defined respectively by
the following equations:

sigmoid(x) =
1

1− e−x
(6)

tanh(x) =
ex − e−x

ex + e−x
(7)

In the proposed system, as aforementioned, six GRU net-
works are trained to each predict one of the six flow dimen-
sions since, during development, tests with a single network
predicting all dimensionswere avoided. As input, the network
receives all mentioned flow dimensions of the last X seconds.
The data is normalized using the standard scaler from the pre-
processingmodule of the Python library scikit-learn [46]. The
normalization is commonly used with neural networks since
it helps improving the model’s performance while also fixing
the input and output range for activation functions [47]–[49].
As for the training, keras Python library [50] was used
with Adam optimizer with default parameters. During train-
ing, only normal data is utilized as input, therefore, it is
expected that anomaly data will result in significantly larger
error. Hyperparameters were tuned to maximize F1-score of
anomaly detection of the test dataset in the first scenario.
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Neural networks require numerical input that describe the
behavior of the network. For this reason, values such as IP
address and protocol need at least a way tomap to a numerical
value. Even if the values are mapped, their numerical order
does not represent a useful information, thus hindering the
network’s learning process. Therefore, to well represent the
network’s traffic to the neural network, the six dimensions
used in this paper were chosen. Total of bits and packets are
a quantitative dimension that measure the amount of traffic
collected. Alternatively, entropies of source and destination
of IP and port are quantitative measurements of the traffic
extracted from qualitative ones and are most important for its
characterization, since they describe how well distributed the
traffic is throughout the network.

When dimensions such as bits/s and packets increase in
value, for example in a flash crowd event, it is expected that
entropies stay close to the same since each user uses on aver-
age the same resources. When a DDoS attack occurs, some
hosts will stand out on requests thus disturbing entropy mea-
sures by lowering destination IP and port ones while increas-
ing source port, since it is a distributed attack. A portscan
attack will very likely increase destination port entropy since
several ports are being targeted by packets, and possibly lower
source IP entropy if a single host is the attacker. Based in
this variance we are able to distinguish portscan from DDoS
attacks.

B. FUZZY LOGIC
First introduced in 1965 in [51], Fuzzy Logic is a useful
tool that has been used in problems that need to work with
uncertainty [52]. It offers a gradient of possibilities as an
alternative to the true and false from binary logic, making
it closer to human logic [53]. To do so, it utilizes linguistic
values, as opposed to crisp ones, defined by membership
functions and allow partial truth for each of those values [54].

Membership functions define the degree of association of
a variable to a set it represents. The degree varies in an
interval between 0 and 1 included, where 0 means completely
unrelated and 1means completely related. Different functions
can represent each set that will be used by inference rules to
reach a conclusion [52]. This versatility allows for a variety
of usages to help computers solve real world problems [53],
[55], [56].

In the proposed system, fuzzy logic is used to decide
whether the collected traffic can be considered normal or
anomalous. Since there are six flow dimensions being ana-
lyzed, without fuzzy logic it would be necessary to choose
a hard threshold to each dimension individually, creating a
necessity of another decision threshold of how many anoma-
lous dimensions to raise an alarm. Such an approach is
susceptible to two main problems: if a single dimension
presents an intense anomaly but others do not, a false negative
would occur; additionally, if an attack affects lightly every
dimension but does not surpass any of the thresholds, the
attack would not be perceived. Thus, fuzzy logic is applied
to determine the degree of anomalousness for each dimension

and raises an alarmwhenever the sum of this degree surpasses
certain threshold, regardless of howmany dimensions are cur-
rently affected. This solves both mentioned problems while
only requiring a single threshold.

This was accomplished using the Gaussian membership
function represented in (8), where x represents the real traffic,
y the predicted traffic and σ the standard deviation from the
last n seconds (n will be defined in the next section).

f (x) = 1− e
−(x−y)2

2(4.47σ )2 (8)

The constant 4.47 was chosen based on Brett G. Amidan’s
usage of Chebyshev’s inequality [57] represented in (9).
In this equation, Xd represents the data, µ the data mean,
σ the standard deviation of data, and, finally, k represents
the number of standard deviations from the mean. Thus,
given a k , the inequality presents the data percentage that lies
between k standard deviations from the mean, which can also
be interpreted as the probability of a given Xd that belongs to
the data to be inside that interval. It is important to note that
this inequality should be used when the data distribution is
unknown [57].

P(|Xd − µ| ≤ kσ ) ≥
(
1−

1
k2

)
(9)

Given a probability P of X to be an outlier, k can be
determined using (10). In this work, the degree of certainty
used was 95%, resulting in a P = 0.05 and, consequently,
k ' 4.47.

k =
1
√
P

(10)

Algorithm 1 summarizes how the detection phase works.
Respectively, Xt and Xt−1 represent all network’s traffic
dimensions from the analyzed second and previous ones.
y represents each network’s prediction and is sent to the fuzzy
membership function to be compared to the actual observed
values (Xt ). An anomaly is detected if the fuzzy membership
function returns a value greater than the calculated threshold.
To distinguish portscan attacks from DDoS, we check which
entropies are the most affected. Portscan attacks will make
the destination port entropy increase, while DDoS attacks
decrease the destination port and increase source port entropy.
The dimensions affected are determined by how great the
prediction error is in that second. If source port entropy is
the most affected and greater than expected, a DDoS attack
is reported. Otherwise, if destination port entropy is greater
than expected, it is considered a portscan attack.

C. ATTACK MITIGATION IN SDN
Software-defined networks have as an advantage the simplic-
ity that the centralization of the control plane can provide
while configuring its behavior [38]. From the control plane,
it is possible to set up forwarding policies to network switches
with instructions to block flows from specific IP addresses.
Thus, it should be possible to design an autonomous system
that not only detects but mitigates attacks immediately when
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Algorithm 1 Anomaly Detection Algorithm
Require: Xt−1← (x1, x2, x3, x4, x5, x6); fuzzy_treshold
Ensure: Is normal or anomalous
1: y1← Gru_Bits(x1, x2, x3, x4, x5, x6)
2: y2← Gru_Packets(x1, x2, x3, x4, x5, x6)
3: y3← Gru_IP_Src_entropy(x1, x2, x3, x4, x5, x6)
4: y4← Gru_Port_Src_entropy(x1, x2, x3, x4, x5, x6)
5: y5← Gru_IP_Dst_entropy(x1, x2, x3, x4, x5, x6)
6: y6← Gru_Port_Dst_entropy(x1, x2, x3, x4, x5, x6)
7: Y← (y1, y2, y3, y4, y5, y6)
8: fuzzy_number← fuzzy_membership_function(Y, Xt )
9: if fuzzy_number > fuzzy_threshold then
10: return Anomalous
11: else
12: return Normal

Algorithm 2Mitigation Algorithm
1: if Portscan attack then
2: attacked IP← IP address that receives most flows
3: Malicious IP← From the flows destined to attacked

IP, get the one with most variety of ports
4: if IP not in Safe List then
5: Drop Packets from malicious IP
6: else if DDoS attack then
7: attacked IP← IP that receives most packets
8: attacked port ← from attacked IP, get the port that

receives most flows
9: suspect IP list ← all IP’s that have destination to

attacked IP and attacked port
10: for IP in suspect IP list do
11: if IP not in Safe List then
12: Drop Packets from IP

the detection module raises the alarm, without the necessity
to wait for human interference [1]. To do so, in addition to the
detection module’s warnings, the mitigation module needs
the type of event detected and the flows which generated it.
Then, a specific algorithm should be followed to mitigate that
event by identifying and blocking the malicious flows from
that origin.

When an SDN switch receives new flows, it performs a
lookup in its forwarding table to determine where it should be
sent. If there are no matches, the network controller is con-
sulted for instructions. The forwarding table will be updated
based on what the mitigation module decides. The process
of consultation adds latency to the network and should be
avoided, thus some instructions should be sent preemptively
to switches if possible.

The mitigation algorithm is represented in Algorithm 2.
It utilizes a safe list to avoid dropping legitimate traffic due
to false positives from the detection module. To do so, while
there are no attacks, the mitigation module keeps a list of
source IP addresses that generated legitimate traffic in the last
five minutes. When an attack is detected, flows on the safe

list are not dropped since they are less likely malicious. The
system was tested mainly with distributed denial of service
and portscan attacks in two scenarios detailed in a further
section. When an IP is considered malicious and is not in the
safe list, all its flows are blocked for 20 seconds.

IV. PERFORMANCE EVALUATION AND RESULTS
ANALYSIS
A. SCENARIOS
Two datasets from different sources were used to evaluate
the detection and mitigation performance to showcase the
development method. The datasets present different charac-
teristics in the number of hosts, amount, and type of attacks,
representing diverse networks.

All tests were made in a Windows 10 machine with a
Ryzen 7 1700x, 32GB of RAM and Python version 3.8.7.
During tests, we aimed tomaximize the F1-scoremetric. Rep-
resented in (13), this metric represents the harmonic mean of
precision (represented in (12)) and recall (represented in (11))
and is appropriate for measuring performance in unbalanced
datasets such as the ones used in this study.

Network anomaly datasets tend to be inherently unbal-
anced. Network attacks are expected to happen sporadically,
while the prevalent behavior tend to be normal traffic. Since
datasets are designed to represent reality, it is common to
see such imbalance. Additionally, datasets may have normal
class as the most numerous one, but also being constituted by
many attack classes that, when combined, make timestamps
majoritarily malicious, thus creating imbalance for both sides
at the same time. In this case, some attacks might get under
or over represented, depending on how the dataset was gen-
erated, its creator’s objective and available resources. In the
first scenario, 90% of timestamps are benign traffic, while
only 10% of the second scenario. For this reason, accuracy
and precision alone will not represent well the model’s per-
formance and F1-score was chosen as main metric.

Precision =
TruePositive

TruePositive+ FalsePositive
(11)

Recall =
TruePositive

TruePositive+ FalseNegative
(12)

F1− score = 2
Precision× Recall
Precision+ Recall

(13)

For each scenario we present an overview, how it was
generated, it’s attacks, and how the data is organized.We used
these scenarios to validate the proposed model on how well
it detects anomalies and mitigates them. To do so, we need
enough normal traffic so the neural networks can learn the
network’s behavior and labeled attack data to calibrate the
fuzzy logic membership function. The following datasets
attend the requirements.

1) FIRST SCENARIO
The first dataset was created by the computer networks study
group from State University of Londrina and is available
online [58]. To generate the data, an SDN emulator called
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FIGURE 2. Scenario 1 emulated network topology.

mininet [59] was used to create a six switches structure in a
tree topology, where the first switch is the root of the tree, and
the other five are connected to it, as illustrated in Fig.2. Each
of the five ‘‘leaf’’ switches are connected to twelve hosts. The
network traffic was emulated using the Scapy [60] Python
library, which creates and sends packets through the network.
To simulate DDoS attacks, the software hping3 [61] was used,
while Scapy generated portscan attacks.
The dataset is divided into four days of 24 hours each,

and the data is organized in flows. Thus, it was necessary to
pre-process it to extract and normalize the six flow dimen-
sions mentioned in section III. One of the days has no attack,
and the other three have each a DDoS and a portscan attack
interval on different timestamps. Fig.3 shows the six dimen-
sions over the day without attacks.

2) SECOND SCENARIO
The second dataset is CIC-DDoS2019, made available by the
University of NewBrunswick [22]. This dataset was designed
to address themost commonDDoS attacks and resemble real-
world data. For this reason, background traffic was generated
based on a profiling system to simulate normal human behav-
ior from 25 users. The dataset is divided in 2 days of data, each
containing several DDoS attacks, and is organized as flows.
The attacks are labeled based on the type of attack with the
following:MSSQL, SSDP, CharGen, NTP, TFTP, SYNflood,
UDP flood and UDP-Lag. This dataset has been widely used
by the anomaly detection community [62]–[64].

Pre-processing is also necessary to extract and normalize
the six flow dimensions mentioned in section III. The first
day without its attacks was used to train the network, and the
results were drawn using the second day. Fig.4 displays the
six dimensions calculated from the dataset’s training day. Not
all of the attacks available were used in this work. The attacks
used were:MSSQL, NetBios, SSDP, and UDP. In this dataset,

all four have similar number of flows, so none of them should
be prominent over the others during the tests.

B. THE NEURAL NETWORK HYPERPARAMETERS
This section presents the tests and results from the hyper-
parameter tuning using the first dataset. After the tuning,
the model is trained individually for each dataset to make
it possible to see the model’s performance with a different,
unrelated network. The hyperparameters were tuned to find
the best neural network configuration. A brief explanation of
each:

1) Number of input seconds: it represents the amount of
previous traffic data used as input to the network. If the
number is X , the network will receive the X previous
seconds of data to predict the next one. More seconds
mean more context to the model.

2) Number of neurons in dense and GRU layers: More
neurons means more ways of processing information
and can result in a better performance on extracting
relevant knowledge from data. Too many neurons will
result in overfitting since the model will not have
enough data to train them, losing the ability to general-
ize the solution to the task.

3) Number of dense layers in the network: more layers
can result in the model developing the ability to extract
more complex information from the data presented.
Excess layers will result in a slower training time and
more data required to achieve the same result of fewer
layers.

4) Training batch size: the number of training samples
used between each weights update. Too few samples
will result in a poor gradient estimation since it only
uses a subset of the data to update the weights. Too
many will require more epochs to train the model since
the weights will be updated fewer times each epoch.

5) Fuzzy window: the network output is compared with
the actual traffic using a fuzzy membership function to
evaluate if an anomaly is present. This function also
receives the standard deviation from the last n sec-
onds, where n is the fuzzy window. Thus, the member-
ship tolerance to errors from the network will change
depending on how the traffic behaves. If the value is too
high, the fuzzy function will consider a traffic profile
that does not represent the current instant. A low value
can result in wrong classifications due to brief traffic
variations.

The first hyperparameter tuned was the number of seconds
of flow used as an entry to the network. As its possible to
see in Fig.5, models were trained with 5, 10, 15, 30, 40,
50 and 60 seconds, with 5 seconds settling the best perfor-
mance in F1-score metric (the closest to 1 the better). This
demonstrates that adding to the network more context in the
form of previous seconds does not improve its effectiveness in
detecting anomalies. Tests with lower amount of seconds did
not resulted in significant improvement thus being discarded.
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FIGURE 3. Scenario 1 data without attacks.

FIGURE 4. Scenario 2 training day.

Next, tests varying the number of neurons on the GRU
layer were made using 16, 32, and 64 neurons, and Fig.6
shows that the difference between the three is negligible.
After that, the number of dense layers in the network was
tested. By training networks with one, two, and three layers

with one and two layers leading the best performance as
shown in Fig.7.

To decide which layer disposition to choose, tests were
made with different amounts of GRU and dense neurons.
Fig.8 exhibits the best combinations between all the tests
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FIGURE 5. F1-score by number of input seconds.

FIGURE 6. F1-score over number of neurons in GRU.

FIGURE 7. F1-score over number of dense layers.

made. The arrangements always use a single GRU layer
followed by one or two fully connected layers. For example,
the best combination with a result of 0.9888: [32, 16, 1]
represents 32 GRU neurons, a dense layer with 16 neurons
followed by a single fully-connected neuron.

FIGURE 8. F1-score over the number of neurons on each layer.

FIGURE 9. F1-score over training batch size.

Subsequently, training batch size was evaluated from
120 to 420 inclusive with increments of 60. Results in Fig.9
show that 360 was the most effective batch by a slight differ-
ence.

Next, different fuzzy window values were tested.
As explained before, the usage of fuzzy logic in this work
consists of a membership function that decides if the neural
network’s traffic prediction could represent a real value. To do
so, an amount of previous traffic seconds is used to calculate a
standard deviation. We call this amount of seconds the fuzzy
window. Fig.10 shows that at least 20 seconds should be
necessary to detect anomalies better.

C. SCENARIOS RESULTS
1) FIRST SCENARIO
After tuning the model, anomaly detection results were mea-
sured in the last day of the dataset. Only deep learning tech-
niques were tested because they already outperformed most
shallow learning techniques and are dominant in publica-
tions [28], [36]. The results can be represented in a confusion
matrix as in Table 1 and Fig.11. Fig.12 shows values for
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FIGURE 10. F1-score over fuzzy window.

FIGURE 11. Scenario 1 normalized confusion matrix.

TABLE 1. Scenario 1 detection confusion matrix.

precision, recall and F1-score (the closer to 1.0 the better).
The tests were also made with other deep learning techniques
using the same architecture as GRU and the results are dis-
played in Table 2. The results show that CNN and LSTMwere
slightly under GRU’s performance but DNN did significantly
worse.

The precision value decreases its score when false positives
occur. In other words, when the neural network labels normal
data as anomalous, its precision decreases. We can conclude
that the higher the precision, the better the model could learn
and characterize the network traffic. The GRU model had a
better precision score than the others due to its proficiency
with time series. As expected, LSTM had results similar to
GRU since both are recurrent neural networks.

FIGURE 12. Scenario 1 detection metrics.

TABLE 2. Scenario 1 result comparison.

TABLE 3. Scenario 1 mitigation results.

An analysis of all false negatives of the models show that,
for both GRU and LSTM, 99% of them were from portscan
attacks. CNN had 53% of all its false negatives from portscan
attacks. Since convolutional neurons have no memory or
recurrent structure, CNN has to rely on spacial relations
between the values to represent the temporal factor from the
traffic. This is probably the reason that it has different results
from the recurrent models.

For mitigation tests, the algorithm was applied in the
dataset using the detection module’s output. There were
3, 957, 358 normal traffic flows, 87, 284 portscan flows, and
2, 871, 755 DDoS flows. The results are shown in Fig.13
and Table 3, both display the number of flows of each type
before and after mitigation. It is worth pointing out that
even if the detection module presented false negatives, the
mitigation module could drop all DDoS flows from the test.
This happens thanks to the blocklist that keeps dropping flows
from previously detected malicious IPs for a while. However,
there is a cost since if a legitimate user is flagged asmalicious,
it will briefly be unable to access the server.

It is noteworthy how portscan attacks are harder to detect
than DDoS. This happens because our system uses the neu-
ral network’s prediction error to indicate attacks. During a
portscan attack, destination port entropy increases since there
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FIGURE 13. Scenario 1: Number of flows before and after mitigation.

TABLE 4. Scenario 2 detection results.

are more ports being targeted and more uncertainty is added
to the system, source and destination IP entropy decreases
since a single IP sends more packages than normal average.
How impactful the attack is to our features is relative to how
many packets are malicious compared to the average normal
traffic. Portscan is a reconnaissance attack, its purpose is to
gather information rather than overload a system. Therefore,
with less flows and packets, a smaller and harder to perceive
variation will happen. DDoS attacks by nature have a great
amount of flows and packets as shown in Fig.13 thus being
easily detected.

This highlights the importance of fuzzy logic. Since it
combines the errors of all features, even when a single feature
presents an anomaly, the system is still able to recognize
an attack. Without a fuzzy membership function, the system
would rely on multiple hard thresholds to detect anomalies.
Those multiple thresholds would either be susceptible to false
negatives when not enough features point anomalies, false
positives when a single anomaly presents an outlier, or even
both.

2) SECOND SCENARIO
For the second scenario, the model’s anomaly detection
results are represented in Table 4 and Fig.14. Values for
precision, recall and F1-score are displayed in Fig.15. Results
with other deep learningmethods are also displayed in Table 5
and GRU, CNN and LSTM are still close to each other with
DNN behind by a bigger margin. Again, GRU’s precision
is higher than the other networks, but it is less sensible for
attacks than CNN and LSTM. The f1-score is still higher for
GRU as it has a better balance between precision and recall.

Based on the output of the detection module, mitigation
tests were made. The same algorithm was applied and the

FIGURE 14. Scenario 2 normalized confusion matrix.

FIGURE 15. Scenario 2 detection metrics.

FIGURE 16. Scenario 2: Number of flows before and after mitigation.

results are displayed in Fig.16 and Table 6. It is possible
to see that most malicious flows were dropped but there
is an increase in false positives, even with the safe list
avoiding mistaken drops. Different types networks might
require adjusts in how many seconds of safe list should
be implemented since depending on average user behavior.
Probably some normal traffic could be saved with different
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TABLE 5. Scenario 2 result comparison.

TABLE 6. Scenario 2 mitigation results.

configurations. It could be subject of a future work how a
safe list with variable seconds would work based on real time
user behavior.

V. CONCLUSION
In this paper, we presented an anomaly-based network
anomaly detection system using six GRU neural networks to
predict network traffic and apply fuzzy logic to compare it
with real traffic. The neural network is trained with regular
traffic only. For this reason, it is expected that anomalous
traffic results in significantly wrong predictions that will be
detected by the fuzzy membership function. A fuzzy thresh-
old is defined using training data with attacks. This model
was validated using two different scenarios. During tests, the
detection module achieved an F1-score of 98.9% in the first
scenario and 93.2% in the second.

The mitigation module relies on the detection module to
drop malicious flows. It contains a safe list and a block
list that gets updated automatically every second with the
information received. With this algorithm, we were able to
mitigate DDoS and portscan attacks.

In the first scenario results, it is noticeable how DDoS
attacks are more straightforward to detect due to their more
disturbing nature. Portscan attacks can be harder to identify
due to their low impact on network flow dimensions, thus
sometimes not reaching the defined fuzzy threshold. Despite
this, the proposed system still mitigated most of the attack
flows.

The second scenario original dataset has a variety of denial
of service attacks, but not all of them were used in this work.
The attacks used were: MSSQL, NetBios, SSDP, and UDP.
In this dataset, all four have similar number of flows, so none
of them should be over or underrepresented in relation to the
others. This scenario results show that the model could block
most of the malicious flows but had a higher false-positive
rate than the first scenario. The mitigation module’s safe list
was projected to help in this type of scenario by prevent-
ing normal flows from being dropped. We believe that it is
necessary more hours of normal data to improve the neural
network’s learning.

In this work, we compared the performance of GRU only
with deep learning methods. A deep neural network (DNN),
convolutional neural network (CNN), and long short-term
memory network (LSTM) were evaluated with the same
methodology. CNN and LSTM had similar results to GRU,
whereas DNN was noticeably worse.

For future work, we plan on improving the model’s detec-
tion by testing with other fuzzy logic membership functions
that may be more effective. Trapezoidal or beta-shaped func-
tions might help ignore minor deviations while highlight-
ing more significant ones. Although it still requires testing,
this might help minimize false positives. Another possible
experiment is to give less importance to bits/s and pack-
ets/s since they have a less predictable pattern as shown in
figures 3 and 4.

More datasets are also being researched and will be used
in future work. Hyperparameters tuning can be made with the
other scenarios to evaluate the performance. Finally, we also
plan on experimenting different deep learning methods such
as temporal-convolutional networks to characterize traffic.
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