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ABSTRACT Despite the recent advances in satellite-based L-band microwave radiometry and retrieval
algorithms to provide a unique capability to measure sea surface salinity (SSS) from space and explore its
utility for understanding mesoscale dynamics, global ocean circulation, vertical mixing, evaporation rates
and climate oscillations, SSS retrieval fromL-bandmicrowave radiometric data from the NASA-SMAP (Soil
Moisture Active Passive) mission is often biased with systematic errors on larger temporal, spatial scales and
random errors on short-time and length scales. To improve the SSS retrieval from SMAP data, we developed
a robust algorithm based on a machine-learning approach with high-resolution in-situ data from the Ocean
Moored Buoy Network in the Northern Indian Ocean (OMNI), which includes the Arabian Sea (AS) and Bay
of Bengal (BoB). The new algorithm was rigorously trained, tested and validated using the in-situ SSS time
series measurements from the AS and BoB. Several sensitive variables were examined and used to improve
the SSS estimates – such as radiometric and ancillary data from the satellite observations, sea-surface wind
and precipitation from the ERA5 data, and SSS/ SST from the OMNI buoy measurements. The OMNI time-
series measurements provided the spatially averaged satellite products to characterize the variability and
gross features of SSS in BoB and AS waters on weekly, monthly, seasonal and annual time scales. The
systematic validation of SMAP SSS products on a range of spatio-temporal scales showed that the new
algorithm improved the SSS estimates by more than 15% in open ocean waters and 25% in river-discharge
and precipitation-dominated regions in BoB and AS, when compared to the standard (operational) algorithm.
Further analysis demonstrated that the new algorithm reduced clear biases and significant anomalies in
SMAP SSS retrievals in the regions of river runoff, surface-freshened ocean and intense tropical cyclones,
and captured synoptic/mesoscale SSS features and their seasonal variations in the North Indian Ocean.

INDEX TERMS Sea surface salinity, OMNI buoy, SMAP mission, North Indian Ocean, satellite
oceanography.

I. INTRODUCTION
Sea surface salinity (SSS, expressed in PSU) is a key property
controlling seawater density and plays a critical role in the

The associate editor coordinating the review of this manuscript and

approving it for publication was Qiangqiang Yuan .

global hydrological cycle, density-driven global ocean circu-
lation, climate dynamics, vertical mixing, air-sea exchange,
biogeochemistry, acidification, and ocean heat content
[1]–[3]. Changes in the SSS are driven by fresh water
flux from the continents, evaporation, precipitation, glacier
melts, stratification and vertical mixing. The SSS has been
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recognized as a critical parameter of climate variability,
which requires its time-series measurements (for instance, the
global observation programs such as Global Climate Observ-
ing System (GCOS)). The SSS variability on large spatial
and temporal scales is also essential for ecological analy-
sis and physical/biological oceanographic studies in coastal
environments [4]. Such data are needed for improving the
knowledge of ocean circulation and better representing the
climate variability in ocean models and associated forecasts
(e.g., Indian Ocean Dipole, IOD and the El Niño-Southern
Oscillation, ENSO) [5]–[7]. The Climate Variability and Pre-
dictability (CLIVAR) mission of theWorld Climate Research
Program (WCRP) and Global Ocean Assimilation Exper-
iment (GODAE) have been specially developed to foster
our understanding of the linkages between salinity and
climate variability and oceanic dynamics on intraseasonal-
to-centennial timescales [8]. The SSS measurements are
essential to enhance our understanding of the role of haline
stratification in dynamics of the mixed-layer and the ocean
response to tropical cyclones, because the large freshwater
influx from river discharge and precipitation forms barrier
layers in the upper ocean and affects the depth of vertical
mixing on cyclonic intensification [9]–[11]. Thus, there is
a strong justification and necessity for obtaining the SSS
measurements in regional seas and global oceans.

In-situ SSS observations were traditionally made from
ships, buoys, drifters and moorings within limited ocean
regions which resulted in the inadequate distribution of data
in the global ocean [7], [12]. Less effort has been made to
deploy such observation systems in the nearly unexplored
polar oceans. Over the recent decade, with the invention
of Argo profiling systems and the increasing number of
deployments of surface observation systems, salinity sam-
pling has especially increased in coastal oceans and marginal
seas as well as in regions of large-scale dynamics and land-
sea linkages with strong salinity variations. Although in-situ
SSS measurements provide an accurate representation of
large-scale salinity variability, such measurements are under
sampled on the required temporal, horizontal and vertical
scales to resolve finer ocean features such as eddies and
fronts [7], [10], [13].

Recently, remote sensing of salinity has become a
highly valuable tool for improving many areas of science
and applications – such as mesoscale ocean processes,
land-sea/coastal-open ocean linkages, estuarine and near-
surface mixing, carbon cycle, and air-sea exchange processes
[3], [7], [13]. The SSS measurements from space have
provided tremendous advantages over the in-situ SSS
measurements in terms of covering the global ocean and
resolving the space and time scales of major ocean phe-
nomena (e.g., thermohaline circulation on global and ocean
basin scales; El Niño-Southern Oscillation on inter-annual
timescales). In the context of hydrological and biogeo-
chemical cycles and climate variability, satellite-based SSS
measurements are complementary to the in-situ observ-
ing systems to study mesoscale salinity variability in the

eddies, fronts [14] and land-sea linkages in the marginal seas
and coastal oceans [7], [15]–[17]. To meet the increasing
demand for space-borne SSS measurements, three satellite
missions were launched to provide the near-global and syn-
optic views of SSS. These missions are Aquarius/SAC-D
mission of NASA/CONAE (June 2011–June 2015), NASA-
SMAP (Soil Moisture Active Passive) mission (January
2015-present) [18] and Soil Moisture and Ocean Salin-
ity (SMOS) Mission (2009-present) of ESA [19]. The SMOS
and Aquarius missions operated with an overlapping period
from mid-2011 to mid-2015, while the SMAP had an over-
lapping period of only four months with Aquarius (February
to June 2015). The SMAP works on active-passive design
with an active L-band radar scatterometer, Aquarius uses
a passive L-band radiometer, and SMOS is operated with
a passive L-band interferometric radiometer. These L-band
radiometers measure brightness temperatures (TB) to pro-
vide SSS records using a robust inversion scheme. The SSS
estimates require accurate corrections for the non-salinity
contributions due to extra-terrestrial radiations (both direct
and reflected from ocean) from the Sun [10], [20]–[22]
and noise contributions from ocean-surface roughness and
sea surface temperature (SST) [23]–[27]. There are well-
established schemes to make these corrections for the direct
and ocean-reflected contributions to brightness temperature
measurements. For the other contributions, the ocean surface
roughness effect on SSS is assessed using ancillary wind
data and the roughness parameter derived from the polar-
ized L-band TB measurements and SST measurements (for
removing the thermal effects on TB measurements). This
requires adequate and accurate ancillary wind and SST data
to minimize uncertainties in the SSS retrievals.

To improve the accuracy of satellite SSS measurements,
several machine learning algorithms have been developed
[28], [29]. These algorithms employ techniques such as
random forests and support vector regressions to estimate
SSS [30]. The machine-learning algorithms are capable to
work with multifaceted data with a large number of predictor
variables, and have gained popularity in a wide range of clas-
sification and estimation problems (including SSS retrievals
from satellite data) [31], [32]. Recent studies reported a low
accuracy in SSS retrievals in coastal oceans, estuaries, and
outlets of major river systems [33], [34]. The SSS retrievals
in such regions could be affected by the lack of in-situ mea-
surements, non-inclusion of sampling differences between
satellite and in-situ measurements, and inaccurate corrections
applied to TB data for the contributions and contaminations
from various sources [10], [35].

The satellite validation studies using in-situ data (collected
by stationary and drifter buoys and Argo floats) in open
oceans, where the salinity varies little in space and time
(i.e., 33-37 PSUwith a mean value of approximately 35 PSU)
[13], [36], [37], have reported an accuracy of 0.2 PSU for
both Aquarius and SMOS SSS. Fewer studies have evalu-
ated satellite SSS observations with in-situ data in regional
ocean basins dominated by river runoff, winds, tidal effects
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and vertical mixing (that reduces salinity stratification under
strong winds and cyclonic storms) [10], [38], [39]. Previous
basin-scale studies on evaluating SMOS SSSwith in-situ data
showed a Root Mean Square Error (RMSE) of 0.52 in the
Mediterranean Sea [13] andBoB [7], [16] and 0.52 in theGulf
of Mexico [40]. These studies observed the regional Root
Mean Square Deviation (RMSD) to increase from 0.52 PSU
in open seas with low river inputs to 2 PSU in coastal
seas with high river inputs. This indicates that the regions
with high freshwater inputs (from rivers and precipitation)
significantly affect the SSS retrievals [3], [10], [41]. Other
studies reported that satellite SSS is subject to a bias under
high wind speeds; especially, the higher winds associated
with the passage of tropical cyclones have greater impacts on
the sea surface roughness and brightness temperature [42].
A higher uncertainty in satellite-retrieved SSS originates
from inaccurate wind speed data (usually underestimated) for
intense cyclones (with surface wind speed often exceeding
15 m s−1). Under higher wind speed of more than 20 m s−1,
the SSS products are severely impacted and discarded dur-
ing the gridding and generation of satellite Level 3 data.
A lower accuracy in SSS retrieval was reported in regions
of surface and subsurface freshening due to heavy rain-
fall and subsequent salinification of the sea surface due to
turbulent/vertical mixing [38]. However, no major study has
been devoted to evaluate satellite SSS measurements and
improve the retrieval algorithm using high-resolution in-situ
data for a wide range of oceanic and atmospheric condi-
tions. This addresses a critical gap in areas of validating
the satellite-derived SSS products and improving the SSS
retrieval algorithm using high-resolution in-situ data, which
is part of the crucial demonstration for improving the current
capabilities of satellite observing systems and supporting the
research community and end users.

There is a challenge with the conventional approaches to
improve the accuracy of satellite SSS in tropical and subtrop-
ical oceans (especially under the conditions of high winds,
waves, sea surface roughness, rains, fresh water inputs, and
extreme atmosphere/weather systems). There are other fac-
tors that lower the accuracy of SSS retrieval; for example,
high uncertainty in the ancillary data, paucity of in-situ mea-
surements, large difference in spatial scales between in-situ
measurements and satellite footprints in regions with the sub-
footprint variability of ocean features (e.g., ∼110 km for
Aquarius and ∼50 km for SMAP SSS), reduced sensitiv-
ity of L-band instrument to SSS variations in cold seawa-
ter, and interference (RFI) in the vicinity of the continents/
coasts [10], [37], [43], [44]. To overcome such a wide range
of estimation problems, we developed a robust algorithm
based on machine learning approach with high-resolution in-
situ data. The new algorithm uses all essential parameters of
SSS as the inputs. The SSS estimates from this algorithm
are compared with collocated in-situ SSS and results from
the existing algorithm for a wide range of oceanic and atmo-
spheric conditions. For this study, in-situ data were collected
from a network of buoy systems in the Northern Indian

Ocean (including BoB and AS). This study further examines
the refined SMAP SSS products using daily, monthly and
seasonal data in the BoB and AS regions.

II. DATA AND METHODS
A. IN-SITU DATA
The in-situ data were obtained from the Ocean Moored Buoy
Network in the Northern Indian Ocean (OMNI), which is
maintained by the National Institute of Ocean Technology
(NIOT) (Fig. 1) [45]. These buoy systems have been deployed
to provide ocean observation data over the past two decades.
The OMNI buoy systems are equipped with state-of-the-
art sensors for the measurements of meteorological, surface
and subsurface ocean parameters. The surface and subsurface
sensors measure conductivity, temperature, current speed and
direction at the surface and conductivity and temperature
profiles up to 500 m depth. Depending on the activity and
application type, the sensor suite is selected and integrated
with the Data Acquisition System for further processing and
transmission of data via satellite telemetry [45] to the MCC
(Mission Control Centre) at NIOT. The moored buoy systems
are programmed to transmit data to the MCC at a pre-defined
interval.

The OMNI buoy systems are augmented at the predefined
locations selected by a group of national experts from the
government organizations such as National Hydrographic
Office (NHO), Indian Navy, Indian Coast Guard, India Mete-
orological Department. The buoy data are used to provide real
time cyclone updates and present as a critical component for
climate models to understand the ocean state [46].

For this study, the in-situ measurement locations in the
Bay of Bengal and Arabian Sea are categorized from the
Northern Arabian and Bay of Bengal, Middle Arabian and
Bay of Bengal, Southern Arabian Sea and Bay of Bengal.
Of many types of measurements, conductivity and temper-
ature data were considered in this study. The data from the
above locations in different seasons depict a variety of sit-
uations such as precipitation, freshwater inputs from rivers,
and high saline water intrusion. The buoys were interfaced
with a SBE37 MicroCAT sensor (Sea-Bird Scientific, USA)
via RS-232 serial port to the DAS (Data Acquisition Sys-
tem). Conductivity and temperature data were stored in the
flash memory and DAS. Because conductivity is an intrinsic
property of seawater, salinity, and density can be derived
from this data [47]. The conductivity sensor used in the
SBE 37 has small drifts in the electronics (0.01 PSU/month)
that lower power consumption and increase accuracy and
resolution [48]. Continuous field observations indicate that
the sensor accuracy is within 0.003mS/month-conductivity in
most cases. The conductivity sensor is mounted at the bottom
of themoored buoy system (Fig. 2). According toOhm’s Law,
resistance is measured from the relation.

R′ =
ρL
A

(1)
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Conductivity is the multiplicative inverse of resistance (R′),
L is the length of the water sample, A is the cross-sectional
area of sampled water, and ρ is the resistivity. The conduc-
tivity cell containing three internal platinum electrodes is
made up of borosilicate glass. The measurement accuracy is
ensured by maintaining the cell geometry and methods for
preventing marine growth inside the conductivity cell [49].
Seawater salinity was calculated using the relations (where
the calculations of RT, rT and coefficient values are not shown
for brevity).

S = a0 + a1R
1/2
T + a2RT + a3R

3/2
T + a4R

2
T + a5R

5/2
T +1S

(2)

1S =
(T − 15)

1+ 0.0162(T − 15)
×(b0 + b1R

1/2
T + b2RT + b3R

3/2
T

+b4R2T + b5R
5/2
T ) (3)

RT =
R

RPrT
(4)

R =
Conductivity(S,T ,P)
Conductivity(35, 150, 0)

(5)

where rT is the temperature coefficient of standard seawater
and R is the conductivity ratio. Unlike other in-situ observing
systems (such as Argo profiler, which measures conductivity
and temperatures at 5 m depth below the sea surface), sub-
surface sensors in the moored OMNI buoy systems record
data at 0.45 m depth. This enables a better understanding
of air-sea interaction (near-surface) processes and salinity
measurements to improve the regional and global SMAP SSS
products without being impacted by mixed layer salinity.

B. DESCRIPTION OF THE SATELLITE DATA
The NASA Soil Moisture Active-Passive (SMAP) mission,
launched in January 2015, was put onto a 680 km near-polar
sun-synchronous orbit, equator crossings at 6 am and 6 pm
local time, with an inclination of about 98.12◦, an instrument
swath of 1000 km, a spatial resolution of approximately
36 km × 36 km, and an approximate repeat time of three
days [10]. The SMAP mission has collocated radar (active)
and L-band microwave radiometer (passive), wherein the
L-band microwave radiometer provides global measurements
of brightness temperature (TB) at ∼1.4 GHz (wavelength =
21 cm) [50], [51]. Despite the mission objective to mea-
sure soil moisture, SSS can be estimated from L-band TB
data as previously demonstrated from the aircraft-based field
campaigns data [52]–[54]. SSS retrievals from L-band TB
data require accurate corrections for external contributions
(e.g., reflection/emission due to sea surface roughness, tem-
perature and radiation from the Sun and celestial radio
sources).

C. ECMWF–ERA5 DATA
ECMWF (European Centre for Medium-Range Weather
Forecasting) operates the ERA5 reanalysis system to produce
the global records of the atmosphere, land surface and ocean

state parameters for the period from January 1950 to present.
The ERA5 system provides hourly data for several parame-
ters on a 30 km grid throughout the period, together with the
uncertainty estimates for these variables at the reduced spatial
and temporal resolution from an ensemble (with 3-hourly
output at half the horizontal resolution of 63 km grid spacing).
The ERA5 data are produced by the Copernicus Climate
Change Service (C3S) at ECMWF. This study uses a com-
prehensive dataset from model simulations and buoy obser-
vations. The ECMWF data were obtained from the ECMWF
climate change service (https://cds.climate.copernicus.eu/).
The ERA5 data corresponding to the in-situ observations
were extracted for further analysis. Further, it has the surface
dataset consisting of eastward and northward neutral winds
at the height of 10 m above the sea surface and precipitation.

III. MODEL DESCRIPTION
A. DESCRIPTION OF THE OPERATIONAL ALGORTHM
The brightness temperature is the key parameter measured
by microwave radiometers that depends on surface emissivity
and SST.

FIGURE 1. Location map of the deep sea moored buoys in the North
Indian Ocean (Bay of Bengal and Arabian Sea). The SST and SSS
observations from OMNI buoys for the years 2017 and 2018 were used for
model development.

The brightness temperature model is used to retrieve sur-
face emissivity (Eq. 7) [55]. The sea surface emissivity for
given frequency and viewing geometry is dependent upon the
geophysical parameters such as seawater dielectric constant,
SSS, SST, surface roughness and foam [54]. The existing
model for SSS retrieval incorporates the roughness correction
model and implements the Marquardt Levenberg algorithm
for minimizing the weighted Sum of Squared Error (SSE)
cost function (either linear or nonlinear) over a space of the
parameters used in this study. According to the Klein-Swift
model [54], the relation of brightness temperature and surface
emissivity is given by

TB = T × e (6)

TB =
(
T ′B + TSC

)/
(LA + TUP) (7)
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FIGURE 2. Schematic of the mooring buoy with the high-resolution SSS
and SST sensors (highlighted in red).

where T ′B is the terrain/surface emission, TSC is the radiomet-
ric temperature of the energy scattered from the surface, LA
is the atmospheric attenuation, and TUP is the atmospheric
upwelling self-emission. The above relation (Eq. 6) can be
written in terms of surface emission and roughness as,

TB,P (2, SST , SSS,U10) = ep (2, SST , SSS) .SST

+1TB rough,p (2,U10) (8)

ep (2, SST , SSS) = 1−
∣∣Rp (2, SST , SSS)∣∣2 (9)

where Rp is the Fresnel reflection coefficient given by

Rv (2, f , SST , SSS) =

√(
εsw − sin22

)
− εsw cos2√(

εsw − sin22
)
+ εsw cos2

(10)

Rh (2, f , SST , SSS) =

√(
εsw − sin22

)
− cos2√(

εsw − sin22
)
+ cos2

(11)

for vertical and horizontal polarization respectively. The rela-
tion between sea surface salinity and the influencing param-
eters is given by (Eq. 12)

SSS = S0 (2i, ts)+ S1 (2i, ts)T ′BE,V ,Sur
+S2 (2i, ts)T ′BE,V ,Sur + S3 (2i, ts)U10 (12)

where SSS is a function of the brightness temperature,
SST, viewing geometry (2, angle of incidence) and rough-
ness parameter and coefficient (S) which is a function of
the angle of incidence and temperature. The SSS retrieval
algorithm uses brightness temperatures (modelled and mea-
sured) by applying the Levenberg-Marquardt least square
iterative convergence algorithm. Because the sea surface
roughness parameter dominates the errors of SSS retrieval
from microwave L-band radiometers, several models were

developed based on theoretical and empirical approaches.
The small perturbation method (SPM) is one among those
models in which RMS (Root Mean Square) of surface wave
height is smaller than the wavelength for simulating the sur-
face emissivity. The small-slope approximation method has
been used extensively for all ocean wavelengths when the
wave slopes are small, because it overcomes the problem of
the SPM in the calculations. The two-scale method (TSM)
reported in an earlier study [56] has become popular, as it
approximates the sea surface in two-scales (small scale and
large-scale waves). In other studies, semi-empirical relation-
ships between the brightness temperature, angle of incidence
and wind speed were established and tested [50], [53].

B. ROBUST ALGORITHM BASED ON MACHINE
LEARNING APPROACH
In recent years, machine learning has grown out rapidly for
developing a wide variety of real-world applications because
of its potentiality to intelligently analyse the nature and char-
acteristics of various types of data and enhance the learn-
ing algorithm performance. Machine learning algorithms
are broadly classified as unsupervised, semi-supervised,
supervised, and reinforcement learning type. The machine-
learning algorithms are capable of learning from sample
data and providing the output results in the form of predic-
tions or classifications based on non-linear statistical mod-
els. The ANN(Artificial Neural Network) algorithms can be
used to enhance the existing data analysis technique owing
to their predictive capabilities [57]–[59]. The number of
hidden layers in ANN needs to be increased to achieve a
close convergence between the output and measured values,
although it increases the complexity of themodel. TheGRNN
(Generalized Regression Neural Network) method, which
was proposed for improving SMOS (SoilMoisture andOcean
Salinity) SSS in the South China Sea (SCS), uses salinity data
at 5 to 10m depths fromArgomeasurements, and explains the
significance for correcting SSS using the near surface depth
data [41].

Decision trees are based on trees built with nodes and
leaves for solving the classification and regression problems.
The nodes in the trees indicate the feature from the inputs, the
branch indicates decision, and the leaf at the end forms the
output. The decision trees are simpler in construction, but its
performance reduces when the input data have the noise or
outliers. Also, its performance reduces when applied to the
new input dataset. In order to minimize the above error, a ran-
dom forest (RF) regression tool uses multiple decision trees
and creates the different sets of trees for the same input values.
The collective outputs generated by RF (Fig. 3) present the
expected values. The RF based regression was implemented
using the ‘RandomForestRegressor’ function using python.
For tuning the random forest regression algorithm, parame-
ters such as the maximum depth of the tree, number of trees
in the forest and random state are adjusted for attaining the
maximum training score.
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FIGURE 3. A flowchart of the random forest architecture.

C. RANDOM FOREST REGRESSION
Random forest regression (a supervised machine learning
algorithm) uses an ensemble learning technique to combine
the output results from multiple learning algorithms in order
to produce predictions that are more accurate. The predic-
tions are achieved from several decision trees with leaf and
decision nodes constructed during the training process. Leaf
nodes are the outcome of the decisions made based on a given
dataset. The input data are split into multiple data segments
to attain maximum homogeneity and purity based on certain
decision criteria and the splitting continues and results in
fully-grown trees until the expected output is achieved. The
decision trees may suffer from a high degree of variance, lead
to over fit the data, and yield poor accuracy on unseen data.
This problem can be minimized by increasing the number of
trees. Random forest (RF) [60] is a group of decision tree pre-
dictors and it works based on a random vector independently
sampled with the identical distribution in all the decision
trees in the forest. Thus, the generalized error decreases as
the size of RF increases. Random selection of input data
fields also helps in achieving a better performance accuracy
and closeness with the target value. For this study, the RF
regression is implemented by forming trees depending on a
random vector and a predictor with a numerical value. The
predicted variables are based on the average of the predictions
from the individual decision tree in the RF method.

D. MODEL PARAMETERIZATION
The machine-learning approach based on RF was imple-
mented to form a robust algorithm to estimate SSS from
satellite microwave L-Band radiometer data. This algo-
rithm uses the input variables from in-situ observations,
SMAP,auxiliary inputs and ERA5 data. The brightness tem-
peratures (Tb_h-horizontally polarized and Tb_v-vertically
polarized) are obtained from SMAP L2 data and the
brightness temperature ratio is computed subsequently
(Tb_h/Tb_v, which helps in stabilizing the sensitivity of
Tb at the various ranges of SST) [37]. The ancillary data
of SMAP such as NCEP (National Centers for Environ-
mental Prediction) wind speed, significant wave height
from NOAA Wave Watch III, NOAA Optimum Interpola-
tion (OI) SST, and reference SSS from HYCOM (HYbrid
Coordinate Ocean Model) for each pixel resolution of Tb
are obtained from the PODAAC server (podaac-tools.jpl.
nasa.gov/drive/files/SalinityDensity/smap). From the ERA5

model, total precipitation, vertical and horizontal components
of 10 m neutral wind are obtained. The wind vector provides
the direction information of the wind for an improved esti-
mate of SSS.

The in-situ SSS and SST from buoy observations were
used to improve the algorithm parameters. The in-situ SSS
data were used as the target variable (label data) for training
and testing the algorithm performance [39]. Consequently,
the new algorithm yields the maximum feature importance
score for each in-situ SSS observation (results presented in
a later section). The training of the RF algorithm was con-
ducted using in-situ time-series data for the year 2017-2018.
Despite the total number of in-situ data from buoy systems
being greater than 10,000, quality control application and
in-situ/satellite matchup analysis reduced the total number of
in-situ data to 3028. For validation, the matchup data were
rescaled at the same temporal and spatial resolutions. 70%
of these data were used for training and 30% for testing
purposes. The results of the algorithm were validated inde-
pendently using in-situ time-series data for the year 2019.

The significance of the input parameters in the refined
model is evaluated using a feature importance bar plot and it
depicts that the HYCOM SSS contributes the highest value
of 0.65 followed by the subsequent input variables in the
descending order (Fig. 4). The quality-controlled input vari-
ables are used to train the random forest model (Fig. 5)

FIGURE 4. Feature importance of various input variables.

IV. RESULTS AND DISCUSSION
This section presents the validation results for the Refined
Model (RM) and standard algorithm using in-situ SSS data
obtained from the moored OMNI buoy systems. Because
the OMNI buoys are located in open sea regions far away
from the coast, the in-situ measurements are not contami-
nated by the land and high radio frequency interference (RFI)
effects. The validationmatchup data of salinitymeasurements
were obtained under different oceanic and meteorological
conditions (including tropical cyclones). In addition to eval-
uating RM SMAP SSS in comparison with in-situ SSS and
standard SMAP SSS data, the RM SMAP SSS products are
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FIGURE 5. Flowchart depicting the steps involved for selecting the significant input variables from the various sources and in-situ parameters
from buoy data.

further used to study synoptic/mesoscale SSS features and
seasonal variations of SSS in BoB and AS.

A. EVALUATION OF SMAP SSS
To evaluate the satellite-retrieved SSS products, SMAP SSS
from the RM and standard algorithm in BoB and AS were
compared with OMNI buoy time series in-situ measurement
data at 24 locations (14 locations in BoB and 10 locations in
AS- Table 1). These measurements show a close consistency
between RM SSS and in-situ SSS throughout the observa-
tion periods. In contrast, the standard SMAP SSS deviated
from in-situ SSS data in regions with strong wind and high
waves, river plumes and vertical mixing. The overall RMSD
was ∼0.3 PSU and >0.5 PSU for the RM and standards
algorithm respectively. A significant deviation of the stan-
dard algorithm SSS products is owing to inaccurate input
data for strong winds, waves, freshwater inputs and vertical
mixing/upwelling processes [37]. A slight difference between
RM SSS and in-situ SSS may be attributed to the spatio-
temporal sampling difference between satellite and in-situ
platforms (i.e., the measurement footprints, measurement
times, and measurement depths; note that the satellite-based
L-band microwave radiometer measures salinities at less than
a centimeter depth of the ocean and the buoy systemsmeasure
salinities at 0.45 m below the sea surface). These factors often
introduce discrepancies in the validation results on a range of
spatial and temporal scales [37], [61]. Further, the variation in
skin layer SSS caused due to evaporation [62] and the effect
of wind in increasing the surface roughness are considered in
the correction of geophysical effects [26].

Further comparison based on the daily (continuous) mea-
surements from all OMNI buoy systems in BoB and AS
showed a good agreement between RM SSS and in-situ SSS
with low bias (Figs. 6 and 7). The RM SSS also depicted

TABLE 1. Details of the OMNI buoys for SST and SSS observations.

measured salinity variations over the entire observation
periods, particularly low-salinity troughs in the northern
BoB (due to precipitation and river runoff) during the
months of southwest (mainly July and August) and northeast
(mainly November-early December) monsoon and high-
salinity peaks (nearly month or sub-month) with high fluctu-
ations (due to salt water movements by currents and eddies)
during the observation period [37].

A similar performance of the RM was observed in
the freshwater-influenced BoB and salty AS with a mean
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TABLE 2. Statistical comparisons of RM SSS and SMAP SSS data vs in-situ
SSS data for the year 2019.

FIGURE 6. Scatterplots of SMAP SSS vs In-situ SSS (c) and RM SSS vs
In-situ SSS (e) in Bay of Bengal waters. Scatterplots of SMAP SSS vs In-situ
SSS (d) and RM SSS vs In-situ SSS (f) in Arabian Sea waters. The grey
symbol represents SSS data for the years 2017 and 2018. The coloured
symbols (red, blue and green) represent the independent validation data
of SSS in Bay of Bengal(a) and Arabian Sea(b) for the year 2019.

normalized bias (MNB) of 0.07, a RMSE of 0.44, an inter-
cept of 0.51, a slope of 0.98 and a correlation coefficient of
0.93 (N=479). In contrast, the standard SMAP SSS showed
large errors and low slope and correlation coefficient values
(MNB 0.21, RMSE 0.59, intercept 0.96, slope 0.97, and

FIGURE 7. (a) Comparison of SSS matchup data from SMAP/In-situ
observations and Refined Model for the year 2019 in BoB (17◦N/89◦E).
(b) The corresponding biases (SMAP minus In-situ(black) and RM minus
In-situ(red)).

correlation coefficient 0.9). The standard SMAP algorithm
showed the similar performance in the middle and southern
regions of BoB, but it yielded the relatively high errors and
low correlation coefficients in northern BoB waters with
high river input (from Ganges and other river systems) due
to an underestimation of SSS on both weekly and monthly
time scales. In salty AS waters, the standard algorithm
severely overestimated SMAP SSS with the larger deviation
than the RM. This inconsistency in the performance of the
standard algorithm with high errors limit potential applica-
tions of satellite salinity observations on local and regional
scales.

To examine the source of errors and the performance of the
algorithms, SMAP SSS were further compared with in-situ
SSS in five different regions on different spatio-temporal
scales (Table 2) – Case 1 in the river discharge region, Case 2
in the BoB region, Case 3 in the island region, Case 4 in the
deep-sea region of BoB, and Case 5 in the Arabian Sea. These
test cases were identified based on certain factors and pro-
cesses that influence salinity variations and affect the perfor-
mance of the algorithm. The river discharge region receives a
large volume of freshwater from continents and a nearly equal
amount of freshwater due to precipitation over the northern
BoB [63]. The RM estimated SSS in this region with MNB
0.08, RMSE 0.68, intercept 2.9, slope 0.91 and correlation
coefficient 0.88. These statistical values indicate better per-
formance of the RM as compared to the standard algorithm
(with MNB 0.29, RMSE 0.75, intercept 3.25, slope 0.9,
and correlation coefficient of 0.87). The Case 2 region
represents the middle BoB which has lesser RFI effect. For
this region, the RM still outperformed the standard algorithm
in estimating SSS from SMAP data (MNB 0.11, RMSE 0.25,
intercept 0.19, slope 1.0, and correlation coefficient 0.95 for
the RM; MNB 0.24, RMSE 0.43, intercept 0.23, slope 0.99,
and correlation coefficient 0.91 for the standard algorithm).
A similar validation analysis was conducted for the island
region (Andaman), where a buoy is moored at a water
depth of 3200 m and about 100 nautical miles away from
the island coast. This region experiences intense monsoonal
rains [64], [65] and high runoff from the continent [66].
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FIGURE 8. Scatterplots (first and second row), line plots (third row) and bias plots (fourth row) showing the comparison of SMAP SSS and RM SSS
with in-situ measured SSS for the different cases. Case 1 – River discharge region, Case 2 – Central Bay of Bengal region, Case 3 – Near the Island
region, Case 4 – Deep sea location in Bay of Bengal, Case 5 – Arabian Sea.

The comparison between RM SSS and in-situ SSS indicated
a slightly lower performance of the RM (MNB 0.12, RMSE
0.32, intercept 8.71, slope 0.73, and correlation coefficient
0.68) when compared to its SSS estimates in other regions.
However, the RM SSS are more accurate than the standard
SMAP SSS products (MNB 0.16, RMSE of 0.39, intercept
9.75, slope 0.70, and correlation coefficient 0.6). Similar
validation results were obtained for the Case 4 region of
BoB (MNB 0.02, RMSE 0.44, intercept 5.2, slope 0.84, and
correlation coefficient 0.86 for the RM; MNB 0.11, RMSE
0.52, intercept 5.8, slope 0.82, and correlation coefficient
0.83 for the standard algorithm). In salty AS water (Case 5),
the RM estimated SSS are better consistent with in-situ SSS
(MNB 0.08, RMSE 0.60, slope 1.33, and correlation coef-
ficient 0.83) when compared with the standard algorithm
(MNB 0.21, RMSE 0.8, slope 1.3, and correlation coefficient
0.76 (Fig. 8(a – t)).

B. APPLICATION OF THE RM IN THE BoB AND AS
The RM was used to analyse the spatial structure of SSS in
BoB and AS for the year 2019. The northern BoB is charac-
terized by low saline water from the discharges of Ganges and
Irrawaddy river systems [64]. Precipitation due to southwest
(June-August) and northeast (October-December) monsoons
further leads to freshening of the bay [60]. In this region,
the RM provided accurate SSS estimates over the standard
algorithm in coastal and open sea waters.

The RM provided improved SSS estimates over the
standard algorithm and reduced the associated deviations
due to the dynamic near-surface salinity stratification [13],
mismatches between satellite footprint and in-situ point mea-
surement, associated averaging of measurements [67], and
RFI [44].

The fresh water fluxes from the rivers and heavy precipita-
tion caused an increase of SST ∼0.5◦ C in the northern BoB

74312 VOLUME 10, 2022



B. Kesavakumar et al.: Enhanced SSS Estimates Using Machine-Learning Algorithm

FIGURE 9. Monthly SSS products derived from the RM for the year 2019.
Location in the range between 3◦ N - 24◦N and 65◦ E-95◦ E.

FIGURE 10. Seasonal SSS products derived from the RM for the year
2019. Location in the range between 3◦ N - 24◦N and 65◦ E-95◦ E.

during summer and a reduction of SST from 0.5◦ to 1.5◦ C in
the eastern BoB during summer and winter [68]. This leads to
the variations in brightness temperatures (TB) and SSS [10].
Because the RM uses the SST from in-situ data (observed
with a sensor with high resolution ∼0.0001◦ and high stabil-
ity 0.0002◦C per month) and ERA5 model data, it improved
the SSS estimates over the standard algorithm. As a result,
the RM SSS products depicted the spatial coverage of low
saline water along the east coast of India, which is fueled by
the East India Coastal Current (EICC) [69]. The freshwater
tongue like structure is visible in the RM SSS product for the
months of September to November [63]

The AS displays high salinity structure due to evapora-
tion, less precipitation and spreading of Persian Gulf waters.
As can be seen in Fig. 9, the RM SSS products showed
consistently high salinity structure in the AS and in regions of
the significant interaction betweenAS andBoB. The RMSSS
products also depicted the southward advection of high saline
water from AS to mid BoB during July-November (Fig. 9).

FIGURE 11. Plots showing the variables/ parameters for the month of
May 2019. a) Sea surface salinity (SSS in PSU) from the in-situ
observations RM and standard SMAP algorithm, b) Sea surface
atmospheric pressure (hPa), c) Short wave radiation (Wm−2), d) Long
wave radiation (Wm−2), e) Sea surface temperature (◦C), f) Surface water
current speed (cms−1), g) Wind speed and wind gust (ms−1), h) Wind
direction (degrees), and i) Surface water current direction (degrees).

FIGURE 12. Plots showing the variables/parameters for the month of
November 2019. a) Sea surface salinity (SSS in PSU) from in-situ
observations, and RM and standard SMAP algorithm, b) Sea level
Pressure (hPa), c) Short wave radiation (Wm−2), d) Long wave radiation
(Wm−2), e) Precipitation (mm), f) Surface water current speed (ms−1),
g) Wind speed and wind gust (ms−1), h) Wind direction (degrees),
i) Surface water current direction (degrees) during the extreme conditions
of Bulbul on 8 Nov 2019.

The EICC contributes to the southward movement of fresh
water along the east coast of India (thus giving rise to the
West India Coastal Current, WICC) and to the intrusion of
fresh water from BoB to AS [70], [71].

The intrusion of BoB fresh water into AS is clearly
observed during the months of January-April and this excha-
nge is reversed during the months of June-October (Fig. 9).
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FIGURE 13. Plots showing the variables/parameters measured/estimated
on 8 November 2019. a) SMAP SSS (PSU), b) RM SSS (PSU), c) Sea level
pressure (hPa), d) Sea surface temperature (◦C), e) U component of
neutral wind at 10 m (ms−1), f) V component of neutral wind at
10 m (ms−1), and g) Total precipitation (mm), and h) Quality flag of SMAP.

The climatological products of the RM demonstrated the
spatial structures of salinity in this region (Fig. 10).

The coincidence of two tropical cyclones with satellite
passes enabled a better assessment of the algorithm per-
formance during the extreme cyclonic conditions. For this
analysis, the tropical cyclone Fani of May 2019 (Fig. 11)
and Bulbul of November 2019 were considered. The standard
SMAP SSS products overestimated the salinities due to high
surface winds and the highly varying local parameters. The
quality flag of SMAP data during the cyclones indicated a
high uncertainty associated with the brightness temperature
measurements.

In general, vertical mixing, Ekman pumping, rainfall and
runoff control the salinities during the cyclonic events [9].
The upwelling process significantly contributed to the
observed salinity variability during the cyclonic events.
During the Bulbul cyclone, the minimum distance between
the eye of the cyclone and the in-situ buoy location was 72 km
on 8 November 2019 when the cyclone turned into a very
severe cyclonic storm (VSCS). Fig. 12 (a) shows the per-
formance of RM under severe cyclonic conditions, wherein
it estimated the salinity variation of 0.3 PSU which was
not detected by the standard algorithm. High precipitation
occurred due to the Bulbul cyclone freshened the surface
layer on the subsequent days [63].

FIGURE 14. Plots showing the variables/parameters measured/estimated
during an extreme event on 2 May 2019(TC-Fani). a) SMAP SSS (PSU),
b) RM SSS (PSU), c) Sea level pressure (hPa), d) Sea surface
temperature (◦C), e) U component of neutral wind at 10 m (ms−1),
f) V component of neutral wind at 10 m (ms−1), g) Total
precipitation (mm), and h) Quality flag of SMAP.

The freshening of the surface layer was dependent on the
degree of cyclonic intensity and cyclone category [38]. Our
analysis showed that passive microwave brightness tempera-
tures were significantly affected in high winds (>15 m s−1),
gusts and shifts in wind direction during the Bulbul and Fani.
Other parameters such as surface currents, sea surface wind
speed, short wave radiation, and long wave radiation indi-
cated an extreme condition on 8 November 2019. Overall, the
RM gave satisfactory results when compared to the standard
algorithm. Fig. 13 shows the spatial SSS products generated
using ERA 5 model data and SMAP radiometric products
on 8 November 2019.The track of SMAP (L2) matched with
the cyclone track and the quality flag obtained from SMAP
data indicated the large uncertainty with the SMAP SSS
products near the eye of the cyclone.

Fig. 13 (b) shows the RM SSS product generated during
the cyclonic event.

Our analysis based on the sea level pressure, U and V com-
ponents of wind, precipitation (Fig. 14) and standard SMAP
SSS products showed that the signatures of the Fani cyclone
were only partially captured in this region and the quality flag
indicated the high values along the SMAP track. In contrast,
the RM SSS products displayed spatially consistent SSS
structures with the available input data. The remotely sensed
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input variables are affected due to the extreme conditions and
this bias is fed to the model which results in a similar bias in
RM SSS estimates.

V. CONCLUSION
A machine-learning based refined algorithm for SSS
retrievals using high-resolution in-situ data has been pre-
sented in this study. The total number of quality-controlled
training data collected over the period 2017-2018 and used
for this work, was around 3028. This dataset was critical for
random forest (RF) learning and algorithm refinement.

The RF learning database consisted of SMAP observa-
tions, ERA 5 data, in-situ measurements of SSS, SST and
other ancillary parameters. To conduct an independent and
systematic validation of the RM, the in-situ time series mea-
surements of SSS (from OMNI buoys) and the corresponding
SMAP data were used to generate a matchup dataset for the
year 2019 (N=479).

Results showed that the refinedmodel (RM) estimated SSS
with an improvement of 15% in open sea waters and 25%
in river-discharge and precipitation-dominated regions (with
a root mean square error less than ∼0.68 PSU, a correla-
tion coefficient greater than 0.88 and a slope value greater
than 0.91). In contrast, the standard SMAP algorithm yielded
significantly high errors in regions of river runoff, fresh-
ened ocean surface (due to precipitation) and intense trop-
ical cyclones. The standard SMAP algorithm showed the
poor prediction accuracy or missing data in regions with
large salinity changes. This limits the potential application of
SMAP SSS in the North Indian Ocean. The reduced accuracy
could be caused by the deficient or inadequate/inaccurate
input data and the algorithm parameters.

This study also demonstrated the applicability of RM SSS
to study SSS variability in AS and BoB waters. The monthly
and seasonal RM SSS products showed large, visible salinity
changes as the result of the freshwater inputs from Ganges
and other river systems in the northern BoB throughout the
southwest (June-August) and northeast (October-December)
monsoons. The spatial coverage of the freshening signature
further extending to areas through middle of the BoB and
along the coasts of Myanmar clearly reflected the differ-
ences and contrasts over the river runoff areas and shallow
shelf seas [72]. The RM SSS products captured a high SSS
structure in the AS throughout the year. This persistent SSS
structure was manifested and maintained due to spreading
of the intermediate Persian Gulf water and surface Arabian
sea high-salinity water. The high SSS water was advected
southward in the AS and the seasonality of this structure was
found to be dependent on coastal currents and eddies during
the fall and winter months [71].

Further, the spatial SMAP SSS maps during the passage
of tropical cyclone (TC, Fani) provided an opportunity to
investigate the influence of TC intensity and wind speeds on
the SSS signatures and to make a robust assessment of SMAP
SSS in complex oceanic conditions. The SMAP SSS maps
exhibited a larger surface salinification along the path and
on the left-hand side of the cyclonic storm. The movement

of this cyclone resulted in strong vertical mixing processes
and surface freshening (high precipitation) on the forward
and right side of the storm during its passage. Results of the
RM and standard algorithms showed that because of the high
surface winds and inaccurate input wind data, the standard
algorithm produced biased SSS along the storm trajectory
and its adjoining high-wind regions. In regions surrounded by
the eyewall of the cyclone, the standard SMAP SSS products
were heavily biased and removed consequently. In contrast,
the RM exhibited reduced SSS anomaly due to the storm
motion in BoB.

Although the SSS retrieval from satellite microwave
L-band radiometer data is challenging due to the current
limitations/methodological complexities as well as the uncer-
tainties associated with many factors and input datasets,
the present study demonstrated significant improvements in
SMAP SSS measurements, which will lead to a better under-
standing of the large-scale SSS variability in open-ocean
regions and high-frequency small-scale SSS variability in
shallow shelf regions.
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