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ABSTRACT Actionable knowledge graph (AKG), a specialized version of knowledge graph, was proposed
recently to represent, analyze, and predict human action, thus facilitating deeper understanding of human
action by robots. However, the automatic construction of AKGs from action-related corpora is still an
unexplored problem. In this study, we first propose three unsupervised matrix factorization–based frame-
works for AKG generation from three different perspectives: subject, context and functionality of action,
respectively. Further, we propose a hybrid model based on neural network matrix factorization (NNMF) that
considers multi-source signals simultaneously. It not only learns the latent action representations, but also
learns the optimal learning objective rather than assuming it to be fixed. To quantitatively verify the utility
of the constructed AKGs, we introduce a novel application, that is, predicting the most likely missing action
records in Wikipedia biographies. Experimental results on a large-scale Wikipedia biography dataset show
that the proposed model brings significant improvement over the baselines, which demonstrates the strong
expressiveness of our generated AKGs.

INDEX TERMS Actionable knowledge graph, neural networkmatrix factorization, text mining, webmining.

I. INTRODUCTION
The study of human action has long attracted the interest of
scientists from different fields. For example, social scientists
have been interested in the structure of life events and the
role of individual agency and larger social forces in shaping
individual life experiences. Related topics of interest include
the interplay between life events [1], the characteristics of
life events that are highly transformative and iconic [2], and
the systematic differences in life structure across groups [3].
Meanwhile, researchers in the information retrieval domain
have found that many users use search engines not only to
obtain information, but also to perform certain actions and
achieve certain life goals [4]. If a search engine displays
actionable information that corresponds to the potential
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search intent underlying the user’s query, then the user
directly follows the search results to achieve their set goals
more effectively.

Knowledge graph (KG), as a form of structured human
knowledge, is an important area of research in academia
and industry. Many real-world applications, such as rec-
ommendation systems, question answering, and information
retrieval, benefit from the ability to understand, represent,
and reason about knowledge brought about by carefully
constructed KGs. In particular, in response to the grow-
ing need to understand actionable knowledge, the 13th
NTCIR workshop [5] introduced the novel concept of
actionable knowledge graph (AKG), which is considered
to be a specialized version of KG and contains data on
possible human actions, action-related entities, and action-
entity relations. The concept of AKG is a preliminary
attempt to establish a common ground specification for the
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design and analysis of actionable information and related
technologies.

However, the automatic construction of AKGs from cor-
pora related to human action (e.g., biographies in Wikipedia,
book-length biographies, etc.) is still an important, chal-
lenging, and unexplored problem. Few studies have focused
on learning algorithms for representing human action and
interaction relations in a reasonable way. The learned AKG
G = (A,R) (A and R are the action and relation vectors,
respectively) can be used to solve many practical problems
related to human action, such as predicting errors and
missing actionable data in knowledge bases and improving
the retrieval effectiveness of web search engines for action-
related queries.

In this study, we first propose three unsupervised matrix
factorization–based frameworks for AKG generation from
three different perspectives: subject,1 context2 and function-
ality of action, respectively. Intuitively, actions performed
by similar users (e.g., groups of scientists) tend to have
similar representations. Contextual information about an
action includes a description of the temporal period during
which it is performed. Actions that tend to occur at different
times (e.g., entering high school, divorce) are more likely to
have different temporal representations. Finally, we studied
the functionality of the action, which is interpreted as the
need that a user wants to satisfy by performing such an
action. On the one hand, the functionality can be embodied
in the semantics of the text that describes the action; on
the other hand, an action’s functionality can be reflected by
other actions that are complementary to it and that together
satisfy a more general need of the user (e.g., entering a
store and buying a product, which together satisfy the user’s
shopping needs). Because the task of learning representations
of text semantics has been intensively studied (e.g., [6],
[7]), this paper focuses on the functional complementarity
of actions. That is, different actions that are functionally
complementary to similar actions are expected to have similar
vector representations.

Further, for learning AKGs, we propose a hybrid model
based on neural network matrix factorization that considers
multi-source signals simultaneously. The most important
advantage of this ensemble model is that it not only learns the
latent representations, but also learns the optimal objective
function rather than assuming it to be fixed, as in general
matrix factorization–based models. In addition, the matrix
factorization module injects prior context knowledge into the
objective function, which results in the following advantages:
(1) facilitating the learning process in the solution space of
the neural network, and (2) allowing for unsupervised relation
extraction in a label-free learning task (such as our task). The

1The subjects of actions are also considered as potential users of the AKG,
and thus the terms subject and user are used in the same sense throughout
this paper.

2Because Wikipedia has a more complete chronological record of human
actions, this study describes the contextual semantics of actions from the
temporal perspective.

three matrix factorization–based models and the ensemble
model are explained in detail in Sections 3 and 4, respectively.

To quantitatively verify the utility of the constructed
AKGs, we introduce a novel application, that is, predict-
ing the most likely missing action records in Wikipedia
biographies. Specifically, we organized three types of
prediction tasks: full prediction (i.e., predicting the full
〈user, time, action〉 triple), partial prediction (given one triple
element, predicting the other two), and partial prediction
(given two triple elements, predicting the other one). Encour-
aging experimental results are obtained, demonstrating that
the construction of AKG is necessary for action under-
standing and modeling, and our proposed neural network
matrix factorization ensemble model can achieve the best
prediction accuracy. We also present some inter-action
relation instances of diverse structures and granularity in this
paper, demonstrating that the learned encoding of actions and
their relationships embody deep insights.

Fig. 1 illustrates the overview of our proposed system.
In summary, we summarize the main contributions of this
paper as follows:
• To the best of our knowledge, this study is the first of
its kind to discuss the construction of AKG to better
represent, mine, and retrieve human action.

• We propose a novel neural network matrix factorization
framework that allows unsupervised encoding of actions
and underlying inter-action relationships from multiple
perspectives (context, subject and functionality).

• Weobtain the state-of-the-art experimental results on the
task of predicting missing human action on a large-scale
Wikipedia biographical corpus.

II. PRELIMINARY
A. INPUT
The set of event trajectories D extracted from Wikipedia
biographies. Let U = {u1, u2, . . . , uN } denote the set of
people in Wikipedia. For person ui, the corresponding event
trajectory in his/her life is defined as E(ui) = {(e1, t1) →
(e2, t2)→ . . .→ (en, tn)}, where ti denotes the time of event
ei. From the sequence of events, we have t1 < t2 < . . . < tn.
In addition, ti can represent both the absolute time (e.g.,
A. D. 1968) or relative time (e.g., 24 years old). D =

{E(u1),E(u2), . . . ,E(uN )}.

B. OUTPUT
Actionable knowledge graph G = (A,R). A is the set of all
nodes in G, where each node represents an action. R is the set
of all edges in G, with each edge representing an inter-action
relation.G is a directed graph, which means that edges (ai, aj)
and (aj, ai) may represent different relations. All elements in
A and R are represented by a dense vector.

C. PRE-PROCESSING
We first transform event (e, t) in D into action (a, t). Our
D contains approximately 2.3 million events, but these
events can only be categorized into a few hundred event
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FIGURE 1. System overview.

types.3 Obviously, studying event types instead of events is
more efficient and meaningful in terms of KG construction.
To convert e to a, we first use the BERT model [6] to
generate e’s sentence vector Ee,4 then cluster all Ee using the
mini-batch K-means algorithm [10], given its high accuracy
and efficiency. a is represented by the id of the category to
which e belongs After conversion, the input to our models is
D = {E(u1),E(u2), . . . ,E(uN )}, where E(ui) = {(a1, t1)→
(a2, t2)→ . . .→ (an, tn)}.

III. ACTIONABLE KNOWLEDGE GRAPH GENERATION
A. TIME-BASED ACTIONABLE KNOWLEDGE GRAPH
GENERATION
In this section, we describe how to learn the vector
representations of actions that carry temporal information.
First, we construct the action-time matrix G ∈ R|A|×|S|,
where the value of entry Gij in row i, and column j is the
number of times that action i has been performed in time
unit j. Here, |A| and |S| represent the number of actions and
time units, respectively. j can represent either an absolute date
(e.g., A. D. 2008) or a relative time (e.g., 25 years old).
We denote the vector of action i as ai and the vector of
time unit j as sj, and by the principle of non-negative matrix
factorization [11], we have Gij ≈ ai · sj, ai ≥ 0, sj ≥ 0.

Furthermore, it is intuitive that for any given time unit, the
similarity between its vector and the vector of neighboring
time units tends to be greater than the similarity between it
and the vector of a time unit that is farther apart [12]. This
is because people tend to have a high degree of continuity

3As suggested by a previous study of Wikipedia biographies [8],
we assume that the number of event types/actions in Wikipedia is 500, i.e.,
|A| = 500.

4The BERT model we used is a pre-trained model trained on Wikipedia,
as published by Hugging Face [9].

and consistency in the actions they perform in neighboring
time units. For example, behaviors performed by people
at ages 16 and 17 usually share a higher similarity than
those performed by people at ages 16 and 56. Based on this
assumption, the time vectors should satisfy si ≈ si+1, where
si and si+1 denote the vectors of the adjacent time units i
and i + 1, respectively. Then, we have the following matrix
factorization formula:

min
At ,S≥0

∥∥∥G− At · ST∥∥∥2 + α · |S|−1∑
i=1

‖si − si+1‖2

+ λ · (‖At‖2 + ‖S‖2) (1)

Here, At ∈ R|A|×d is the action vector matrix, and S ∈ R|S|×d
is the time vector matrix. d is the dimension of both vector
types. | · | represents the Frobenius norm. λ is the parameter
that controls the norms of At and S, thus weakening the
overfitting.

B. USER-BASED ACTIONABLE KNOWLEDGE GRAPH
GENERATION
In this section, we describe our method for learning action
representations from the user perspective. We use two data
sources: user-action matrix and link information among user
pages in Wikipedia. Let the user-action matrix be denoted as
H ∈ R|A|×|U |, where each item Hij denotes the number of
times action i is performed by user j. We denote the set of
action vectors as A = {a1, a2, . . . , a|A|}, and the set of user
vectors as U = {u1, u2, . . . , u|U |}. Similarly, there should be
Hij ≈ ai · uj, and ai ≥ 0, uj ≥ 0.
Naturally, the behavior of a certain user is often influenced

by others, and different users have different influences. For
example, previous studies [13], [14] have found that different
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persons in Wikipedia have diverse historical importance.5 In
addition, people who are perceived to be of high importance
tend to have Wikipedia pages connecting to other important
Wikipedia articles [13]. These findings imply that users
during the matrix factorization process should be paid
different attention.

Furthermore, highly influential people are more likely
to have more detailed and comprehensive life records in
Wikipedia. Compared with the population whose many
life events are ‘‘missing’’ in Wikipedia, the biographies
of influential people in the action-user matrix H are more
complete, and thus their vector representations are more
reliable.

Given the link structure in Wikipedia biographies, we use
the PageRank algorithm [15] to calculate the importance
I (uj) for user uj. Given the user importance, we propose the
following matrix factorization objective function:

min
Au,U≥0

|A|∑
i=1

|U |∑
j=1

I (uj)(Hij − aTi uj)
2
+ λ · (‖Au‖2 + ‖U‖2)

(2)

Here, Au ∈ R|A|×d and U ∈ R|U |×d are the action vector
matrix and the user vector matrix, respectively, ai = Au[i],
and d is the vector dimension. The above equation allows us
to learn the action vector containing user information and the
user vector itself.

C. RELATION-BASED ACTIONABLE KNOWLEDGE GRAPH
GENERATION
Naturally, we assume that users perform different actions to
satisfy different needs. If a user performs action a1 and then
performs action a2, it is reasonable to assume that a2 will
satisfy the requirement that a1 cannot satisfy. Furthermore,
if the functions of a1 and a2 are closely complementary and
together satisfy the user’s needs, we judge that there exists
a latent relation r between a1 and a2 as a reflection of such
complementarity. The triplet 〈a1, r, a2〉 shows a higher level
of understanding of action than analyzing an isolate action.

In the field of natural language processing, the relation
between frequently co-occurring words is described as selec-
tive preference [16]. For example, the word delicious tends
to modify the word food. Similarly, inter-action relations
can also be understood in this way as an expression of the
tendency for different actions to co-occur. Thus, we define
the relation r as a tuple: r .

= 〈ahead , atail〉. ahead and atail
represent vectors of two actions that have high functional
complementarity and a high tendency to co-occur.

Let the number of latent relations be m, and we define
Rh ∈ Rm×d as the action vector matrix in the head slot
and Rt ∈ Rm×d as the action vector matrix in the tail slot.
Then, the relation vector matrix is R =< Rh,Rt >. For
any action tuple (ai, aj), its compatibility with the lth relation

5For example, based on [13], [14], two examples of people with high
historical importance are Napoleon and Albert Einstein.

is computed as ai · Rh[l] + aj · Rt [l]. Furthermore, given
that the probability transition matrix T 6 where Tij denotes
the probability of action aj being performed after action ai
is performed, and Tij can also be interpreted as the sum
of compatibility between (ai, aj) with all relations, that is,
Tij =

∑m
l=1(ai · Rh[l] + aj · Rt [l]). When (ai, aj) is highly

matching, Tij will acquire a large value. Then, the following
matrix factorization formula is proposed to learn the action
and relation vector:

min
Ar ,Rh,Rt≥0

∥∥∥T − ArRThQRtATr ∥∥∥2 + λ
·(‖Ar‖2 + ‖Rh‖2 + ‖Rt‖2) (3)

Here, Ar , [Rh,Rt ] are the action vector matrix and relation
vector matrix, respectively. Compared with the mainstream
supervised relation extraction algorithms, our proposed
model is unsupervised. In particular, to increase the diversity
of identified relations, we introduce the constant sparsity
matrix Q = (1 − θ ) · eye(m) + θ

m · ones(m) [17], [18] in
the factorization objective, where eye(m) and ones(m) are an
m × m identity matrix, and an m × m matrix with all entries
of 1s, respectively. θ is the parameter controlling the sparsity
of Q. The introduction of Q will lead to a smoother matrix
factorization process, thus driving the resulting vectors in Rh
and Rt to be diverse [17].

D. SUMMARY
We introduced the three methods above for generating AKG:
G(A,R). The time-based method (see Sec. III-A) represents
G(A,R) as G(A = At ,R = ∅), where At is action vector set
carrying temporal information; the user-based method (see
Sec. III-B) represents G(A,R) as G(A = Au,R = ∅), where
Au contains user information; the relation-based method (see
Sec. III-C) produces G(A = Ar ,R =< Rh,Rt >), where Ar
is relation-inspired action vector set and < Rh,Rt > denotes
the identified relations.

However, the above methods have the following limi-
tations: (1) The learned action vector contains only one
type of information. A more general, multi-view method
for AKG construction would produce more knowledge-rich
representation; (2) the relation-based model restricts the
relation to be represented by exactly two action vectors (i.e.,
the 1-to-1 scenario) and cannot encode the relation among
multiple actions (i.e., the 1-to-N/N-to-1/N-to-N scenario);
(3) the relation-based model assumes that the compatibility
between action and relation is computed linearly, whereas the
real valid computation method should be learned from the
data.

Considering the above challenges, we propose a novel
neural network matrix factorization ensemble to generate
more sophisticated AKGs. The approach is described in the
next section.

6T can be easily obtained from the action trajectory set D (defined in
Section 2).
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IV. MULTI-VIEW-BASED ACTIONABLE KNOWLEDGE
GRAPH GENERATION
We now represent a relation r as a vector of dimension k ,7

and define the relation matrix as R∗ ∈ Rm×k , where m is the
predefined number of relations. Then, given any two action
vectors ai and aj, I(ai,aj) ∈ R1×m is defined as the indexing
vector of the relation between ai and aj. All elements of
I(ai,aj) take values in the range [0, 1], which represents the
fitness of the corresponding relation. In the extreme case,
I(ai,aj) has only the l-th element close to one, whereas the
remaining elements are close to zero, indicating that the
relation between (ai, aj) can be approximated as the relation
R∗[l]. Furthermore, the relation vector of (ai, aj) is computed
as r(ai,aj) = I(ai,aj) · R∗. Similarly, the relation vector of
n actions (a1, a2, . . . , an) can be obtained by r(a1,...,an) =
I(a1,...,an) · R∗, and thus we can accommodate 1-to-N, N-to-
1 and N-to-N scenarios.

For any action tuple (ai, aj), we assume that I(ai,aj) is
influenced by all the time, user, and semantic information
related to ai and aj. We propose the use of a feed-forward
neural network to learn how these factors affect (see the left
feed-forward NN in Fig. 2). Given the action-time matrix G
and action-user matrix H , we have

I (ai, aj) = sigmoid(W2 · Relu(W1 · Etij + b1)+ b2). (4)
Etij = [G[i];G[j];H [i];H [j]; i; j] (5)

Here, G[i], H [i], and i denote the time, user, and semantic
information of ai, respectively.W1 and b1 are the parameters
of the first layer, and W2 and b2 are the parameters of the
second layer. n is the number of neurons in the first layer.
Sigmoid() maps the output of the neural network to the range
of element values in the relation indexing vector I (ai, aj):
[0,1].

Instead of using linear functions to fit the compatibility
between the action tuple and relation, we design another
feed-forward neural network for such compatibility estima-
tion (see the right feed-forward NN in Fig. 2). The parameters
of this network can be learned in an entire data-driven manner
from the probability transition matrix T . Our objective
function is as follows:

ObjNN
.
= min

A∗,R∗≥0

∑
(ai,aj)

(Tij − fij)2, (6)

fij = sigmoid(W4 · Relu(W3 · Esij + b3)+ b4). (7)

Esij = [ai; aj; I (ai, aj)T · R∗ · Q] (8)

Here, A∗ is the action vector matrix and ai = A[i]. W3 and
b3 are the parameters of the third layer. W4 and b4 are the
parameters of the fourth layer. n is the number of neurons in
the third layer.Q is a k×k constant sparsity matrix, as defined
in Sec. III-C, which is used to increase the sparsity of I (ai, aj)
and the diversity of relation vector R∗.
Further, we make use of prior contextual information

(G, H ) to enable the neural network to learn different

7The relation vector dimension k does not need to be equal to the action
vector dimension d .

FIGURE 2. An illustration of our neural network matrix factorization
model introduced in Sec. IV. Etij denotes the context information (time,
user, semantic) of action i and action j , whose learned vectors are
represented as ai and aj . I(ai , aj ) and R(ai , aj ) are the relation
distribution vector and the relation vector, respectively. fij is the
transition probability between action i and action j .

properties of actions. The final objective function is as
follows:

min
A∗,R∗,S,U≥0

ObjNN+α · (‖G−A∗ · S‖2+‖H − A∗ · U‖2)

+ β · (‖A∗‖2 +
∥∥R∗∥∥2 + ‖S‖2 + ‖U‖2)

(9)

In our neural network matrix factorization ensemble, the
neural network module learns the optimal objective function,
whereas the matrix factorization module limits the solution
space of the neural network by utilizing the prior context.
Finally, the generated knowledge graph G(A,R) is denoted
as G(A = A∗,R = R∗). We illustrate the architecture of the
above ensemble model in Fig. 2.

V. EXPERIMENTS
A. EVALUATION TASK
In this section, we describe the evaluation of the quality of the
generated AKGs. Specifically, we designed a novel task T :
AKG-based prediction of user actions. This task can be used
to quantify the effectiveness of AKGs, and can be seen as a
practical application of this study.

From the viewpoint of our implementation, the task T can
be described as follows: Given a dataset of users’ action
records X (X is the set of triples {u, t, a}, where {ui, tj, ak}
indicates that user ui performs action ak at moment tj), and
the AKG G = (A,R) is regarded as a knowledge base
generated from dataset D; based on partial observable data
Xo in X , the task is to predict the remaining unobservable
data X¬o in X . Note that D is also a collection of triples
{u, t, a}, and yet the users in D may be completely different
from that in X , whereas the action types in D and X are
close. The G learned from D contains the latent semantics
of action, which will serve as supplementary information to
assist in the predictions ofX¬o based onXo. The effectiveness
and generalizability of G are even more convincingly
demonstrated ifG enables more accurate predictions ofX that
contain different users from D.
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Algorithm 1 Generative Process for Predicting (ui, tj, ak ) in
X
1: for each user Eui ∈ UX do
2: draw latent user vector Eui ∼ N (0, σ 2

U I )
3: end for
4: for each time unit Etj ∈ TX do
5: draw latent time vector Etj ∼ N (0, σ 2

T I )
6: end for
7: for each action Eak ∈ AX do
8: draw latent offset vector Eok ∼ N (0, σ 2

AI )

9: draw latent action vector Eak = Eok + Ea1k F
Ea1k

is auxiliary action information from learned knowledge
base G

10: end for
11: for each user-time-action pair ( Eui, Etj, Eak ) ∈ X do
12: draw the rating Xi,j,k ∼ N ( Eui

T Etj+ Eui
T
Eak + Eak

T Etj, σ 2
X )

13: end for

We model this prediction task using a generative process
by placing Gaussian priors on latent feature vectors. The
generation process of triple {ui, tj, ak} in X is simulated as
follows: During the generation process, G provides auxiliary
action information.

In Algo. 1, UX ,TX ,AX are the set of users, times, and
actions contained in X , respectively. N (u, σ 2) denotes the
Gaussian priors. Ea1k is the auxiliary action information

derived from G. Based on the proposed models, Ea1k can be
At (model III-A), Au (model III-B), Ar (model III-C) or A∗
(model IV).

B. PARAMETER LEARNING
For Eq. (1), Eq. (2), Eq. (3) and Eq. (9), stochastic gradient
descent was used to approach the optimal parameters, and
multiplicative update rules [19] were adopted to ensure
that all parameters are non-negative. To minimize Eq. (9),
we alternate between updating neural network parameters
while fixing the AKG vectors, and updating the AKG vectors
when fixing the network parameters. To learn the parameters
in task T , we first convert the generative process of T into
an equivalent probabilistic matrix factorization formula [20],
and then solve it using the same strategy above.

C. PREDICTION
After the optimal parameters ui ∈ UX , tj ∈ TX , and
ak ∈ AX in Algo. 1 are learned, we can conduct different types
of predictions of unobservable data X¬o in X . Specifically,
we experimented with the following prediction tasks:
• Type I: Full prediction (predicting the full triple). In this
task, we attempt to predict themost likely existing triples
(ui, tj, ak ) in X¬o. The possibility score Pijk for triple
(ui, tj, ak ) is computed as follows:

Pijk = Eui
T Etj + Eui

T
Eak + Eak

T Etj (10)

For each possible combination (ui, tj, ak ) in X¬o,
we compute its score and rank all triples based on such
a score from high to low. The existence of top-ranked
triples will be validated on ground truth data, and then
the prediction effectiveness can be evaluated based on
the metric (Hits@k), as introduced later.

• Type II: Partial prediction (given one, predicting two).
In contrast to the previous task, in this task, we assume
that for each triple (ui, tj, ak ) in X¬o, one element
is known, based on which our goal is to predict the
remaining twomost reasonable elements. Then, we have
three different cases: given ui, predicting its associated
(tj, ak ); given tj, predicting (ui, ak ); and given ak ,
predicting (ui, tj). The respective conditional probability
Pjk|i can be computed as follows, where Pik|j and Pij|k
can be calculated similarly.

Pjk|i =
Pijk
Pi
=

Eui
T Etj + Eui

T
Eak + Eak

T Etj∑
j
∑

k ( Eui
T Etj + Eui

T
Eak + Eak

T Etj)
. (11)

• Type III :Partial prediction (given two, predicting one).
Similarly, there are three different subtasks: given
(tj, ak ), predicting ui (subtask II-1); given (ui, ak ),
predicting tj (subtask II-2); and given (ui, tj), predicting
ak (subtask II-3). The respective possibility Pi|jk is
computed as follows, where Pj|ik and Pk|ij are computed
in a similar way.

Pi|jk =
Pijk
Pjk
=

Eui
T Etj + Eui

T
Eak + Eak

T Etj∑
i( Eui

T Etj + Eui
T
Eak + Eak

T Etj)
. (12)

During prediction, the above computation can be further
simplified. For example, when computing Pi|jk , we can
calculate Eui

T Etj+ Eui
T
Eak because the item Eak

T Etj will be the
same for each tested ui given the same (tj, ak ).

D. DATASET
In this study, we used an open large-scale Wikipedia
biography dataset released by [8].8 This dataset was
published on January 2, 2014 and is a dump of
English-language Wikipedia entries containing 242,970
biographies of people born after 1800. Each biography
contained at least five events, for a total of 2,313,867
events. In addition, the data structure for each event is
{person_id, event_id, year, age, terms, original_sentence},
where terms consists of meaningful words extracted from
original_sentence and is used to compute the event vector
during pre-processing (see Sec. II). Tab. 1 shows an example
of extracted event sentences from the biography of Audrey
Hepburn.

E. DATA PREPARATION
We used 80% of the Wikipedia biography dataset [8] as the
dataset D to learn the AKG G and the remaining 20% as
the dataset X for the action prediction task. For X , we test

8The dataset can be found at http://www.cs.cmu.edu/ ark/bio/
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TABLE 1. A sample of 5 of the 62 event sentences (underlined words are data after pre-processing as input to our model) from the Wikipedia biography
for Audrey Hepburn (born 1929).

for sparse and dense training settings separately. For the
former, 50% of X is used for training (i.e., Xo) and the
remaining 50% is used for testing (i.e., X¬o). For the latter,
80% of X was used for training and 20% was used for
testing. In addition, we test the prediction performance of
the analyzed models in absolute time (e.g., A. D. 2000) and
relative time (e.g., 30 years old) separately, because they are
two fairly different temporal measures. Thus, we have four
experimental settings in total: (sparse, absolute time); (dense,
absolute time); (sparse, relative time); and (dense, relative
time). For each setting, we used 5-fold cross validation to
obtain the average model performance.

F. ANALYZED METHODS
We test the performance of the following methods.

First, the model we propose consists of:
• T-AKGG (Time-based AKG generation) (see
Sec. III-A);

• U-AKGG (User-based AKG generation) (see
Sec. III-B);

• R-AKGG (Relation-based AKG generation)
(see Sec. III-C);

• F-AKGG (Full AKG generation) (see Sec. IV).
In addition, we test the performance of the following

baselines:
• N-AKGG (Non-actionable AKGgeneration).We do not
use any information from the generated AKG in the task
of user action prediction.We tested this method to verify
the validity of the AKG generation.

• KGPMF (KG-based probabilistic matrix factoriza-
tion [18]) The current state-of-the-art method for
multi-view KG generation, based on a probabilistic
matrix factorization model. In this method, we retain all
types of information (time, user, and relation).

G. EVALUATION METRICS
In this study, we use Hits@k(k = 10, 20, . . . , 100) as our
main evaluation criterion, where the meaning of Hits@k
is equivalent to TPs@k (true positives@k, the number of
correctly predicted triples of top-k ranked items ). In our
case, if a record of user u conducting action a at time t
does not appear in the test set, there exists the possibility

that this record is not included in Wikipedia, rather than
meaning that u has not conducted a in real history. Thus, FPs
(false positives) are not reliable, which makes it difficult to
calculate Precision@k and F − score@k . Because the value
of Hits@k + FNs@k (FNs: False negatives) for each k is
the same for all analyzed methods, so computing Hits@k is
equivalent to computing Recall@k = Hits@k/(Hits@k +
FNs@k).

H. EXPERIMENTAL SETTINGS
First, as suggested by [8], the number of actions in Wikipedia
was set to 500. Based on a grid search (range: 0-100, step size:
10), the number of relations was 50, and the dimension of the
relation vector was 20. The dimension of the action/time/user
vector was 50 for all methods. Inspired by [18], [21],
in methods U-AKGG, F-AKGG, and KGPMF, we first
cluster similar users into user groups (group number: 100),
and use group-level user importance instead of individual
importance. learning_rate = 0.01 and λ = 0.001. For
the ensemble model F-AKGG, our 5-fold cross-validation
suggests learning_rate = λ = 0.005, number_of _epochs =
100, and the hidden layer dimension is 20. ForT-AKGG, α =
0.01. For R-AKGG and F-AKGG, θ = 0.8 (as suggested
in [17]).

I. EXPERIMENTAL RESULTS: FULL PREDICTION (TYPE I)
Fig. 3 illustrates the performance of all methods in the full
prediction task. Taken together, our NN matrix factorization
ensemble model F-AKGG achieves the best prediction
accuracy. Based on the experimental results, we perform the
following detailed analysis:
• Action prediction is a difficult and challenging task. The
performance curve of N-AKGG shows that the average
Hits@100 value of N-AKGG is only 2.2 and 0.9 in
sparse and dense cases, respectively. This observation
also hints at the sparseness of biographical data in
Wikipedia.

• The accuracy of action prediction can be greatly
improved when using AKG as a supplementary knowl-
edge base. This finding demonstrates that the concept
of AKG, as well as the study of AKG generation,
is useful in helping machines understand and encode
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FIGURE 3. Performance of all analyzed models for full action prediction (Type 1) in terms of Hits@k .

human action. In particular, T-AKGG, U-AKGG,
and R-AKGG are on average 5.5 times, 4.7 times,
2.8 times (dense), and 11.3 times, 3.2 times, and
14.3 times (sparse) more effective than N-AKGG,
respectively. Thus, we conclude that time, user, and
inter-action relation are all valid signals in the AKG
process.

• With more training data, R-AKGG performs signifi-
cantly better. The average Hits@k value of R-AKGG
in the dense setting increased by 54.7% compared with
the sparse setting. When set to (dense, relative time) and
k ≤ 50, R-AKGG performs best among all methods,
implying that capturing the latent relations between
actions requires large amounts of training data.

• In most cases, time signal is more efficient and robust
than user signal. Overall, the average Hits@k value of
T-AKGG was 53.3% higher than that of U-AKGG.
A very likely reason for this is that the temporal
distribution of action in the training and test sets is much
closer, whereas the difference between the user group
distribution is more significant.

• The two methods that fuse all types of signals F-AKGG
and KGPMF perform the best. Moreover, our proposed
F-AKGG exhibits the best performance in almost every
setting.We then conclude that it is effective to use neural
networks to learn the nonlinear compatibility of actions
and relations. At the same time, the training time of
the neural network does not increase significantly when
using matrix factorization to limit the solution space.

Experiments demonstrate that ourF-AKGG can achieve
state-of-the-art performance in a full action prediction
task.

J. EXPERIMENTAL RESULTS: PARTIAL PREDICTION (TYPE
II)
Fig. 4 to Fig. 6 show the performance of all methods in the
partial prediction task (type II). Among them, Fig. 4, Fig. 5,
and Fig. 6 correspond to the results of subtask 1 (given ui,
predicting (tj, ak )), subtask 2 (given tj, predicting (ui, ak )),
and subtask 3 (given ak , predicting (ui, tj)), respectively.
We perform the following analysis of the experimental data.
• When comparing the performance of each method in
subtask 1 (see Fig. 4), we find that, first, in the two
settings (c) and (d), F-AKGG clearly shows a more
significantly superior performance (2.79 and 2.36 times,
respectively, as the average performance of the other
methods). In setting (a), the performance of F-AKGG
is better but relatively less significant (1.29 as effective
as the second-best method). In setting (b), F-AKGG is
the second-best performingmethod afterKGPMFwhen
k is large (60 ≤ k ≤ 100). In general, as k increases,
the number of missing actions correctly predicted by
F-AKGG shows an obvious linear trend. For every
10 increases in k , the number of hits achieved by
F-AKGG approximately increases by 2.02 (a), 1.98 (b),
1.36 (c), and 1.98 (d) hits on average.

• In subtask 2, we find that although F-AKGG can
still be considered as the best method (shows the
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FIGURE 4. Performance of all analyzed models for subtask 1 (given ui , predicting (tj , ak )) in partial action prediction (type II) in terms of Hits@k .

FIGURE 5. Performance of all analyzed models for subtask 2 (given tj , predicting (ui , ak )) in partial action prediction (type II) in terms of Hits@k .

FIGURE 6. Performance of all analyzed models for subtask 3 (given ak , predicting (ui , tj )) in partial action prediction (type II) in terms of Hits@k .

strongest predictive ability in three scenarios (a), (b),
and (d) and is one of the best two methods in
scenario (c)), the performance difference between it
and the second-best performing method (on average of
all settings, 13.3% above) is not as significant as in
subtask 1. We observe that the purely relation-based
method R-AKGG can be regarded as the overall
second-best method. In contrast, the user-based method
U-AKGG performs poorly. Thus, it can be concluded
that the introduction of user information for some
prediction tasks, including subtask 2, can even decrease
prediction performance. Furthermore, the signal used
for AKGG is task-dependent and should be selected
carefully.

• We find that F-AKGG is well suited for subtask 3.
In most settings ((a), (c), (d)) F-AKGG exhibits
an obvious performance boost (1.36, 4.50, and 1.61,
respectively, as the average performance of the other
methods). In setting (b), it still takes the lead when
10 ≤ k ≤ 90. Intuitively, given an action type, the
task of predicting user groups who are likely to perform
the action type and the corresponding performing
time requires the prediction model to understand and

model the action from both time and user perspectives
simultaneously, which naturally coincides with our idea
when designing F-AKGG. Therefore, it is clear why
F-AKGG shows such a good performance in this
task. It is also interesting to note that the temporal
signal is more effective in this task compared with
subtasks 1 and 2, which again demonstrates our previous
observation of the task-dependent signal importance.

• In summary, we conclude that F-AKGG has the best
overall performance in the type II prediction task.
Among the 12 subtasks, F-AKGG is the undisputed
best method in 10 of them, and achieves a significant
performance lead in five of them. We once again
validate the effectiveness of introducing AKG for the
action prediction task and the plausibility of the action
representation learned by F-AKGG.

K. EXPERIMENTAL RESULTS: PARTIAL PREDICTION (TYPE
III)
We illustrate the performance of all methods in the partial
prediction task (Type III) in Fig. 7, Fig. 8, and Fig. 9, where
they correspond to the results of subtask 1 (given (tj, ak ),
predicting ui), subtask 2 (given (ui, ak ), predicting tj), and
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FIGURE 7. Performance of all analyzed models for subtask 1 (given (tj , ak ), predicting ui ) in partial action prediction (type III) in terms of Hits@k .

FIGURE 8. Performance of all analyzed models for subtask 2 (given (ui , ak ), predicting tj ) in partial action prediction (type III) in terms of Hits@k .

FIGURE 9. Performance of all analyzed models for subtask 3 (given (ui , tj ), predicting ak ) in partial action prediction (type III) in terms of Hits@k .

subtask 3 (given (ui, tj), predicting ak ), respectively. The
following is our analysis of the experimental results.

• In subtask 1, F-AKGG can be considered as the most
competitive method in general, but has no obvious
advantage in three of the four settings. In setting (a),
T-AKGG performs equally well; in setting (c),
U-AKGG and R-AKGG perform similarly to
F-AKGG; in setting (d), F-AKGG performs signifi-
cantly better than R-AKGG only when 70 ≤ k ≤ 100.
Only in setting (b), F-AKGG clearly outperforms the
others, where its average performance is 2.46 times as
that of the second-best method: T-AKGG.

• In subtask 2, it can be observed that F-AKGG does not
achieve a significant performance lead in any setting.
In particular, in setting (d), F-AKGG is much inferior
to R-AKGG (it only achieves 47.4% of the average
predictive ability of R-AKGG), and close to U-AKGG
and KGPMF. Nevertheless, F-AKGG still exhibited
strong stability under diverse experimental conditions.
In settings (a), (b), and (c), it remains one of the first
echelons of all methods. When k takes values within

specific ranges (e.g., k ≥ 60 in (b), and k ≥ 50 in (c)),
the best performance can be obtained.We note that in the
two settings where relative time is adopted, R-AKGG
performs well.

• F-AKGG performs relatively poorly in subtask 3.
In setting (a), the average performance is only 51.9%
of the best method T-AKGG. In setting (d), the
average performance is 74.2% of the best method
R-AKGG. In (b), the predictive ability of all methods is
bifurcated, where F-AKGG, T-AKGG, and U-AKGG
are significantly better than the others. (c) is the only
scenario where F-AKGG shows the performance lead.

• In summary, in the series of experiments of type III,
we find that F-AKGG is not as dominant as it is in
type I and type II experiments. However, its performance
is more robust compared with other methods in various
settings, and therefore, it can still be judged as the best
model from a global perspective. Another interesting
finding is that T-AKGG performs relatively well when
absolute time is used, and R-AKGG achieves good
performance when relative time is used. Therefore,
we conclude that the dynamic patterns of actions are
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TABLE 2. Example actions and their corresponding descriptive terms.

more meaningful from the absolute time perspective,
whereas the interaction relations make more sense from
the relative time perspective. The only method that does
not rely on AKG, N-AKGG, is the worst performer,
implying the necessity of AKG in type III tasks.

L. EXPERIMENTAL RESULTS: SUMMARY
It can be summarized from the above analysis of the exper-
imental results for all prediction tasks (type I, type II, and
type III) that the construction of AKG is necessary for action
understanding and modeling (because N-AKGG is nearly
the worst model in all tasks). Furthermore, the ensemble
model F-AKGG achieves the globally best predictive ability,
demonstrating that our idea of multi-view encoding of actions
and their relations indeed leads to the AKG of better quality.
Moreover, F-AKGG exhibits different levels of fitness for
different types of tasks (type I > type II > type III). In total,
among all 28 settings (seven subtasks and four settings for
each of them), F-AKGG is clearly the best performer for
15 of them, in the first echelon for 10 of them, and relatively
weak for the remaining three.

M. CASE STUDY: INTER-ACTION RELATION EXAMPLES
In this section, we present some inter-action relation instances
of diverse structures learned by F-AKGG in Tab. 2 and
Tab. 3, which exhibits the best performance in the quantitative
evaluation.
• By looking at the words in Tab. 2, we infer that
relation R1 reflects the transition relationship: get
married→divorce. Interestingly, there is more than
one action expressing the same semantic meaning: get
married, probably because they occur at different stages
of life (e.g., 20s, 30s, 40s), andF-AKGG can understand
each of them to have a similar relationship to divorce,
thus learning a ‘‘N-to-1’’ pattern instead of many
‘‘1-to-1’’s.

• R2 can be understood as a crime→sentence relationship.
• R3 reflects another ‘‘N-to-N’’ relationship from the
early stages of an athlete’s career (championships in
youth, draft) to some later stages (contract signing,
contract renewal, etc.). Similar to R1, although contract
signing may occur repeatedly throughout an athlete’s
career, they are viewed by our approach as playing
similar roles within a broader relation.

TABLE 3. N-to-N inter-action relation instances. A1∼A21 represents
Action 1∼Action 21, whereas R1∼R6 represents Relation 1∼Relation 6.

• R4 represents part of the career trajectory of a popular
band (from band formation to album releases and award
receiving).

• R5 implies the life transition of people from high school
education and college education to graduate school
education. After that, some of them get a faculty position
in academia, as reflected by R6. We can naturally
combine R5 and R6 to portray typical stages in the life
of a scientist.

The above case studies show that our approach performs
well in terms of learning semantic relations among actions
of diverse structures and granularity, which can bring novel
insights to human-robot interaction tasks.

N. CASE STUDY: GENERATED PARTIAL BIOGRAPHY FOR
YURIKO NAKAMURA
In this section we present predictions made by our generated
AKG about the life of Yuriko Nakamura, who at the time
of writing does not have a biographical entry in the English
Wikipedia. This is a double partial triple prediction task (see
Sec. 5.3): given subject u, predict action a and occurrence
time t . Since Yuriko Nakamura was not included in our
dataset, we set her vector representation as the average
of the vectors of three similar Japanese female musicians9

who we manually select from our dataset. Tab. 4 shows
the top-5 predicted actions in the life of Yuriko Nakamura
in chronological order predicted by F-AKGG. Note that
to increase prediction accuracy we use a relatively wide
temporal granularity: 10 years. The predicted actions were

9These musicians are Akiko Yano (https://en.wikipedia.org/wiki/Akiko_
Yano), Ringo Sheena (https://en.wikipedia.org/wiki/Ringo_Sheena) and
Toshiko Akiyoshi (https://en.wikipedia.org/wiki/Toshiko_Akiyoshi).
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TABLE 4. Top-5 predicted actions in the life of Yuriko Nakamura made by our generated AKG. Due to space limitation for each action we only show up to
8 descriptive terms.

validated using her official homepage10 and confirmed to
have actually occurred based on her personal profile.

VI. RELATED WORKS
To the best of our knowledge, the concept of AKG was first
introduced at the NTCIR-13 workshop [5] in 2017. Its orga-
nizers designed two AKG-related tasks: action mining (AM)
and query-based AKG generation (Q-AKGG). The former
task was designed to search for related actions (e.g., visit
a temple) associated with the query entity (e.g., Tokyo),
whereas the latter task was designed to generate relevant
actions (e.g., live in a flood area) and entity types (e.g., thing,
event) for the given query (e.g., consequences of flood). For
the first task, Rahman et al. [22] proposed a probabilistic
model based on Bayes’ theorem, and Kang et al. [23]
proposed a solution based on grammatical tree rules. The
best performing model was proposed by the designers of
the task [5], which is another Bayesian network model. For
the second task, Lin et al. [24] designed a solution using
a language model based on Dirichlet smoothing. Different
from the existing research which mainly focuses on action
search, we tackle the task of generation and embedding of
AKG.

Technically, this study is close to the knowledge graph
embedding (KGE) domain. Existing KGE models mainly
include the following categories: (1) translational models
(e.g., [25]), (2) sensor decomposition models (e.g., [26]),
(3) neural models (e.g., [27], [28]), (4) language models
(e.g., [29]), and (5) entailment-aware models (e.g., [30]).
Different from existing KGE models, our model fuses
multi-source heterogeneous data in an unsupervised manner.
Due to space limitation, we cannot provide a complete
review of all important works of KGE. More detailed and
comprehensive reviews of KGE can be found in [31]–[33].

This work also lies in the field of biography mining.
Related topics of interest include the interplay between life
events [1], the characteristics of life events that are highly
transformative and iconic [2], and the systematic differences
in life structure across groups [3], etc. In particular,Wikipedia
has been used extensively, for the task of disambiguition
of named entities [34], [35], the recognition of biographical
sentences [36], the identification of latent biographical
structure [8], and the summarization of typical life trajactories
and events [37], [38], etc.

10https://yurikopia.com/disco/

VII. CONCLUSION
From the time the concept of an AKG was introduced in
NTCIR-13 [5], the use of techniques from the KG domain
to enhance the robot’s usage of human biographical data
and understanding of human action has gradually attracted
the interest of researchers in multi-disciplinary fields. In this
study, we, for the first time, propose an unsupervised model
for the automatic multi-view generation of AKG. A new
neural network matrix factorization framework is proposed
to learn meaningful action representations and extract latent
inter-action relations from multiple perspectives: subject,
context, and functionality. The proposed model brings signif-
icant improvement over the baselines in a novel application
for predicting missing human action records in Wikipedia.

Our research can not only assist social scientists and
historians in the analysis of human action, but also inject
new technical innovations into the field of KG generation
and relation extraction. In the future, we will focus on
exploring ways to improve the expressiveness of AKG in
human-robot interaction scenarios, with the goal of building
a smart society.
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