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ABSTRACT Crop pests are to blame for significant economic, social, and environmental losses worldwide.
Various pests have different control strategies, and precisely identifying pests has become crucial to pest
control and is a significant difficulty in agriculture. Many agricultural professionals are interested in deep
learning (DL) models since they have shown significant promise in image recognition. Pest identification
approaches in literature have relatively low accuracy in pest recognition and classification due to the
complexity of their algorithms and limited data availability. Misclassification of insect pests sometimes
leads to using the wrong pesticides, causing harm to agricultural yields and the surrounding environment.
It necessitates developing an automated system capable of more accurate pest identification and classifica-
tion. This paper presents a novel end-to-end DeepPestNet framework for pest recognition and classification.
The proposed model has 11 learnable layers, including eight convolutional and three fully connected (FC)
layers. We used image rotations techniques to increase the size of the dataset and image augmentations
techniques to test the generalizability of the proposed DeepPestNet approach. We used the popular Deng’s
crops data set to assess the proposedDeepPestNet framework.We used the proposedmethod to recognize and
classify crop pests into 10-class pests, i.e., Locustamigratoria, Euproctis pseudoconspersa strand, chrysochus
Chinensis, empoasca flavescens, Spodoptera exigua, larva of laspeyresia pomonella, parasa lepida, acrida
cinerea, larva of S. exigua, and L.pomonella types of insects pests. The proposed method achieved optimal
accuracy of 100%. We compared the proposed DeepPestNet approach with traditional pre-trained deep
learning (DL) models. To verify the general adaptability of this model, we tested the proposed model on
the standard Kaggle dataset ‘‘Pest Dataset’’ to recognize nine types of pests: aphids, armyworm, beetle,
bollworm, grasshopper, mites, mosquito, sawfly, and stem borer and achieved an accuracy of 98.92%. The
proposed model can provide specialists and farmers with immediate and effective aid in recognizing pests,
potentially reducing economic and crop yield losses.

INDEX TERMS Insects pests, deep learning, transfer learning, fine-tuning, convolutional neural networks.

I. INTRODUCTION
By 2050, the world’s population is expected to grow by
almost 2 billion people. As a result, food safety appears to be
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among the most pressing issues in the future [1]. Increased
productivity in agricultural production, which is among the
growing study fields, is one solution to this challenge. Pest
control is critical for increasing agricultural output and food
quality while reducing costs and increasing profits, which
has recently become significant. Insect pests are one of the
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most common causes of agricultural damage worldwide. The
mitigation of these losses could save a significant amount of
the yield and increase agricultural profitability. Pest infesta-
tions on harvests cause various diseases and harm harvests,
resulting in low yields [2]. Insect damage to harvest regions
such as rice, wheat, and beans is one of the major reasons
driving yield losses. Insecticides and other bio control tech-
niques should be used to minimize insect crop losses and
reduce insect populations and avoid them from spreading
over broad areas. Pesticides and chemicals have a big impact
on pest control. They will, however, have several detrimental
effects on human health and the environment. As a result,
agricultural scientists worldwide began working together to
develop better pest control replacements for chemical pesti-
cides. Addressing and minimizing such issues would posi-
tively result in the entire sector’s economic growth to generate
a large amount of food with fewer natural resources would be
required

In addition, because pest management procedures change
depending on the pest species, identifying the insect is
critical. The capacity to recognize and classify insects,
to distinguish between the healthy and dangerous ones,
is the first step in preventing crop damage caused by insect
pests. However, due to the intricate anatomy of insects
and the resemblance between various insect species, insect
classification is a difficult undertaking. Entomologists have
typically classified insects by hand, which is time-consuming
and difficult and necessitates a thorough understanding [3].
Because this activity necessitates ongoing and costly super-
vision, automatic pest classification has gained popularity
in recent years. Furthermore, to solve these issues, experts
have used various computer-aided categorization techniques.
Many computerized pest classificationmethods have recently
been presented based on machine learning (ML) meth-
ods [4]–[7]. Traditional ML algorithms, on the other hand,
have some drawbacks. Traditional ML techniques have been
shown to work well when the quantity of crop pest species
is limited, but they become ineffective when various fea-
tures are manually retrieved. They necessitate a further level
of data preprocessing known as feature engineering, which
is critical. In addition, its capacity to generalize across
datasets is limited. Furthermore, their effectiveness depends
on the available data; for example, limited dataset results
in poor accuracy, but after a certain level of accuracy is
achieved, increasing the dataset has little effect on perfor-
mance. We have the same issues when it comes to insect
classification.

DL models can solve these issues, particularly the
CNNs DL algorithm, when the input dataset comprises
images. DL is a type of ML that automatically uses mul-
tilevel neural networks to extract deep features. DL-based
algorithms for weed identification [8]–[10], plant recognition
[11], [12], and plant disease identification [13], [14] have
increasingly been popular in agriculture. Insect categoriza-
tion was another area where the CNN model outperformed
traditional ML techniques. Several DL algorithms have been

used to identify pests in recent years, yielding state-of-the-art
results in various pest detection applications [15], [16].

The motivation behind the research study is that despite the
wide range of studies on pest classification and recognition,
there is still interest in developing high-accuracy automated
systems for pest classification. Although a few studies on pest
classification and recognition have recently been provided,
this research subject remains underexplored. Transfer learn-
ing (TL) of pre-trained DL frameworks and support vector
machines (SVM) is the most commonly utilized pest classi-
fication and recognition method in extant research. However,
the SVM machine learning algorithm takes longer to train
with larger datasets [17]. Overfitting and negative transfer
are the most concerning limits in TL [18]. For this purpose,
we developed the DeepPestNet model for pest identification
to address these concerns in this research study. The proposed
model consists of 11 learnable layers, eight of which are
convolutional and three fully connected (FC).

The main contributions of the research study are:

• We introduced an effective DeepPestNet model for
boosting insect classification performance by identify-
ing insect species in field crops at an early stage, and
this can be used to improve crop quality and yield.

• For accurate pest classification and recognition, the pro-
posed new end-to-end DeepPestNet model extracts the
most discriminative features automatically.

• We used the image rotations and augmentations tech-
nique to increase the size of training data and prove the
generalizability of the proposed DeepPestNet model.

• For pest classification and recognition, we compared the
performance of the proposed DeepPestNet model to that
of Squeezenet and Googlenet deep TL methods.The rest
of the paper is structured out as follows.

Section 2 describes the related work. Section 3 contained
a description of the technique. Section 4 went over the
specifics of the experiments as well as the outcomes. Finally,
Section 5 brings our work to a close.

II. RELATED WORK
Recently, some research studies have been concentrated on
pest classification and recognition. The pest classification and
recognition research can be divided intoML, DL, and hybrid-
based approaches. Hybrid methods include techniques that
employ both DL andML techniques.Many pest classification
research works use DL-based techniques, whereas ML-based
techniques are rarely used. Below, we highlighted the most
recent and relevant research work in automatic pest identifi-
cation and classification.

Recently, advanced ML-based techniques have effec-
tively performed well in pest categorization and detec-
tion [19]–[21]. Multiple classifiers are trained using extracted
features from pests, and multiple types of pest images were
categorized in these works. In [22], the UAV dataset was
used to forecast armyworm contaminated and healthy corn
regions, and the armyworm occurrence levels were then
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categorized. The best combination of image features for
recognizing armyworm insects in corn-planted regions was
discovered utilizing Gini-importance. The authors compared
four types of ML methods: Random Forest (RF), Multilayer
Perceptron (MLP), Naive Bayesian (NB), and SVM. The RF
model performs the best compared to other ML approaches
(MLP, NB, and SVM) for classifying the armyworm pest
and normal corn. The authors [23] proposed an automatic
pest detection (thrips) system based on SVM for greenhouse
pest attack monitoring. Researchers used a novel image pro-
cessing technique to detect parasites on strawberry plants.
The SVM approach with a different kernel function was
applied for parasite classification and thrips identification.
The SVM structure was designed using the main diameter
to minor diameter ratio as a region index, Hue, Saturation,
and Intensify as colour indices. The results demonstrate that
utilizing the SVM method with area index and intensify as
colour index produces the best classification, with a mean
percent error of under 2.25 percent. In [24], the authors used
two feature extraction techniques for the identification and
categorization of tomato pests, namely, Histogram of Ori-
ented Gradient (HOG) and Local Binary Pattern techniques
(LBP). HOG outperforms its competitor, according to the
comparison results. However, these ML-based pest recogni-
tion systems rely on ’handcrafted’ features extracted from the
actual domain by comparing individual appearances. As a
result, the empirical parameters must be manually changed
to account for changes in image acquisition conditions. As a
result, detecting pests in outside environments using hand-
crafted techniques based on colour, structure, and texture
remains a serious difficulty.

The importance of DL methods in computer vision has
inspired researchers to utilize them for pest recognition and
classification [25]–[27]. But unfortunately, DL algorithms in
the domain of pest recognition have been constrained by a
scarcity of pest image datasets and the inexplicability of DL
frameworks. A novel and robust dataset for crop pest recog-
nition was created in [15], and three different DL models
were trained to employ TL and fine-tuning. The recognition
rate of the three Architectures was greater than 80.00 per
cent. Using the gradient-weighted class activation technique,
the authors presented appropriate visual descriptions for the
most crucial portions of the recognition layers. According
to this study, the recognition process concentrates more on
visual details than the entire image, and general differences
are overlooked. An end-to-end pest detection system com-
bining DL and hyperspectral imaging (HSI) techniques is
presented in [16]. This technique can be used to quickly rec-
ognize pests for successful pest control. To address noise and
duplicate details in the HSI spectral space, one-dimensional
convolution and attention techniques across spectral channels
are employed to develop a spectral feature extraction unit
to effectively use spectrum information. The HSI feature
extractor secures rich spectral-spatial information using a
three-dimensional convolution branch structure with various
resolutions in parallel. The output feature map maintains its

higher resolution throughout its use. Each branch contains an
adjustable spectral-spatial feature extraction unit that dynam-
ically weights different inputs, limiting the HSI’s dispropor-
tionate effect and improving the network’s feature extraction
skills. Pest HSI was acquired utilizing hyperspectral imaging
equipment, resulting in a dataset containing nine different
pests.

Furthermore, it is commonly known that the hybrid models
(DL and ML models) produce better classification results,
which can be used to classify insects. In [28], DL models
(TL technique) were used to classify eight different types of
tomato pests. Using DL models, the extracted pest features
were merged with three ML classifiers, i.e., discriminant
analysis (DA), SVM, and the k-nearest neighbour approach
(KNN). Bayesian optimization was used to effectively
tune hyper-parameters. Following image augmentation, the
VGG16 framework performed better than the other algo-
rithms. The ResNet50 with discriminant analysis classifier
had the best accuracy among the CNN and ML frameworks.
The authors [29] developed a new DL model TPest-RCNN
for pest detection. The faster regional-convolutional neural
network is used as a based model in the proposed model.
Moreover, VGG16 was used for feature extraction. Then,
a region of tiny pests was generated by a region proposal
framework. Finally, extracted features and regions of small
pests are fed to RoIAlign for classification and detection.

Following a review of prior research, it is discovered
that DL models, particularly those used to categorize crop
pests, cannot achieve superior identification and classifica-
tion performance. Instead of using real-world scenes, most
models were trained and tested using images captured in
highly controlled lab environments. However, in the field, the
complicated surroundings, various viewpoints and postures,
varying degrees of colour and texture alteration, changes in
lighting conditions, and different locations of pests’ wings
and limbs constitute a considerable barrier to pest recog-
nition. Although few studies addressed automatic detection
in natural settings (testing is performed on natural images),
most of them focused on a single species or used only one
dataset for validation purposes. Detecting pests effectively
and quickly and extracting traits independent of viewpoint,
scale, and lighting conditions are critical for crop pest recog-
nition. This paper developed an effective DL framework
for identifying and classifying crop pests into ten different
classes. Also, the data set size is boosted using image rota-
tion and data augmentation techniques to obtain generalized
results. To test the generalizability of the proposed approach,
we tested it on a different dataset with 9 different types of
crop pests.

III. METHODOLOGY
In the realm of image processing and computer science,
DL approaches have recently achieved considerable success
(more specifically, pest recognition and classification). In this
study, we have proposed the DeepPestNet DL model for
the effective and efficient recognition and classification of
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FIGURE 1. General workflow of the proposed system.

crop pests. We accomplished a ten-class classification of crop
pests using (the Deng et al. 2018) dataset. The abstract view
of the proposed DeepPestNet approach is shown in Fig. 1,
which comprises four core steps. The dataset images rotations
and data augmentations, image resizing, dataset splitting, and
model training and testing. To further evaluate the classifi-
cation performance of our method, we accomplished nine-
class classifications by employing the proposed DeepPestNet
model using the standard Kaggle ‘‘Pest Dataset’’ dataset to
validate the efficacy of the model. Eleven learnt layers make
up the proposed model, including eight convolutional layers
and three FC layers. The details about the proposed approach
are elaborated below.

A. DATA AUGMENTATIONS
The unavailability of a large amount of data for training
the DL frameworks is one of the challenges when intending
to use DL approaches to pest recognition and classification
problems. More crop pest data is difficult and expensive to
get, both in terms of time and resources. Data augmentation,
or increasing the amount of available data without acquiring
new data by applying multiple processes to current data, has
been proven advantageous in image classification [30]. The
ImageNet classifier challenge winners adopted this method
[31], [32] and used it academically to improve training data
and reduce overfitting [33].

Due to the limited number of images in the dataset,
we applied image rotations, and data augmentation
approaches in this study. For this purpose, we rotated all of
the dataset’s images (both training and testing) by 90 degrees
twice. The dataset’s image count was raised threefold through

this image rotation procedure. Additionally, the images in
the training set were rotated at a random angle between
−20 and 20 degrees, arbitrarily translated up to thirty pixels
vertically and horizontally. They randomly translated the
images between [0.9 and 1.1] to create additional images.

It’s also worth noting that the imageDataAugmenter func-
tion creates sets of augmented images dynamically during
each training phase. The number of images in the training
set was significantly expanded using this data augmentation
method, enabling more effective use of our DL model by
training with a much higher number of training images. Fur-
thermore, the augmented images are only used to train the
proposed framework, not to test it; hence, only real images
from the dataset are utilized to test the learned framework.

B. IMAGE RESIZING
The input images in the datasets are of different sizes.
To ensure uniformity and speed up the processing, we applied
certain pre-processing to resize the input images to 224 ×
224 pixels according to the input image requirements of our
model.

C. DATASET PARTITIONIN
For each experiment, the dataset is separated into training and
testing sets. More precisely, 90% of the dataset was used for
model training, and 10% was used for testing.

D. DEEPESTNET ARCHITERCTURE DETAILS
This paper proposed the DeepPestNet DL model for pest
recognition and classification. The architecture of the pro-
posed framework is elaborated in Table 1. The proposed
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DeepPestNet approach is deeper than standard CNN with
eleven learnable layers, i.e., eight convolution layers followed
by three FC layers. The architecture has a total of thirty-three
layers, including one input layer, nine leaky relu (LR) layers,
one relu layer, five maximum pooling layers, 6 batch normal-
ization (BN) layers, one cross channel normalization layer,
three dropout layers, four average pooling layers, a softmax
layer, and a classification layer. The input layer of the pro-
posed DeepPestNet model is the initial layer, and it accepts
224 × 224 input crop pest images for processing. The first
convolution layer extracts the feature from the 224×224 input
image by applying 64 kernels (filters) of size 7 × 7 with a
stride of 2×2 to generate the feature map. The convolutional
kernels help extract feature maps (patterns) by splitting the
image into smaller parts. The kernels (with certain weights)
move over the pest images and apply a dot product with the
sub-region of input data to obtain the output feature maps.
The working of the convolutional layer is expressed as:

f kc (m, n) =
∑
d

∑
r,s

jd (r, s) · ikc (v,w) (1)

fkc represents the output feature map, jd (r, s) represents the
pest input image multiplied by ikc(v, w) index of the kth kernel
of the cth layer. After employing convolutions on the input
pest image, the size output is produced. Where i represents
input, pmeans padding, k represents kernel size, and s repre-
sent steps.

Activation functions frequently precede convolutional lay-
ers. The activation function describes how a layer node
translates the weighted sum of the input into an output.
The first convolutional layer is followed by Rectified Linear
Unit (relu) activation function (to improve model efficiency).
Relu activation is used because it is efficient and straightfor-
ward. Relu works as follows:

f (x) =

{
0, x < 0
x, x ≤ 0

(2)

LR activation functions follow the remaining convolutional
layers (except the first layer). We used LR to define the ReLU
activation function (RAF) as a tiny linear fraction of x instead
of expressing it as 0 for negative input values (x<0). The
following is how this activation function is calculated:

f (x) = 0.01× x, x (3)

If the input is non-negative, this function yields x, but if it is
smaller than 0 (negative), it yields 0.01 times x. Additionally,
maximum pooling layers follow all convolutional layers to
decrease the overall computational complexity. Pooling lay-
ers perform down-sampling to minimize the spatial size.
This layer decreases the number of parameters and calcu-
lations, improving the architecture’s efficacy and preventing
over-fitting.

f (x) = max(x1, x2, x3, . . . , xk) (4)

where f (x) is a feature vector that has been optimized,
Max-pooling is a down-sampling technique that employs a

kernel (k) and a stride (s) to extract the highest value from
a pest image with a size of h × w. The primary purpose of
layering a max-pooling layer between the convolutional lay-
ers is to steadily shrink the size of the spatial representation,
i.e., h and w, lowering the number of parameters to train and
the network’s ultimate computations. It also helps to avoid
overfitting issues.

The first convolutional layer’s output is passed to the sec-
ond convolutional layer (after employing RAF, cross channel
normalization, and max-pooling). The following convolu-
tional layer uses 64 filters of 1 × 1. The third convolutional
layer filters the inputs by employing 192 kernels of size
3× 3 with a 1-pixel padding value. The fourth convolutional
layer applies 512 kernels of size 3 × 3 to the inputs with a
padding value of 1 pixel and a stride of 2 pixels. The fifth
convolutional layer applies 384 kernels of size 3 × 3 with
padding and a stride of 1 pixel to the inputs. The subsequent
three convolutional layers, i.e., sixth, seventh, and eighth,
apply 256 kernels of size 3 × 3 with a default stride and
padding of 1 pixel and are not followed by the pooling layers.
These layers also extract features, and these feature maps are
submitted to FC layers. The nodes of each FC layer are all
joined to the nodes of the higher layers. FC layers are utilized
to translate the extracted two-dimensional feature map into
a one-dimensional feature vector. Equation 5 represents the
working of the FC layer.

ai =
∑m×n−1

j=0
wij × xi + bi (5)

where i denotes the index of the FC layer’s output; n, m, d,
and i denote the height, width, depth, and index of FC layers
output. Furthermore, b and w denote the bias and weights,
respectively. The LR and dropout layers (to prevent overfit-
ting) come after the first two FC layers, while the softmax and
classification layers come after the last fully connected layer.
The output of the last FC layer is fed to a 10-way softmax as
we have ten classes in our dataset.

E. HYPER PRAMETERS
The accuracy of DL frameworks is highly reliant on the
choice of hyper-parameters [34], which are generally deter-
mined using a trial-and-error method. The selection of
hyper-parameters is crucial because it determines how the
algorithm works [35]. We examined the proposed DeepPest-
Net model performance using multiple hyper-parameters val-
ues to identify the ideal value for each hyper-parameter, given
the numerous options for hyper-parameters. Table 2 demon-
strates the details of the hyper-parameters that were chosen.
The training of our DeepPestNet model was done using
stochastic gradient descent (SGD). The framework is trained
on 80 epochs for pest recognition and classification, with
overfitting taken into account.

IV. RESULTS
We provide a detailed description of the findings of numerous
studies conducted to determine the efficacy of our PestDetNet
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TABLE 1. DeepPestNet architecture details.

TABLE 2. Hyper-parameters of DeepPestNet architecture.

model. This section also includes more information regarding
the dataset used in this study. Deng 1018 is used to evaluate
the performance of our technique. We also tested our model’s
performance using the publicly available ‘‘Pest Dataset’’ to
ensure that it is generalizable.

A. DATASET
To assess the performance of the proposed PestDetNet frame-
work, we used the dataset presented in Deng et al. (2018)
[42]. It comprises ten distinct pest categories primarily seen
in tea plants and other plants throughout Europe and Central
Asia. More specifically, the dataset’s ten different pests
images include Locusta migratoria, Euproctis pseudocon-
spersa Strand, Chrysochus Chinensis, Empoasca flavescens,
Spodoptera exigua, larva of Laspeyresia pomonella,
Parasa lepida, Acrida cinerea, larva of S. exigua, and

L.pomonella. A sample representation of each pest type is
shown in Fig. 2. The total number of pests images in the Deng
data is 562. Each class of pests consists of 40 to 70 images.
The number of images against each pest’s category is shown
in Table 3. Fig. 3 shows sample images after rotations.
We rotated the images of the dataset twice by 90 degrees.
The number of images against each pest’s category after
rotation is also mentioned in Table 3. The pest images in
the dataset were gathered from Mendeley and other online
sources and include pest images acquired with a Single Lens
Reflex camera (SLR). The rest of the images were from
Insert Images, IPM Images, Dave’s Garden, and others. The
dataset contains RGB images of different resolutions. The
size, posture, angle, lighting conditions, and backgrounds of
the sample images vary greatly.

B. EVALUATION MATRICS
The following assessment measures are used to assess the
proposed method’s performance: Accuracy, Precision, Sensi-
tivity (Recall), specificity, and F1_score. The accuracy of the
presented framework is given by equation 4, defined as ‘‘the
number of correctly detected or classified images (COVID-19
or normal) to the total number of sample images’’. The pre-
cision of the proposed model is identified as ‘‘the number
of correctly detected or classified images (COVID-19) to
the total number of (COVID-19) positive images detected

73024 VOLUME 10, 2022



N. Ullah et al.: Efficient Approach for Crops Pests Recognition and Classification Based on Novel DeepPestNet DL Model

FIGURE 2. Sample images from Deng et al. dataset (a) Locusta migratoria, (b) Parasa lepida, (c) Gypsy moth larva, (d) Empoasca flavescens,
(e) Spodoptera exigua, (f) Chrysochus chinensis, (g) Laspeyresia pomonella larva, (h) Spodoptera exigua larva, (i) Atractomorpha sinensis, (j) Laspeyresia
pomonella.

FIGURE 3. Sample images from Deng et al. dataset after rotations.

TABLE 3. Details about Deng et al. data set for pests’ classification.

(correctly or erroneously) by the model’’. The recall is
calculated as ‘‘the number of correctly classified images

(COVID-19) to the total number of COVID-19 images in the
dataset’’. Similarly, specificity is calculated as ‘‘the number
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of correctly detected negative images (normal) to the total
number of negative (normal) images in the dataset’’. Whereas
F1_score combines precisions and recall and calculates the
weighted average of both. The equations to estimate these
metrics are:

Accuracy = (TN + TP)/TS (6)

Precision =
TP

TP+ FP
(7)

Sensitivity (recall) =
TP

TP+ FN
(8)

Specificity =
TN

TN + FP
(9)

F1_score = 2 ·
Precision× Recall
Precision+ Recall

(10)

TP, TS, FP, TN, and FN stand for true positive, total samples,
false positive, true negative, and false negative, respectively.

C. EXPERMENTAL SETUP
The proposed method is tested and validated on a system
with an Intel (R) Core (TM) i5-5200U processor and 8GB
of RAM. The software and hardware resources used in the
proposed PestDetNet method are shown in Table 4. Models
require input images to be shrunk; thus, input images are
resized accordingly. 90% of the images were used for train-
ing, while 10% were utilized for testing. For all the exper-
iments, the training and testing sets are being used to train
and test the proposed PestDetNet approach and other contem-
porary models using the same experimental settings for pest
recognition and classification as those given in Table 2 for
pest recognition and classification. A set of tests are car-
ried out to assess the proposed PestDetNet framework for
multiclass classification pest classification’s classification
performance.

D. PERFORMANCE EVALUATION ON PEST RECOGNITION
AND CLASSIFICATION
This experiment aims to verify the usefulness and effec-
tiveness of the proposed pest recognition and classifica-
tion method. We used all 1686 (after rotations of original
images) crop pest images of Deng et al. (2018) dataset in
this experiment (1518 pest images for model training and
the rest 168 images for model testing). Table 5 shows the
total number of images used for training and testing in each
category. Using the Deng et al. (2018) dataset, the proposed
framework took 536 minutes and 46 seconds to train for
pest classification. This time, however, is proportional to
the number of epochs and iterations per epoch. The total
number of iterations in the training stage for DeepPestNet is
1100 (11 iterations per epoch), and the number of epochs is
100. We also created a confusion matrix assessment to pre-
cisely explain the proposed technique’s classification perfor-
mance in terms of actual and predicted classes. The proposed
DeepPestNet approach confusion matrix is shown in Table 6.
It is concluded from the confusion matrix that the proposed

TABLE 4. Hardware and software configurations.

DeepPestNet system achieves the optimal results with a true-
positive rate of 100% for all the pest classes in the Deng et al.
(2018) dataset, indicating that the proposed DeepPestNet
framework correctly classified all pest image samples. The
loss function shows how well the DeepPestNet framework
can predict the dataset. To assess the training performance of
the presented method, we have demonstrated accuracy and
loss in Fig. 4, elaborating that accuracy and loss after epoch
‘‘55’’ almost remain the same (approximately equal to 100%),
which means we can obtain satisfactory results even at lower
classification epochs. The proposed approach attained the
ideal accuracy, precision, recall, specificity, and F1-score of
100%, demonstrating its effectiveness for multiclass classifi-
cation of pest images.

To further identify the effectiveness and validity of the
proposed approach, precise recognition and classification of
many crop pests are required. For this purpose, we assess the
usefulness of the proposed PestDetNet approach in identify-
ing the class of each crop pest. Table 7 shows the precision,
recall, and F1-score performance of the proposed PestDetNet
approach in class-wise crop pest classification. The proposed
technique provides state-of-the-art performance in terms of
all evaluation parameters, as revealed in Table 7. The results
show that all pests images are correctly classified, resulting
in optimal accuracy. The robustness of the introduced DL
model, which better reflects each class, is the critical cause
for the improved pest recognition accuracy.

The difference in the initial number of received pest images
in each image category of the dataset can be seen obviously
in table 5 (class imbalance problem). This class imbalance
potentially led to a range of issues, including overfitting,
in which the method fails to generalize well to new datasets.
Overfitting occurs when a model learns the details of the
training dataset to the extent where it is unable to generalize
appropriately; as a result, regularization approaches such as
data augmentation are utilized in this study to combat overfit-
ting. As a result, augmentation techniques are used to enhance
the number of images of all pest classes to avoid the model
from overfitting.

The proposed PestDetNet approach has ideal classification
accuracy because the model uses convolutional layers with
kernels of various sizes (7 × 7, 3 × 3, 1 × 1). It allows
the network to learn different spatial patterns and recognize
characteristics at various scales. 1×1 filters discover patterns
throughout the depth of the input pest images. Whereas 3 ×
3 and 7× 7 filters learn spatial patterns over the input’s three
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TABLE 5. The number of training and testing samples of each pest category.

TABLE 6. Confusion matrix obtain by proposed framework utilizing Deng et al., dataset.

TABLE 7. Class-wise performance (%) of the proposed method.

dimensions (width, depth, and height). Hence, at different
scales, different convolutional filter sizes learn various spatial
patterns and extract distinctive features from pest images with
better accuracy.

E. COMPARISION WITH STATE OF THE ART DEEP
LEARNING MODELS
The key aim of this experiment is to validate the efficacy of
the proposed PestDetNet technique for pest recognition and
classification over the existing DL models. For this purpose,
we compared the classification performance of the proposed
PestDetNet framework with two pre-trained DL models, i.e.,
Squeezenet [36] and Googlenet [37]. The frameworks are
trained on many images from the ImageNet database in a

TL configuration. All networks’ pre-trained versions can
classify images into 1000 separate classes. The last three
layers are fine-tuned to separate the crop pest images into
ten classes. The image input size of the models varied,
so we resized the pests images of the dataset according to
the input image requirement of the models. We utilized the
identical experimental set-up, as shown in Table 2, to tune
the models as we did for the proposed PestDetNet model.
We used all 1686 (after rotations of original images) crop pest
images of the Deng et al. (2018) dataset for this experiment.
Also, 1518 pest images are used for model training and
the remaining 168 images for model testing. Table 5 shows
the total pest images utilized for training and validation in
each category. From the findings shown in table 8, it is
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FIGURE 4. Training accuracy and loss of Deeppstnet model.

evident that SqueezeNet and Googlenet achieved the lowest
performance results compared to the proposed PestDetNet
model in terms of all performance metrics. It is essential
to mention that both Squeezenet and Googlenet achieved
the same classification results in all performance measures.
Based on the results, we noticed that the proposed PestDetNet
framework performed better than the other DL frameworks
by achieving accuracy, precision, recall, and an F1 score of
100% for pest recognition and classification. The Squeezenet
and Googlenet model has a lower accuracy than the proposed
model since the RAF follows each convolutional layer in
these models. The Relu sets all values smaller than (x<0),
i.e., negative values, to zero for all neurons with negative
values. There’s no assurance that all neurons will be activated
all of the time., which leads to the dying Relu problem. The
model does not learn in this scenario because the optimization
algorithm does not work. The dying ReLU problem is prob-
lematic because it causes a significant part of the network to
become inactive over time. The proposed PestDetNet model
uses the LR activation function instead of RAF to address
the dying relu problem. Hence the PestDetNet model learns
even in the presence of negative values and keeps all neurons
activated. Furthermore, the proposed model applies BN after
each convolutional layer. The significance of each feature is
preserved, even though some feature has a higher numerical
value than others. As a result, the proposed model will be
completely unbiased (to higher-value features). In addition,
as compared to a framework that does not use BN, the frame-
work that uses this technique is trained faster and has higher
accuracy.

TABLE 8. Pest recognition and classification performance comparison
with state-of-the-art deep learning frameworks.

F. PERFORMANCE EVALUATION ON PEST DATASET
HAVING NINE CLASSES OF PESTS
To further evaluate and assess the performance and general-
izability of the proposed DeepPestNet framework, we vali-
dated the model on another standard freely available Kaggle
dataset, ‘‘Pest Dataset’’ [38]. The data comprises nine crop
pests: Aphids, Armyworm, Beetle, Bollworm, Grasshopper,
Mites, Mosquito, Sawfly, and Stem borer. The dataset is
balanced and contains enough images for model training, and
we have not performed rotations operation on the dataset.
However, we applied data augmentations to verify the gener-
alizability power of the proposed model. The dataset contains
350 images of each pest class, i.e., aphids, Armyworm, beetle,
bollworm, grasshopper, mites, mosquito, sawfly, and stem
borer pests. Also, an automatic script is used to scrape images
of pests from Google through Selenium and Chrome Driver.
We used all 3150 (without rotating the original images) crop
pest images of the ‘‘Pest Dataset’’ dataset in this experi-
ment (2520 pest images for model training and the rest 630
images for model testing). Using the ‘‘Pest Dataset’’ dataset,
the proposed framework took 1380 minutes and 12 seconds
to train for pest classification. This time is proportional to
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TABLE 9. Class-wise performance (%) of the proposed method.

the maximum number of epochs and iterations per epoch.
The total number of iterations in the training stage for
DeepPestNet is 1760 (22 iterations per epoch), and the num-
ber of epochs is 80. We achieved average accuracy, precision,
recall, and F1-score of 99.96%, 99.66%, 100%, and 99.82,
respectively. The accuracy of 99.96% proves the effective-
ness and generalization ability of the proposed DeepPestNet
model for pest recognition and classification.

We used an experiment to assess the usefulness of the
proposed technique in identifying the class of each crop
pest. Table 9 demonstrates the precision, recall, and F1-score
performance of the presented approach in class-wise crop
pest classification. The proposed technique provides state-
of-the-art performance in terms of all evaluation parameters,
as demonstrated in Table 9. Also, the results show that the
proposed model misclassifies only one pest, i.e., one Mite
pest is misclassified as Armyworm. The robustness of the
proposed DL model, which better reflects each class, is the
crucial cause for the improved pest recognition accuracy.

We achieved better results as the proposed DeepPestNet
model captures more detailed features from the pest images.
We used a tiny filter with a size of 3× 3, which ensures that
detailed features are extracted. The BN strategy utilized in
the proposed model’s feature map normalizes the inputs to
each mini-batch, offers regularization, and lowers the gener-
alization error. In addition, the dropout strategy utilized in the
proposed model’s classification unit enables regularization
by removing a fraction of the preceding layer’s outputs to
avoid overfitting and promote generalization. These findings
demonstrate the efficacy of the proposed pest recognition and
classification approach.

G. COMPARISION OF THE PROPOSED DEEPPESTNET
WITH STATE OF THE ART METHODLS
Furthermore, we experimented with comparing the proposed
DeepPestNet and existing state-of-the-art pest recognition
and classification methods to verify the proposed model’s
superiority. We compared the proposed approach to the most
recent DL frameworks and presented the results in Table 10.
For pest recognition, Nanni et al. [39], proposed ensem-
bles of CNNs based on multiple architectures (ResNet50,
EfficientNetB0, ShuffleNet, GoogleNet, DenseNet201, and
MobileNetv2) optimized with various Adam versions. Two
novel Adam algorithms based on DGrad for deep network

optimization are proposed, each with a scaling factor in the
learning rate. Six CNN models with different optimization
functions are trained on the Deng (SMALL) dataset, big
IP102, and Xie2 (D0) pest datasets. On the Deng dataset,
the best scoring ensemble competed with domain experts’
classifications. It achieved the best results on all three pest
datasets: 95.52 per cent on Deng, 74.11 per cent on IP102,
and 99.81 per cent on Xie2. In [40], the authors presented a
deep CNN framework for classifying insects on three widely
accessible insect datasets. The first insect dataset employed
was the National Bureau of Agricultural Insect Resources
(NBAIR), which comprises 40 classes of crop pest photos.
In contrast, the second and third datasets (Xie1, Xie2) com-
prise 24 and 40 classes of pests, respectively. Data augmen-
tation methods such as scaling, reflection, translation, and
rotation are used to prevent the network from overfitting.
To increase accuracy, the effectiveness of hyperparameters
was investigated in the proposed model. The proposed CNN
framework achieved the best accuracy of 96.75%, 97.47%,
and 95.97% for the NBAIR insect dataset, Xie insect dataset,
and Xie2 insect dataset, respectively. In [28], DL models
were used to categorize eight different types of tomato pests.
The extracted pest features are merged with three ML clas-
sifiers using the DL models, including discriminant analy-
sis (DA), SVM, and k-nearest neighbour (KNN) approach.
Bayesian optimization was used to tune hyper-parameters
automatically. With an accuracy of 94.95 per cent after image
augmentation, the VGG16 model performed better than the
other models. The ResNet50 with DA framework achieved
97.12 per cent classification accuracy in the CNN + ML
models.

This comparison also shows how successful the proposed
DeepPestNet model is compared to other approaches. It’s
worth noting that these methods are more computation-
ally expensive than the proposed because they use deeper
frameworks, which can inevitably lead to overfitting. These
findings indicate the effectiveness of the proposed tech-
nique and its additional advantages, such as computing
efficiency. As the proposed DeepPestNet model only has
eleven layers, followed by BN and the LR activation func-
tion, all CNN layers’ biases are not active. As a result,
we may say that the proposed DeepPestNet approach is more
efficient and effective in identifying and classifying pests
images.
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TABLE 10. Pest recognition and classification performance comparison with state-of-the-art methods.

TABLE 11. Accuracy rates on two medical datasets that further validate
the performance of the DeepPestNet.

H. MORE EVALUATION OF DEEPPESNET APPROCH
Although the experiments show that the DeepPestNet model
performed well on two pest datasets, more testing on var-
ious datasets in a different domain is required to prove
the proposed model’s strength, robustness, and universal
adaptability. We tested the proposed DeepPestNet model
on two medical imaging benchmarks that represented vari-
ous categorization tasks. The first dataset is Breast Grading
Carcinoma data set. This dataset covers breast carcinoma
histology specimens acquired from Thessaloniki’s ‘‘Agios
Pavlos’’ General Hospital’s Department of Pathology. The
collection contains 300 annotated images with a resolu-
tion of 1280 × 960 that belong to 21 individual patients
with grade 1-3 invasive ductal carcinoma of the breast
(grouped in the corresponding folders). There are 107 images
in grade 1, 102 images in grade 2, and 91 in grade 3.
We used all 300 images of the dataset, where 270 images
are used for model training, and the remaining 30 images are
used for model testing. The Laryngeal dataset, which con-
tains 1320 patches of photographs with a size of 100 ×
100 pixels, is the second dataset. Tissue with interpupil-
lary capillary loops (IPCL), tissue with leukoplakia (Le),
tissue with hypertrophic vessels (Hbv), and healthy tissue
are all categorized into four categories (He). There are
330 images in each class. The dataset is separated into
three subfolders for cross-validation purposes. We utilized
all 1320 images of the dataset, where 1188 images are uti-
lized for framework training, and the rest 132 images are
utilized for testing. In Table 11, the accuracy attained by
the proposed DeepPestNet approach on the two medical
datasets. According to the results (Table 11), the proposed
DeepPestNet approach achieved satisfactory performance
(accuracy greater than 96%) in the medical domain as well,
which validates the effectiveness of the proposed approach.

V. CONCLUSION AND FUTURE WORK
Globally, contamination is themajor cause of agricultural loss
and financial loss. The detection and removal of exotic insects

would be greatly accelerated if invading insects could be
identified automatically. This paper presented a DeepPestNet
framework for effective pest recognition and classification.
The accuracy of 100% for pest recognition and classification
has confirmed the superiority of the proposed framework over
contemporary methods. Moreover, experimental results on
the standard Kaggle dataset (Pest Dataset) and two datasets
from the medical domain (Breast Grading Carcinoma dataset
and Laryngeal dataset) have confirmed the effectiveness and
robustness of the proposed framework for pest recognition
and classification. However, only major pests are investigated
in this study. There are many different types of insects,
and there are distinctions between larvae and adults. For
example, noctuid pests have only been identified during their
most dangerous stage of development (i.e., the larval stage).
In future, we are interested in expanding the classification
size by including more pests types to be effectively identified
by the proposedDeepPestNet framework. This research could
help specialists and farmers identify pests more quickly and
effectively, thus reducing economic and crop output losses.
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