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ABSTRACT In this article, we propose the construction of polar codes based on piecewise Gaussian
approximation (PGA) techniques. The PGA is first optimized and then compared to the Gaussian
approximation (GA) constructionmethod, showing performance gains for medium blocks and high precision
for long blocks, in scenarios with successive cancellation (SC) decoding and additive white gaussian
noise (AWGN) channel. Based on the PGA, we develop two approximations based on multi-segmented
polynomials that are easy to implement. We present the Approximate PGA (APGA) that is optimized
for medium blocks and provides a performance improvement without increasing complexity. Furthermore,
we develop the simplified PGA (SPGA) as an alternative to the GA, which is optimized for long blocks
and achieves high construction accuracy. Simulation results show that the APGA and SPGA construction
methods outperform existing GA and competing approaches for medium and long block codes with notable
performance improvement.

INDEX TERMS Polar codes, PC construction, Gaussian approximation, piecewise approximation.

I. INTRODUCTION
In 2009, polar codes (PC) were introduced by Arıkan [1].
PC are the first channel coding scheme to achieve channel
capacity with low encoding and decoding complexity. Due
to this and their excellent performance, PC were selected
for the fifth generation (5G) [2] wireless communications
standard.

The construction of PC consists of the calculation of the
channel reliability and the selection of the locations of the
information bits, i.e., the most reliable channel locations
will be used for the information bits [1]. When the block
length tends to infinity, the most reliable channels are also
called noiseless channels. Several construction methods have
been proposed in the last decade such as the Bhattacharyya
parameter (BP) and Monte Carlo (MC) [1]; density evolution
(DE) [3]–[5]; Gaussian approximation (GA) of density
evolution [6], [7]; and the polarization weight (PW) [8], [9].
The BP approach [1] is a recursive heuristic method that is
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excellent for the Binary Erasure Channel (BEC) as well for
other Binary Discrete Memoryless Channels (B-DMCs). The
MC method [1] is an exhaustive search method based on SC.
The study in [20] demonstrates the use of the BP and the MC
methods in the construction of PC over AWGN channels. The
DE approach has been proposed by Mori and Tanaka [3], [4],
which theoretically has the highest accuracy. To obtain the
error probability of each subchannel in a simplified form, Tal
andVardy [5] proposed amethod to calculate the upper bound
and the lower bound of this probability. The polarization
weight (PW) [8], [9] is a channel-independent approximation
method, which estimates the channel reliability as a function
of its index. Polar codes can also be constructed and
adapted to a specific decoder, for example, construction
of polar codes for List SC decoding [10] and Belief
Propagation (BP) decoding [11], [12]. In [13] the authors
propose a genetic algorithm framework that jointly optimizes
the PC construction and rate with a specific decoder. The
its construction obtained for BP decoder has performance
compared to SC decoder with list. Deep learning-based polar
code design proposed in [14] allows one to optimize codes for
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any finite block length, decoder and channel type considering
its noise statistics. They obtained a polar code construction
for BP decoder over Rayleigh fading channel with superior
performance.

Chung et al. [6] introduced GA, applying in Low-Density
Parity-Check (LDPC) code construction and [7] was the first
to use it in the construction of polar codes. GA was originally
described in integral form, known as exact GA (EGA). Due
to the complex integration, EGA has a high computational
cost associated with the numerical solution, which increases
exponentially with the polarization levels. As an alternative,
Chung et al. [6] proposed the approximate GA (AGA), which
is an approximation composed of a two-segment function.
We note that this alternative is implemented by transcendental
functions, maintaining a high computational complexity. The
author in [15] also proposed an alternative to numerical
integration, approximating GA by a three-segment function.
Trifonov also proposed in [16] a multi-segment polynomial
approximation, without the use of transcendental and inverse
functions. The AGA performance for short and medium
blocks for the AWGN channel is similar to the Tal and Vardy
method, but it fails for long blocks due to the approximation
error around zero. Examples of algorithms and performance
comparisons can be found in [20] and [21].

For long blocks, the PC construction with EGA is
expensive due to the numerical integration, in addition
to the errors associated with the numerical integration
solution, and the AGA construction is imprecise due to
the approximation error around zero. Furthermore, both
require inverse, transcendental functions and are composed of
complex recursive functions. Improved approximations with
better performance than AGA [6] were proposed in [17],
[18] and [19]. The work of Fang et al. [17] analyzed the first
and second derivatives of EGA and developed a simplified
multi-segment polynomial approximation without using
transcendental functions and without the need to calculate
an inverse function. Dai et al. [18] introduced the concepts
of polarization violation set, the polarization reversal set
and a new metric named cumulative-logarithmic error, which
results in an algorithm that uses transcendental and inverse
functions. Ochiai et al. [19] analyzed the behavior of EGA in
the logarithmic domain and proposed another approximation
based on a logarithmic function (transcendental function) and
that employs an algebraic expression for the inverse function.

Given the computational complexity of EGA related to
the complex integration, the intrinsic imprecision of the
AGA associated to the approximation error around zero, and
that the approximations proposed by [17], [18] and [19]
employ transcendental functions or require function inversion
for PC construction, i.e., both the original GA method and
the previous approximations have numerical integration and
function inversion, we propose an approximation function
that replaces the numerical integration and the inverse
function with a set of piecewise polynomial functions,
resulting in an improved approximation and further com-
putational simplicity. Then, we develop in this work two

improved approximations for GA based on PGA. In partic-
ular, we develop high-precision approximations using only
multi-segment polynomial functions, which replace the need
for numerical integration, function inversion and transcen-
dental functions. In [29] we reported the preliminary results.
Specifically, we have expanded the work in [29] by including
the application of PGA and extended design techniques
to medium and large blocks, with theoretical analysis and
extra simulation results of various application scenarios.
In particular, we devise a novel strategy for a piecewise
approximation method for PC construction, resulting in
improved performance for medium block lengths. Similar
to the original GA function, PGA is used in integral form.
Then, we propose an approximation called Approximate
PGA (APGA), through a new criterion of the approximation
inspired by a detailed analysis of the behavior of the PGA
function. APGA is a simplified alternative multi-segment
polynomial approximation, which is computationally more
convenient for construction of PC with medium blocks.
By drawing inspiration from the analysis, we devise an
approximation for long blocks, called Simplified PGA
(SPGA), also in the form of a multi-segment polynomial
function. The proposed method can be generalized to
extremely long or extremely short lengths and is able to
adapt to any channel condition. Moreover, we show that the
difference in accuracy between the approximation methods
can be obtained by the Number of Different Positions
(NDP), initially introduced by Kern et al. [22], and we
derive an index that measures the general quality of the
proposed approximation, called Accumulative Design Error
(ADE). The rate-compatible PC design that uses GA in its
construction, as reported in [23]–[26], can have a significant
impact on its performance when considered with the APGA
and EPGA constructions.

The main contributions of this article are summarized as:
• We propose the PGA construction method for PC;
• We develop the APGA construction for medium blocks
based on the detailed analysis of the behavior of the
PGA function, the identification of its key points and
the analysis of the statistical distribution of the results
generated by its function;

• Using the same analysis criterion, we devise a novel
approximation for long blocks, also in themulti-segment
function form, called SPGA;

• We propose the use of ADE as a comparison index
between EGA construction methods and SPGA to assess
the quality of the approximation for long blocks.

• A comparative study in terms of Frame Error Rate (FER)
performance analysis between APGA and SPGA with
other existing approximation techniques.

In addition to the FER, the bit error rate (BER) is also
commonly used as a metric of system performance. However,
the FER metric also shows the retransmission effort required
in a given communication system, that is, these are effectively
the frames that will be retransmitted in the event of an error,
regardless of the number of bits in error that occurred.
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FIGURE 1. Channel W2.

This paper has the following structure. In Section II,
we briefly review the fundamentals of PC. In Section III, the
Gaussian approximation is briefly presented. In Section IV,
we detail the construction of PC by PGA. In Section V,
we present the application of PGA to design PC with medium
and long blocks. In Section VI, we show and discuss the
numerical results. In Section VII we draw the conclusions of
this work.

II. POLAR CODES
In this section, we review the fundamentals of PC, including
their basic definitions, encoding and decoding.

A. BASIC DEFINITIONS
Given a symmetric binary-input discrete memoryless channel
(B-DMC) W : X → Y , where X = {0, 1} and Y ∈ R.
We defineW (y|x) as the channel transition probability, where
x ∈ X and y ∈ Y . In order to transmit the information
bits, the most reliable channels are chosen. The indices of
these channels are then represented by the set A, whose
size is defined by K . In turn, Ac is its complementary set,
containing the indices of the least reliable channels that
correspond to the sequence of frozen bits. Polar codes can
be completely specified by three parameters as designated by
PC(N ,K ,Ac), where N is the codeblock length, K the length
of the information sequence and Ac are the indices of frozen
bits. In the B-DMC cases the frozen bits are all-zeros. The
K/N ratio is called the code rate R.
We write WN to denote the channel corresponding to N

uses of W ; thus,WN
: XN

→ YN as

WN
(
yN1 |x

N
1

)
=

N∏
i=1

W (yi|xi). (1)

The mutual information is defined by [1] for the B-DMC
W channel

I (W ) =
∑
y∈Y

∑
x∈X

1
2
W (y|x) log

W (y|x)
1
2W (y|0)+ 1

2W (y|1)
, (2)

where the base-2 logarithm 0 ≤ I (W ) ≤ 1 is employed.
After we apply the polarization process [1] to the N

independent channels of W , we obtain a set of polarized
channels W (i)

N : X → Y × X i-1, i = 1, 2, . . . ,N . As defined
in [1], this channel transition probability is given by

W (i)
N

(
yN1 , u

(i−1)
1 |ui

)
=

∑
uNi+1∈X

N−1

1
2N−1

WN

(
yN1 |u

N
1

)
. (3)

According to [1], N →∞, I (W (i)
N ) tends to 0 or 1.

In Fig. 1 we show the process of creating the chan-
nel W2: a recursive step that combines two copies of
independent W , which have the transition probabilities [1]
given by

W (1)
2

(
y21|u1

)
=

∑
u2

1
2
W (y1|u1 ⊕ u2)W (y2|u2) , (4)

W (2)
2

(
y21, u1|u2

)
=

1
2
W (y1|u1 ⊕ u2)W (y2|u2) . (5)

B. ENCODING
The encoding is given by xN1 = uN1 GN , where GN is
the transformation matrix, uN1 ∈ {0, 1}N is the input
block and xN1 ∈ {0, 1}

N is the codeword, where uN1 is
a permutation between uA and uAc , with uA containing
the bits of information and uAc the frozen bits. We define
GN = BNF⊗n2 , where ⊗ denotes the Kronecker product,

F2 =

[
1 0
1 1

]
and BN is the bit-reversal permutation

matrix. A simplification without loss of generalization is the
omission of BN .

C. DECODING
Given the received vector yN1 ∈ RN , with yN1 = (y1, . . . , yN )
and yN1 = xN1 + n, where n ∈ RN is the noise vector. The
objective of the decoder is to obtain estimates of the codeword
at the input of the channel uN1 ∈ {0, 1}

N that is given in
vector form as ûN1 = (û1, . . . , ûN ). The likelihood ratio (LR)

of ui, LR(ui) =
W (i)
N (yN1 ,û

i−1
1 |0)

W (i)
N (yN1 ,û

i−1
1 |1)

is used with Successive

Cancellation (SC) for decoding [1]. Then, the estimated value
ûi is given by

ûi =

{
hi(yN1 , û

i−1
1 ), if i ∈ A,

ui, if i ∈ Ac,
(6)

where hi : yN × X i−1
→ X , i ∈ A, are decision functions

defined as

hi(yN1 , û
i−1
1 ) =

0, if
W (i)
N (yN1 ,û

i−1
1 |0)

W (i)
N (yN1 ,û

i−1
1 |1)

≥ 1,

1, otherwise,
(7)

for yN1 ∈ YN, û1 i−1
∈ X i−1.

The notation W is used for both the channel and its prob-
ability [1], that is,W (y|x) corresponds to the transition proba-
bility p(y|x) of
the channel. Therefore, the term W (i)

N (yN1 , û
i−1
1 |0) and

W (i)
N (yN1 , û

i−1
1 |1) represents the probability that the bit that

was transmitted through the channel be equal to 0 or 1,
respectively. The term yN1 is the entire vector y and the term
ûi−11 is the previous decoded value. Note ui is input vector, ûi
is the decoded codeword and ûi is an estimate of ui. We have
that ûi is a decoded bit and also an estimate of the bit ui,
as well as ûi−1 is the previously decoded bits [1].

We denote L(i)N as the LR node, N being the index of
the row and i being the stage or the column, following the
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FIGURE 2. Graphic representation of the SC decoder.

mapping of the decoding tree [1]. In Fig. 2 we have a graphic
representation of the SC decoder.

The values L(i)N can be obtained recursively using the
equations:

L(i+1)N =

{
fn(L

(i)
N ,L

(i)
(N−n/2i+1)

), (fn nodes),

gn(L
(i)
(N−n/2i+1)

,L(i)N , ûi), (gn nodes),
(8)

where fn and gn functions were defined in [1] as:

fn(a, b) =
1+ ab
a+ b

, (9)

gn(a, b, ûi) = a1−2ûib, (10)

where ûi are the previous decoded bits. The estimated value
ûi is given by (6). Therefore, the decision gn nodes depends
on the estimate of fn nodes given by (9), that is, of previously
decoded bits.

III. GAUSSIAN APPROXIMATION
The setAc is obtained by the PC construction. The construc-
tion depends on several parameters, the main ones being: the
length of the codeword N , the number of the information bits
K , which channel will be used for transmission, the signal-
to-noise ratio (SNR) target, or design-SNR, and the decoding
approach. All construction methods covered in this paper will
consider the AWGN channel and the SC decoder, mainly due
to the large number of articles with results of PC construction
with GA and SC decoding for AWGN channel, which allows
for comparisons.

In the GA construction, the log likelihood ratio,

LLR(ui) = log

(
W (i)
N (yN1 , û

i−1
1 |0)

W (i)
N (yN1 , û

i−1
1 |1)

)
,

is used as a Gaussian distribution function with a mean equal
to half of the variance. Therefore, the mean of the LLRs is
a sufficient statistic for their iterative update. The GA [6] is
given by

E
(
L(2i−1)N

)
= φ−1

(
1−

(
1− φ

(
E
(
L(i)N/2

)))2)
, (11)

E
(
L(2i)N

)
= 2E

(
L(i)N/2

)
, (12)

with

L(0)1 =
2
σ 2 . (13)

The quantity L(i)N denotes the LLR of the channel
W (i)
N , σ 2 and E[·] are the variance and the mean, respectively.

In practice, in order to construct PC, we have E[L(i)N ] = L(i)N .

The function φ(x) is defined as:

φ(x) =

1−
1
√
4πx

∫
R
tanh

( u
2

)
e
−(x−u)2

4x du, if x > 0,

1, if x = 0,
(14)

where due to the integral function, we call it an Exact
Gaussian Approximation (EGA) [17].

However, we have a complex integral function. The
computational complexity will inevitably increase as the code
length and polarization level increase. Moreover, the GA
approach above has a numerical computation problem. The
function φ(x) can arbitrarily approach zero as x becomes very
large. For example [19], for x around 1000, a possible value
in long code length construction, φ(x) can assume values
lower than 10−100.We can solve the function φ(x) and φ−1(x)
with the bisection method [29]. However, as x becomes
large, φ(x) becomes very small, which generates numerical
inaccuracy, and consequently, generates an error in the code
construction.

The author in [6] also proposed a simplification of φ(x) by
a two-segment approximation function described by

φ(x)AGA ≈

{
e−0.4527x

(0.86)
+0.0218, if 0 < x ≤ 10,√

π
x

(
1− 10

7x

)
e−

x
4 , if x > 10,

(15)

which is the so-called AGA [17]. For codes with long
block lengths, AGA induces performance losses due to the
approximation error caused by the difference between φ(x)
and φ(x)AGA for x = 0, that is, the AGA approach above has
a numerical computation problem.

φ(0)AGA = e0.0218 > φ(0) = 1, (16)

Equation (16) shows the approximation error of φ(0)AGA.
A detailed analysis of the approximation error of equation

(15) and its effects on large block lengths can be found in [18]
and [19]. Additionally, the AGA algorithm implements the
calculation of transcendental, inverse and complex recursive
functions, which can be avoided.

The computational complexity of the EGA construction
is given by O(Nm), where N is the length of the code and
m is the number of iterations to calculate the numerical
solution of the integration and the function inversion, both
from (11). The larger the value of m, the more accurate the
numerical solution of integration and function inversion will
be. The proposed approximations reduces the computational
complexity of constructing the polar code to O(N ), similar
to the computational complexity in [1]. Note that the
cost is associated to the design phase of PC. Once the
codes are designed the operation cost is the same for all
designs.

IV. PIECEWISE GAUSSIAN APPROXIMATION
It is known that EGA was originally proposed to design
LDPC codes [6] and when applied to the construction of
PC [7] it generates codes with good performance. However,
it was not known if EGA (14) can be improved for the
construction of PC. From (14), for the purpose of analysis
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FIGURE 3. Example of tanh and Gaussian function.

FIGURE 4. Function ψ in (17), with increment of x (mean) tends to the
behavior of g(x,u), ie, Gaussian.

we define the function:

ψ(x, u) = tanh
(u
2

) 1
√
4πx

e
−(u−x)2

4x , (17)

where we notice that the compound function is the product

of a Gaussian function (g(x, u) = 1
√
4πx

e
−(u−x)2

4x ) with a
hyperbolic tangent function (tanh( u2 )), which we will call the
Modified Gaussian (MG) function. An example of tanh( u2 )
and g(x, u) is shown in Fig. 3, for x ≈ 0.08.
The tanh( u2 ) is an odd and zero-centered function, i.e.,

tanh( u2 ) ⊂ [−1, 1], with tanh( u2 ) approaches -1 for the
interval u2 ∈ (− inf,−4) and tanh( u2 ) approaches +1 for the
interval u2 ∈ (+4, inf). In Fig. 4 we can notice the compound
function ψ(x, u) in (17), and its behavior for several values
of x (mean), varying u, since tanh( u2 ) does not depend on x,
only on the factor u as noted in equation (17). Each curve
represents a g(x, u) function with x ranging from 0 to 14.
Note that tanh( u2 ) for u < 1 has greater importance than
g(x, u), for small values of x and for x approaching 0.
Moreover, with the increase in x, the behavior tends to be of
a g(x, u) function, i.e, the Gaussian function becomes more
dominant.

As explained in [6], to maintain the accuracy of EGA, it is
important to preserve the symmetry condition [27], expressed
as F(x) = F(−x)e−x , where F(x) is the density of an

FIGURE 5. Some f (x) functions tested while exhaustive search in (20). For
x < 0, consider −x2, −x4, −x6, −log(−x/3+ 1) and exp(−x/7)− 1.

LLR message. For the function g(x, u) this condition can
only be met by the mean. Observing ψ(x, u), we have that
the symmetry condition is preserved independently of the
tanh( u2 ) function.
Thus, to improve the performance of the GA construction

for PC, we present a piecewise approximation for the
function φ in (14) and a new function is proposed to replace
the function tanh( u2 ). In this approximation, we use an
exponential function with the following terms: a·eb·x+c·ed ·x .

The proposed piecewise (φp) function optimized for PC is

φp(x) =

1−
1
√
4πx

∫
R
f
( u
2

)
e
−(u−x)2

4x du, x > 0,

1, x = 0,
(18)

with

f (x) =


a · eb·x + c · ed ·x , x ≥ −3.1 and x ≤ 3.1,
+1, x > +3.1,
−1, x < −3.1.

(19)

The parameters a, b, c, d and cutoff at x = ±3.1 was
obtained by exhaustive search for minimum FER in a
PC(512,128), PC(1024,512) and PC(2048,1024) constructed
with equations (18) and (19), with design-SNR ∈ (0, 1, 2, 3),
SNR ∈ (0, 1, 2, 3, 4) and 500000 iterations. Initially, the
odd function f (x) is defined as f (x) ⊂ [−1, 1], x ∈ R,
limx→−∞ f (x) = −1, limx→+∞ f (x) = +1 and f (0) = 0,
according to

min
f (x)

(FER). (20)

Generalization is possible because the function obtained
in (19) has the same initial format as tanh, which is the
starting point for the optimization. Parameters a, b, c and d
are continuously adjusted until the best FER performance is
obtained. During the exhaustive search, the function f (x) was
tested with various formats, some of these formats are known
functions. Some of these functions are represented in Fig. 5.

The optimized parameters are a = 1.9e+07, b = 8.4e−09,
c = −1.8e+ 07 and d = −8.5e− 09.
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FIGURE 6. Comparison of EGA and PGA with input mean LLR.

In order to represent the PGA construction, we have
updated equation (11) as

E
(
L(2i−1)N

)
= φ−1p

(
1−

(
1− φp

(
E
(
L(i)N/2

)))2)
, (21)

Using the same format and limits proposed by [15],
using Root Mean Square Error (RMSE), we develop an
approximation to the proposed function φp in (18) given by

φp(x) ≈


e−0.0484x

2
−0.3258x , 0 ≤ x < 0.867861,

e−0.4777x
(0.8512)

+0.1094, 0.867861 ≤ x < 10,√
π
x

(
1− 1.509

x

)
e−

x
3.936 , x ≥ 10.

(22)

The values of x are chosen to improve the approxima-
tion given by equation (15) around x = 0, where
φ(0)AGA > 1, equation (16). Thus, this approximation
improves accuracy, but it is still constituted by transcendental
functions.

In Fig. 6, we can observe the functions in (11) with the φ
for EGA in (14), and the the functions in (21) with the φp for
PGA in (18). In the next section we will see the performance
improvement due to this difference between the EGA and
PGA functions.

V. PROPOSED PGA DESIGN TECHNIQUES
In this section we present a detailed study of PGA by
investigating the behavior of equation ψ(x, u) in (17).
We identify the key points and the statistical distribution
of the results. Based on the statistics and in order to
approximate PGA, we eliminate the transcendental functions
and the inverse function. The approximation is generated
with polynomial functions and we propose APGA for
PC construction. Using a similar strategy, we propose an
approximation for long blocks, called SPGA. We remark that
APGA is an approximation of PGA, which uses the function
φp(x) in (18) and is optimized for medium blocks, whereas
SPGA is an approximation of EGA, which uses the functions
φ(x) in (14) and has been optimized for long blocks.

FIGURE 7. We can observe that from x = 6 the equations φ(x,u) and
g(x,u) already have the same maximum value, as observed in a), and are
completely equal in b), for x = 20.

A. MODIFIED GAUSSIAN ANALYSIS
In a more detailed analysis of the ψ(x, u) function in (17),
we can notice in Fig. 7b that from x > 20, that is, for the
mean greater than 20, the behavior of ψ(x, u) is Gaussian,
i.e.,

{x > 20 and u ∈ (− inf,+ inf) | ψ(x, u) ≈ g(x, u)}.

It means that from that point on the equation ψ(x, u) can be
well approximated by a polynomial function of degree 1, i.e.,

{x > 20 |
∫
R

ψ(x, u)du ≈ 1}.

Next, we observe that in ψ(x, u) from x ∈ [6, 20],
the maximum point is coincidental to that of g(x, u),
as reproduced in Fig. 7a, i.e, {x ∈ [6, 20] and u ∈
(− inf,+ inf) | max(ψ(x, u)) = max(g(x, u))}. Here we have
one more key point at 6 and an important interval of study for
the mean between 6 and 20.

As observed in Fig. 4, for x < 1 the tanh( u2 ) is more
important than g(x, u). This behavior can be better seen in
Fig. 8, where for each figure the scale was reduced by 10−5.

According to our analysis, we observe that points 1, 6 and
20 are of fundamental importance for understanding the
behavior of the φ function, for they mark the points at which
φ approaches until it equals g(x, u).

B. STATISTICAL ANALYSIS OF THE PGA FUNCTION
Once the key points in the previous section are obtained,
we need to perform a statistical analysis of PGA, investigating
the distribution of the LLRs obtained by equation (21). For
the design of the simplified approximation, we must make
sure that we will have a good accuracy in the regions with the
highest concentration of LLRs.

Let us then examine the statistical concentration of LLRs,
considering intervals that include points 1, 6 and 20 as limits.
See in Fig. 9 all LLRs generated by PGA for PC with lengths
N = 256, 512, 1024, 2048. Note that there is a concentration
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FIGURE 8. Equation ψ (17) behavior around zero, for each sub-figure the
scale was reduced by 10−5.

in the range [0, 1]. Looking in more detail the concentration
of LLRs in the interval [0, 1], it is observed that there is
always a greater concentration around zero for LLRs→ 0.
This is because for LLR < 1, the PGA generates new LLRs
closer and closer to zero because it uses a squared term
in (21). This implies a greater resolution of the approximation
in this interval.

As a result of this analysis, we suggest one more key
point, with a value of 0.2, to be used in the intervals for the
simplified approximation.

C. APPROXIMATE PGA FOR MEDIUM BLOCKS
With the parameter obtained from the analysis of the behavior
of the function ψ and the statistical distribution of the LLRs
of PGA, we propose to approximate the PGA in (21) with a
piecewise polynomials form given by

E[L(2i−1)N ] = A(E[L(i)N/2]), (23)

E[L(2i)N ] = 2E[L(i)N/2], (24)

with (25), as shown at the bottom of the page, which
is denoted as APGA. This approximation was obtained
by minimum squared error curve-fitting. This operation
involves only summations and multiplications, and avoids
any transcendental functions. In Fig. 10a we can notice the
accuracy of APGA in relation to PGA.

D. SIMPLIFIED PGA FOR LONG BLOCKS
Using the same approximation strategy and analysis as
in the previous subsection, we propose the SPGA design

FIGURE 9. LLR statistical distribution for PGA construction.

technique for polar codes with long blocks. Similar to the
approximations obtained previously, our objective is to obtain
a simplified polynomial multi-segment function, using for
this the same limits of equation (25). The proposed function
has been designed by minimum squared error curve-fitting,
with only addition and multiplication operations, without any
transcendental functions. The simplified approximation is
given by

E[L(2i−1)N ] = S(E[L(i)N/2]), (26)

E[L(2i)N ] = 2E[L(i)N/2], (27)

with (28), as shown at the bottom of the next page, which is
denoted as SPGA.

The EGA and PGA functions are distinct functions,
as shown in Fig. 6, and two approximation functions,
APGA for PGA and SPGA for EGA, are shown in
Fig. 10a and Fig. 10b, respectively.

E. GENERAL ALGORITHM FOR APGA AND SPGA
Here, we present a general construction algorithm that can
be used for both APGA and SPGA. In particular, note that
lines 11 and 12 of Algorithm 1 represent, respectively, the use
of equations (25) and (28). We can observe the mathematical
simplification obtained when compared with equations (11),
(15) and (22), that is, without the need to calculate an inverse
function and without transcendental functions.

Recall that the objective of the proposed APGA and SPGA
methods is to recursively calculate the reliability of each
channel and all of them can be implemented with just a

A(x) =



0.323x2, x 6 0.2,
−0.1x3 + 0.43x2 − 0.039x − 0.005, 0.2 < x 6 1,
−0.003x3 + 0.063x2 + 0.432x − 0.2, 1 < x 6 6,
−0.0002x3 + 0.012x2 + 0.777x − 1.023, 6 < x 6 20,
0.9803x − 2.109, x > 20,

(25)
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FIGURE 10. a) Accuracy of the APGA approximation to the PGA, and b)
Accuracy of the SPGA approximation to the EGA.

Algorithm 1 General Algorithm for APGA and SPGA
1: Input: N , code length
2: Input: K , information bits
3: Input: design-SNR EdB = (REb/No) in dB
4: Output: F = {0, 1, . . . ,N − 1} with |F| = N
5: S = 10EdB/10

6: n = log2N
7: W ∈ RN ,W (0) = 4S
8: for i = 1 to n do
9: d = 2i

10: for j = 1 to d
2 − 1 do

11: W (d/2+ j) = A(W (j− 1)); for APGA (25) or
12: W (d/2+ j) = S(W (j− 1)); for SPGA (28)
13: W (j) = 2W (j− 1)

end for
end for

14: F = Sorts W indices in ascending order

few calculations, which may involve non-linear functions.
The overall complexity is proportional to the length of the
codeword N .

F. ACCUMULATIVE DESIGN ERROR
The number of different positions (NDP) [22] is a measure of
the dispersion in PC construction. We used NDP to evaluate
the approximation accuracy when comparing APGA and
PGA; and also to evaluate the approximation accuracy when
comparing SPGA to EGA. According to [22], we define as
reference the set of frozen bits of PGA and EGA, called the

reference set of frozen bits (Aref
c ). We use it as a reference

to compare the sets of frozen bits (Ac) of all the construction
methods. The number of different positions between Ac and
Aref
c is defined by

|Ac \Aref
c | , |{x ∈ Ac : x /∈ Aref

c }|. (29)

We can use NDP as an indication of the quality of the
approximation for given n. The smaller the NDP measure,
the smaller the number of different frozen positions between
Ac and Aref

c , which can lead to better FER for Ac, closer to
the FER with the ideal positionsAref

c . This approach is more
effective for measuring the quality of approximations because
we effectively compare the PC construction design.

We then define a mathematical expression for the channel
difference with a unified index to compare the approximation
methods for long blocks, which we call Accumulative Design
Error (ADE) and whose main property is to account for the
NDP. We define ADE as

ADE(n) =
n∑
i=1

X i, (30)

where n = log2 N and X is the NDP for n. We have that the
set Ac has different values for each approximation method.
We can say that there is an optimal polynomial multi-segment
approximation of (11), such that

lim
n→∞

ADE(n) = 0,

but the computational cost is prohibitive. However, we can
consider that there is a two sub-optimal polynomial approx-
imation, which is feasible and has low computational cost,
called pa and pb, where we getAa

c andAb
c , respectively. Since

∃ n > 1 such that
n∑
i=1

|Aa
c \Aref

c |(i) <
n∑
i=1

|Ab
c \Aref

c |(i), or

n∑
i=1

NDPa(i) <
n∑
i=1

NDPb(i), or

n∑
i=1

X ia <
n∑
i=1

X ib, (31)

to pa being the most accurate approximation of equation in
(11). The proof is given in Appendix A.

VI. NUMERICAL RESULTS
In this section, we evaluate the proposed APGA and SPGA
construction techniques and compare them against existing
approaches for several scenarios. In particular, we assess
the performance of the proposed construction techniques

S(x) =



−0.256x3 + 0.461x2 + 0.002x, x 6 0.2,
−0.064x3 + 0.294x2 + 0.05x − 0.004, 0.2 < x 6 1,
−0.005x3 + 0.092x2 + 0.316x − 0.133, 1 < x 6 6,
0.002x2 + 0.908x − 1.588, 6 < x 6 20,
0.995x − 2.459, x > 20,

(28)
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TABLE 1. NDP between APGA and PGA.

FIGURE 11. FER performance between EGA and PGA, N=2n,
n = (7,8,9,10,11) and R = 1/2.

for medium and long blocks. We follow the terminology
in terms of block lengths adopted by related work on PC
for the code construction scenario, as noted in [17], [18]
and [19]. In subsection A, ‘‘Designs for medium blocks’’,
the comparison is made for block lengths up to 2048 bits,
as can be seen in Table 1 and in Fig. 11, 12 and 13.
In subsection B, ‘‘Designs for long blocks’’, we compare
the methods for blocks with lengths greater than 4096 bits.
In Tables 2 and 3, and NPD comparisons are made for blocks
from 2048 bits to 131072 bits. Additionally, in Fig. 14 we
compare the FER performance for blocks for n = 12,
n = 14 and n = 16, which is equivalent to long blocks with
length of 4096 bits, 16384 bits and 65536 bits, respectively.
In the following, we illustrate the results of MC simulations,
with the AFF3CT toolbox [28]. We simulated for Binary
Phase shift keying (BPSK), AWGN, SC and 1dB design-
SNR modulation. The simulation loops adopt as stopping
criterion the counting of 200 frame errors. The exact GA can
be calculated with extremely high accuracy through careful
numerical integration.

A. DESIGNS FOR MEDIUM BLOCKS
In Table 1 we have the NDP between APGA and PGA, for
R = (1/2, 1/3, 2/3). The observed values are due to the
application of APGA in the construction of PC. Note that
NDP has an increasing trend as N increases.

In Fig. 11 we have the performance between PGA and
EGA. For N ≥ 128, the FER graph shows an increasing PGA
gain with increasing N , being 0.25 dB for N = 2048.
The performance of PGA and EGA is shown in Fig. 12 for

various block lengths. We remark the FER gain for N ≥ 256,
reaching 0.15dB for N = 2048. Note also that at N =
128 there is no difference in PGA and EGA performance.

FIGURE 12. FER performance between EGA and PGA, N=2n,
n = (7,8,9,10,11) and R = 1/3.

FIGURE 13. FER performance between EGA and PGA, N=2n,
n = (7,8,9,10,11) and R = 2/3.

Now, we compare PGA and EGA, with R = 2/3 and
various block lengths in Fig. 13. Note that there is a gain in
terms of FER for N ≥ 512 obtained by PGA, which reaches
0.25dB for N = 2048.
Note that in Fig. 12 the FER for PGA and EGA at

N = 128 is the same, that is, for PC with N = 128 and
R = 1/3 the set A obtained by the PGA method is the same
setA obtained by the EGA method. The same can be seen in
Fig. 13 for N = 128 and for N = 256, both with R = 2/3,
the PGA for N = 128 is the same as EGA for N = 128 and
the PGA for N = 256 is the same as EGA for N = 256.
We can observe that in the scenario of medium blocks,

with PGA we observe a continuous improvement in the
performance of FER when compared to EGA.

B. DESIGNS FOR LONG BLOCKS
An important aspect to be considered in the simulation
for long blocks is the difficulty to observe in figures the
difference in FER performance. Performance comparison
by NDP can be used as a construction quality parameter.
However, we observe that small NDP, that is, very small
percentage differences of construction, are hardly observable
in terms of FER curves, despite representing a better
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TABLE 2. NDP for EGA with R = 1/2.

TABLE 3. NDP for EGA with R = 2/3.

approximation. Another important aspect in comparing the
approximation methods is the Root Mean Square Error
(RMSE). It can be used effectively when the intervals used for
approximation are equal, which is not the case in our analysis.

We present in the tables below the NDP difference
between the construction of the SPGA and the constructions
proposed by Trifonov (RGA) [16], Fang (SGA) [17], Dai
(AGA-4) [18] and Ochiai (LGA) [19]; for R = 1/2, 1/3, 2/3.
We included in the comparison the approximation RGA due
to its polynomial format, which meets the simplification
requirements objective of this study. The approximation SGA
follows the same strategy. This difference in channels, i.e.,
NDP, represents the quality of constructions in relation to the
EGA. The most accurate construction achieves the smallest
NDP, i.e, minus the difference for the optimal set of frozen
bits (Aref

c ). Initially, in Table 2, we have NDP for R = 1/2.
Observe that SPGA has lower NDP with the increase of N .
This means that the SPGA approximation is more accurate
than the others in this scenario.

In Table 3, for R = 2/3, the fairest comparison is
between SPGA, RGA and SGA, which are polynomial
approximations. Among them, the SPGA remains with a
lower NDP, that is, more accurate than the others. In turn, the
design techniques AGA-4 and LGA have the smallest NDP,
but it should be remarked that they are approximations of
greater complexity which include transcendental functions.

For R = 1/3, as can be seen in Table 4, SPGA remains
with the lowest NDP, which suggests that it is the most
accurate approximation in this scenario. We can see the
SPGA has the lowest NDP in the three scenarios, that is, for
R = 1/2, 1/3, 2/3, and this characteristic is maintained with
the increment of N . We can conclude that it is the most
accurate approximation of EGA.

In fact, we can prove that the proposed approximations
are better as evidenced by the ADE, which also indicates
better performance. For example, for EGA in Table 4 we
have NPD for EGA of the methods RGA, SGA, AGA-4,
LGA and SPGA. According to equation (30), the ADE

TABLE 4. NDP for EGA with R = 1/3.

FIGURE 14. FER comparison between EGA, RCA [16], SGA [17], AGA-4 [18],
LGA [19] and SPGA, N=2n, n = (12,14,16) and R = 1/3.

account for the NDP for each n. In other words, comparing
with EGA, for each method, the difference of channels in
the code construction is calculated for each n, and then we
account for these differences. In this way, we can compare all
construction methods in relation to EGA, and the smaller the
ADE, the better the approximation for EGA. So, we have

ADESPGA(17) =
17∑
n=1

Xn,

= X11
+ X12

+ X13
+ X14,

+X15
+ X16

+ X17,

= 0+ 4+ 0+ 10+ 14+ 32+ 44,

= 104.

It can be noted that ADESPGA(17) has the lowest value
among the methods in all analyzed scenarios, so

ADESPGA(17) < ADESGA(17) < ADERGA(17). (32)

In Fig. 14 we have the FER performance of the code
construction alternatives observed in Table 4, for R = 1/3.
As the AGA-4 and LGA approximations have performance
comparable to EGA, however they are more complex
approximations with transcendental functions. We remark
that the approximation AGA [6] is not shown here because
it would result in much worse performance than the others.

It can be seen that the proposed SPGA method has
better performance as compared to other code construction
methods. This is because the SPGA method was optimized
with the aid of the analysis of the ψ equation in (17).
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All other methods work almost equally well, with less
accurate approximations to EGA than SPGA.We can observe
the similarity of performance between the approximations,
despite the SPGA being the best approximation in the
scenario considered.

VII. CONCLUSION
In this work we have presented a novel method for
polar code construction, called PGA, which is suitable
for medium and long blocks. We have also presented
APGA based on an analysis of the behavior of the PGA
function, the identification of its key points and the analysis
of the statistical distribution of their LLRs. Using the
same analysis criterion, we have developed SPGA for
long blocks, in the form of a multi-segment function.
Moreover, we have introduced ADE as a figure of merit
for comparison of designs because it effectively measures
the difference in PC construction methods. The effectiveness
of the APGA and SPGA approaches has been investigated
by comparing them with other design techniques with the
same order of complexity through simulations and analytical
arguments using the ADE of the analyzed approximation
techniques.

APPENDIX A PROOF EQUATION 31
According to Weierstrass Approximation Theorem [30],
suppose that f : [a, b] → R is a continuous real-valued
function defined on the real interval [a,b]. For every ε > 0,
there exists a polynomial p such that for all x ∈ [a, b],
we have

|f (x)− p(x)| < ε.

Given the continuous and increasing function f (x), being
that xi < xi+1 implies f (xi) < f (xi+1), by simplifying the
equation in (11), we have

f (x) = φ−1
(
1− (1− φ (x))2

)
. (33)

Now, consider two polynomial approximations pa(x) and
pb(x), such that

|f (xi)− pa(xi)| < εa, (34)

and

|f (xi)− pb(xi)| < εb, (35)

with xi ∈ [a, b] and approximation errors εa and εb.
Additionally, for the inequality below

|f (xi)− pa(xn)| > εa, (36)

for ∀xn ∈ [a, b], ∀xi ∈ [a, b] and xi 6= xn; and

|f (xi)− pb(xn)| > εa, (37)

for ∀xn ∈ [a, b] and ∀xi ∈ [a, b], including xi = xn, we have
that f (x) is strictly increasing, so we have the guarantee that

εa < εb. (38)

This result can be generalized as ∀pj(xn) and approxima-
tion errors εj, with j ∈ N, so

|f (xi)− pj(xn)| < εj, (39)

and

|f (xi)− pj(xn)| > εa, for ∀j, (40)

then

εa < εj, for ∀j, (41)

and if

|f (xi)− pj(xn)| > εj+1, for ∀j, (42)

then

εa < εj < εj+1 < · · · < εj+n. (43)

So, we have to give the sets

F = {f (x1), f (x2), . . . , f (xn)},

Pa = {pa(x1), pa(x2), . . . , pa(xn)},

Pb = {pb(x1), pb(x2), . . . , pb(xn)},

with xi ∈ [a, b], i ∈ [1, . . . , n] and conditions given in (39),
(40), (41) and (42), then we have to

|f (xi)− pa(xi)| < εa < |f (xi)− pb(xi)|,

|f (xi)− pa(xi)| < εa < εb.

Using these results, we have for the approximations RGA,
SGA, SPGA:

|fEGA(xi)− pSPGA(xn)| < ε1,

|fEGA(xi)− pRGA(xn)| < ε2,

|fEGA(xi)− pSGA(xn)| < ε3.

and condition in (42)

|fEGA(xi)− pSPGA(xn)| > ε1,

|fEGA(xi)− pRGA(xn)| > ε1,

|fEGA(xi)− pSGA(xn)| > ε1.

|fEGA(xi)− pRGA(xn)| > ε2,

|fEGA(xi)− pSGA(xn)| > ε2.

then, (43),

ε1 < ε2 < ε3 (44)

Equation (44) determines the improved approximation of
pSPGA over pRGA and pSGA. We know that Aref

c is obtained
from fEGA, theAa

c is obtained from pSPGA, theAb
c is obtained

from pRGA and the Ac
c is obtained from pSGA. According to

(29) and the result in (44) we can consider that

|Aa
c \Aref

c | < L, (45)

|Ab
c \Aref

c | < L, (46)

and

|Ac
c \Aref

c | < L, (47)

with L > 0 and L ∈ N for a given n. Subtracting (45) from
(46) and (47), we have

|Aa
c \Aref

c | < |Ab
c \Aref

c | < |Ac
c \Aref

c |, (48)

and for every set n, we have
n∑
i=1

|Aa
c \Aref

c | <

n∑
i=1

|Ab
c \Aref

c | <

n∑
i=1

|Ac
c \Aref

c |. (49)
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TABLE 5. RMSE between RGA, SGA, SPGA and EGA.

Therefore, the above expression can be rewritten as
equation (31), i.e.,

n∑
i=1

X ia <
n∑
i=1

X ib <
n∑
i=1

X ic. (50)

In fact, the inequality in (50) will always hold under the
conditions established in (44). Therefore, we can verify in
Table 5 the RMSE among the polynomial approximation
alternatives for the interval x ∈ [0,20].
We can observe that SPGA has the smallest RMSE which

implies the best ADE and, therefore, the best performance.
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