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ABSTRACT With approximately 2 billion active devices, the Android operating system tops all other
operating systems in terms of the number of devices using it. Android has gained wide popularity not only
as a smartphone operating system, but also as an operating system for vehicles, tablets, smart appliances,
and Internet of Things devices. Consequently, security challenges have arisen with the rapid adoption of the
Android operating system. Thousands of malicious applications have been created and are being downloaded
by unsuspecting users. This paper presents a lightweight Android malware detection system based on
explainable machine learning. The proposed system uses the features extracted from applications to identify
malicious and benign malware. The proposed system is tested, showing an accuracy exceeding 98% while
maintaining its small footprint on the device. In addition, the classifier model is explained using Shapley
Additive Explanation (SHAP) values.

INDEX TERMS Android, malware, malware detection, XAI, machine learning.

I. INTRODUCTION
In 2008, the Android operating system was first introduced
as an open-source project in its current form. Since then,
it has been gaining wide popularity among users because
of its customizability and low hardware requirements.
With the number of active Android devices approaching
2 billion in 2021, Android has remained at the lead of operat-
ing systems used worldwide [1]. Figure 1 illustrates the rapid
growth of the Android OS adoption. This noticeable growth
is a result of the wide adoption of the operating system in
mobile phones, Internet of Things (IoT), industrial IoT (IIoT),
connected vehicles, and smart home appliances.

This wide growth of the Android operating system
comes with vast security challenges. One challenge that
is particularly important is the emergence of malicious
applications or those containing or implanting malware.
Google Play Store, which is the main platform from which

The associate editor coordinating the review of this manuscript and

approving it for publication was Mehul S. Raval .

Android users can download applications, rapidly grew from
16,000 applications in December 2009 to 2,797,581 appli-
cations in August 2021 [2]. This rapid growth witnessed
periods of low-security checks on the applications included
in the store, resulting in many large incidents where
malware-infested applications have been downloaded by mil-
lions of users [3]. In these incidents, the play store protection
may have failed to detect malware instances and potentially
unwanted programs or these applications did not go through
the checking process at all.

According to [3], Google Play Store provides only
87% of downloaded Android applications. Other sources
include alternative markets, older application backups, and
direct downloads using browsers, among other sources. This
13%mostly comes from non-reliable sources. In many cases,
attackers market these non-play store downloads as a free
version of a normally paid application. They also try to
masquerade their malicious applications as useful ones. In a
more recent incident, attackers created applications that can
pass the security check of Google Play Store. They do not
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FIGURE 1. Population of internet users worldwide from 2012 to 2021 by operating system [1].

contain malware, but they find ways to download and inject
malware into Android devices after installation [4]. In that
particular incident, a banking trojan attack was delivered by
an application that was downloaded for over 300,000 times.

A study in [5] reported that only 35% of Android users read
all the permissions an application asks for before installation.
Only 77% have at least once refused to install an application
because of the permissions it asks for. These numbers indicate
a serious gap in user awareness of the risks accompanying the
installation of applications without reading and understand-
ing what these applications will have access to.

The above mentioned security challenges set the case
for the urgent need for a robust and reliable malware
detection system. The malware detection solution must be
lightweight to fit into the wide range of Android hardware
specifications ranging from octa-core smartphones to simple
network-connected photo displays.

A. RESEARCH CONTRIBUTIONS
This study presents ‘‘PAIRED’’ as an explainable lightweight
malware detection system based on machine learning. Our
research focuses on the production of a machine learning
solution that does not demand high resources and relies only
on a minimal number of features to be extracted to maintain
a low impact on resources while maintaining high malware
detection accuracy.

The contributions of this research can be summarized in
the following points:

1) Feature Selection: Selecting the minimum possible
number of critical features that can provide high
accuracy, while reducing the weight of the malware

detection solution to the minimum. The use of recur-
sive feature elimination (RFE) ensures that the number
of features used in the detection process is kept at
minimum. In addition, it also reduces the number of
features that need to be acquired and extracted at the
data acquisition phase.

2) Model Explainability: Explaining the selected features
using Shapley additive explanation (SHAP) values to
ensure that the high accuracy of the classifier originates
from explainable conditions.

3) Lightweight: Building a high-accuracy machine-
learning based malware detection system for Android
devices, that relies on static features extracted from
installed applications without the need to run these
applications.

4) New Dataset: Producing a reduced version of the
dataset with 35 effective features that can be used in
future research on malware detection in the Android
ecosystem.

B. PAPER LAYOUT
The rest of the paper is organized as follows: Section II
discusses the most significant malware detection solutions
in previous works. This section will be divided into two
parts; classical malware detection, and machine-learning-
based malware detection. Section III explains the dataset
used in training and testing of the machine-learning model.
The design of the proposed system, ‘‘PAIRED’’, includes
its practical aspects is described in Section IV. Section V
shows the steps of implementation along with the testing
results. The proposed model’s explainability using SHAP is
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introduced in Section VI. Section VII will present discussions
and comparisons with previous works, Finally, conclusions
and suggestions for future research directions are written
in Section VIII.

II. RELATED WORKS
According to [6], a new malicious Android application is
created every 10 s. This section reviews previous works
that performed machine learning- and non-machine learning-
based research on Android malware detection.

A. NON-MACHINE LEARNING-BASED MALWARE
DETECTION
In 2019, Arora et al. [7] introduced PermPair that aimed to
identify pairs of permissions, which can be associated with
malware. The proposed detection model constructs and com-
pares graphs for malware and normal samples by extracting
permission pairs from the manifest file of an application.
The testing results of the proposed model showed 95.44%
accuracy when compared to other similar approaches and
favorite mobile anti-malware applications. The study also
proposed an edge elimination algorithm that removes 7%
and 41% of unnecessary edges from malware and normal
graphs, respectively. This led to a minimum space utility and
a 28% decrease in the detection time.

In 2020, Taheri et al. [8] presented four malware detection
methods using the Hamming distance to find similarities
between the samples of first nearest neighbors, all nearest
neighbors, weighted all nearest neighbors, and k-medoid-
based nearest neighbors. Testing was performed on three
datasets, including benign and malware Android applications
like Drebin, Contagio, and Genome. The test results showed
more than 90% accuracy. In some cases (i.e., considering
API features), the accuracy was more than 99% and compa-
rable with that of existing state-of-the-art solutions.

In the same year, Han et al. [9] presented the feature
transformation-based Android malware detector (FARM).
The FARM takes the well-known features for Android mal-
ware detection and introduces three new types of feature
transformations that irreversibly transform these features into
a new feature domain. The detector was initially tested on
six Android classification problems separating goodware and
other malware from three malware classes, that is, rooting
malware, spyware, and banking trojans. Han et al. also pro-
posed three realistic attacks on the FARM and showed that
it is highly robust to attacks in all classification problems.
The detector automatically identified two malware samples
that were not previously classified as rooting malware by
any of the 61 anti-viruses on VirusTotal. These samples were
reported to Google’s Android Security Team, who confirmed
the findings.

B. MACHINE LEARNING-BASED MALWARE DETECTION
Many machine learning-based solutions have generally been
proposed for malware detection. In this subsection, we will
review a few papers within the area of the proposed system.

In 2018, Li et al. [6] presented a machine learning Android
malware detection system based on application permissions.
The proposed solution, called the Significant Permission
Identification, was based on the permission usage analysis
for detecting malicious applications and malware. As an
alternative to extracting and analyzing all Android permis-
sions, the proposed system mined the permission data to
identify the most significant permissions that can be effec-
tive in distinguishing benign and malicious applications. The
study proposed the selection of 22 significant permissions.
System testing achieved 90% precision, recall, accuracy,
and F-measure.

Also in 2018, Yerima and Sezer [10] presented a
multi-level machine learning classifier combination frame-
work to detect Android malware. They introduced the dataset
that we will be using in building our proposed system
(i.e., PAIRED). The proposed framework, called DroidFu-
sion, generates a model by training base classifiers at a lower
level. It then applies a set of ranking-based algorithms on
their predictive accuracies at a higher level to derive a final
classifier. The DroidFusion method enables the fusion of
ensemble learning algorithms for improved accuracy. The
testing results of DroidFusion showed that it can outperform
stacked generalization, awell-known classifier fusionmethod
that employs a meta-classifier approach at its higher level.

In the same year, Firdaus et al. [11] presented another
machine learning-based Android malware detection system
that uses genetic search (i.e., a search based on a genetic
algorithm) to select features among the 106 strings generated
from the application static analysis. These features would
feed into five different classifiers, namely Naive Bayes, func-
tional trees, J48, random forest, and multilayer perceptron.
The testing results showed that the functional trees classifier
had the highest accuracy (i.e., 95%) and true positive rate
(i.e., 96.7%) using six features.

Cai et al. in 2018 produced an app-profiling-basedAndroid
malware detection system, called DroidCat [12]. DroidCat
was introduced as a dynamic app-classification technique
that inspects method calls and inter-component communica-
tion without involving permissions, app resources, or system
calls while fully handling reflection. DroidCat consistently
achieved 97% F1 measure accuracy for classifying apps dur-
ing the testing phase.

In 2019, Xiao et al. presented a deep learning-based
Android malware detection method [13]. The proposed
model examined semantic information in system call
sequences as the natural language, treated one system call
sequence as a sentence in the language, and constructed a
classifier based on the long short-term memory language
model. The experiments showed that this approach can
achieve high efficiency and high recall (96.6%) with a false
positive rate (9.3%).

In the same year, Lei et al. [14] also presented an
event-aware Android malware detection system that
exploited behavioral patterns in different events to effectively
detect new malware based on the insight that events can
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reflect the applications’ possible running activities. This sys-
temwas called EveDroid. The proposed system used an event
group to describe the applications’ behaviors at the event
level, capturing a higher level of semantics than at the API
level. EveDroid was based on a neural network specifically
designed to aggregate multiple events and automatically mine
the semantic relationship among them. The testing results
showed a high F1 score of EveDroid (i.e., exceeding 99%).

Li et al. in 2019 also introduced a machine learning-based
malware classifier based on the factorization machine archi-
tecture and the extraction of Android app features from man-
ifest files and source code [15]. The proposed classifier was
tested with the DREBIN andAMD [16] datasets and achieved
accuracies of 100% and 99.22%, respectively. The proposed
system had fast training by a factor of 50.

In 2020, Millar et al. presented an Android malware detec-
tion model using a deep learning discriminative adversarial
network (DAN) that classifies both obfuscated and unobfus-
cated apps as either malicious or benign [17]. The proposed
method was robust against a selection of four real-world
obfuscation techniques. In addition, it also used three feature
sets (i.e., raw opcodes, permissions, and API calls) combined
in a multi-view deep learning architecture to increase this
obfuscation resilience. The testing results showed that the
proposed model achieves an average F1 score of 0.973.
In the same year, Kouliaridis et al. [18] presented Andro-

tomist, a tool capable of symmetrically applying the static and
dynamic analyses of applications on the Android platform to
detect malware. Androtomist utilized the features stemming
from the static analysis along with dynamic instrumentation
to dissect applications and decide if they are benign or not.
It focused on anomaly detection using machine learning and
autonomously conducted a signature-based detection. The
proposed method assessed the detection accuracy of Andro-
tomist against three different popular malware datasets and a
handful of machine learning classifiers. The paper introduced
an ensemble approach by separately averaging the output of
all base classification models per malware instance and pro-
vided an insight on the most influencing features regarding
the classification process.

In 2021, Hei et al. presented a new malware detection
framework for evolutionary Android applications, called
Hawk [19]. Hawk modeled Android entities and behav-
ioral relationships as a heterogeneous information network,
exploiting its semantic meta-structures for specifying implicit
higher-order relationships. The experiments examined more
than 80,860 malicious and 100,375 benign applications
developed over a period of 7 years. Hawk yielded a high
detection accuracy against baselines and spent 3.5 ms in
average to detect an out-of-sample application.

In 2021 as well, Frenklach et al. presented a static Android
application analysis method that relied on an app similarity
graph [20]. The proposed method was demonstrated on the
Drebin benchmark in both balanced and unbalanced settings,
on a brand new VTAz dataset from 2020, and on a dataset of
approximately 190,000 applications provided by VirusTotal,

achieving 0.975 accuracy in balanced settings and 0.987 area
under the curve (AUC) score. The analysis and classification
times of the proposed methods were from 0.08 to 0.153 s/app.

Şahin et al. presented, in 2021, a machine-learning based
malware detection system that utilizes deep neural net-
works [21]. The proposed system relies on features extracted
from the application permissions. A linear-regression based
method was used for feature selection that ended up select-
ing 27 effective features to be used in malware detection.
The proposed system produced a F1 score of 0.961. How-
ever, with it utilizing multi-layer perceptron as the classi-
fier type, it does not qualify as a lightweight solution due
to the intensive processing requirements needed by neural
networks in comparison to other machine learning classifiers.
The same authors presented in another research publication
a filter-based feature selection method for Android malware
detection [22]. Within this study, the authors focus on build-
ing a classifier with a smaller number of features. However,
the features were all extracted from application permissions
only. This neglects important features that can be extracted
from malware behavior such as API call signatures, intents,
and command signatures.

Mahindru and Sangal presented, in 2021, another
permissions-focusedAndroidmalware detection system [23].
The proposed system utilizes least square support vector
machine along with ten feature selection approaches. The
proposed system was tested and presented an accuracy of
98.8% with a detection time of 12 seconds. The detection
time is indicative of very slow processing when compared to
our proposed system.

Although many published works are related to malware
detection in Android using machine learning-based tech-
niques, an in-depth analysis of the state-of-the-art revealed
the need for a feature- and resource-optimizedmalware detec-
tion tool that can achieve high malware detection accu-
racy. The present study addresses this problem by presenting
PAIRED as a robust, reliable, and lightweight malware detec-
tor for Android.

III. DATASET
Android applications are written in Java and executed within
a custom Java virtual machine. Each application package is
contained in a Java Archive (JAR) file with the extension
of the Android Application Package, known as the APK.
Android applications have four fundamental building blocks,
namely activities, services, broadcast receivers, and content
providers. These components are declared in the application
manifest file for use. The communication between these com-
ponents is achieved by using intents and intent filters. Intents
are messaging objects that can be used to request actions from
other application components. Intent filters are expressions
declared in the application manifest file that specify the intent
type a component will receive. Application components inter-
act via the intent method; hence, both components and
their communication intents must be analyzed for security
concerns [15].
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TABLE 1. Feature types in the Drebin-215 dataset.

In this work, we used the Drebin-215 dataset first intro-
duced in 2014 by Arp et al. [24]. As discussed in Section II,
Drebin-215 is a well-known dataset used in many machine
learning-based malware detection systems. The dataset
was generated by extracting 215 features using the static
analysis of malicious applications. The dataset included
15,036 instances, each of which represents an application.
A total of 9476 instances in this dataset were benign. The
remaining 5560 were malicious. The 215 features came from
different extraction sources (Table 1).
For testing purposes, we will also use two other

datasets to ensure that the trained model generalizes well
beyond its training dataset. The first testing dataset is
Malgenome-215 [25], a well-known dataset published
in 2015 that is used in creating machine learning classifiers.
The features included in Malgenome-215 are similar to those
in Drebin-215. However, it comprised 3799 instances, out of
which 1260 were malicious, and 2593 were benign.

The second testing dataset is CICMalDroid2020 [26].
This dataset is a newer dataset that was published in 2020.
It included many features extracted by different means
including the features that were selected in this research.
The dataset includes features extracted from 11,598 instances
(1,795 benign, and 9,803 malicious). The dataset included
different types of malware such as: adware, bankingmalware,
SMS malware, and riskware. The extracted features were
preprocessed to prepare them for testing using our trained
classifier.

IV. PROPOSED SYSTEM OVERVIEW
This section presents the proposed system; PAIRED, as a
lightweight malware detection system for Android devices.
The proposed system was based on the extraction of static
features from the installed applications to evaluate them. The
choice of static features was based on the fact that we wanted
the proposed system to deliver faster decisions and not wait
for the application to act maliciously because, by then, the
damage might have already been done. The dynamic analysis
can be of high risk in malicious applications that achieve the
rooting of Android devices because the device might have
already been rooted by the time the application is detected.

The design principles behind PAIRED are as follows:
1) High accuracy: This is achieved by properly train-

ing the machine learning classifier with a smaller
number of features having the highest classification
effectiveness.

2) Being lightweight: This is achieved by reducing the
number of features by a factor of 84%. The processing
power and the memory requirements for extracting the
features and running the classifier will be significantly
reduced while maintaining the accuracy. Another con-
tribution towardmaking the system lightweight is using
a classifier that is not resource-intensive.

3) High efficiency: Reducing the number of features
means that the time needed to make a decision would
be dramatically reduced. Most importantly, the time
needed for feature extraction is also significantly
reduced.

4) Creating a generalizable classifier: The trained classi-
fier model will be tested using a dataset subset that was
not used in training. Themodel will also be tested using
a different dataset that has never been used in training
to assure generalization.

FIGURE 2. Overview of the PAIRED architecture.

Figure 2 presents an overview of the proposed system
architecture. In Figure 2, the proposed system operation is
triggered whenever a new application is installed on the
Android device. Each application consists of an APK file,
which is a zipped file consisting of the application source
code, resources, assets, and manifest file. The source code
is encoded as a Dalvik Executable (DEX) file that can be
interpreted using the Dalvik Virtual Machine. The manifest
file comprises a number of declarations and specifications.
The other resources may contain images, and HTML files.

DEX files are a compiled binary executable code, and fea-
tures cannot be readily extracted from them directly. There-
fore, they must be decompiled into other formats that can
be read and interpreted (e.g., Smali code or Java code). The
Smali code is an intermediate form decompiled from DEX
files and essentially the assembly code format of an appli-
cation. Only after the APK files have been decompiled can
features be extracted from them. The static feature extractor
starts extracting the needed features and passes them to the
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classifier. The classifier then takes the input and generates a
prediction of whether the installed application is malicious or
benign. A malicious application can either be sandboxed or
removed immediately.

In newer versions of Android, Dalvik was replaced with
Android Runtime (ART). ART is the managed runtime used
by applications and system services to execute the DEX byte-
code specifications mentioned earlier. This means that ART
and Dalvik are compatible runtimes that run DEX bytecode,
and applications developed for Dalvik can easily work on
ART, given some specific conditions aremet. In both systems,
the features used in our proposed model can be extracted
without running the application on the Android device.

V. IMPLEMENTATION AND RESULTS
A. IMPLEMENTATION ENVIRONMENT
Tables 2 and 3 present the hardware and software specifi-
cations of the implementation computer, respectively. This
computer was used for preprocessing, training, and testing
machine learning classifiers. It was also used to host the
virtual testing environment.

TABLE 2. Hardware for the implementation environment.

TABLE 3. Software for the implementation environment.

B. PERFORMANCE METRICS
The four basic performance metrics of a binary ML-based
classifier are as follows:

1) True positive (TP): the number of test instances with
true and predicted values of 1 divided by the number of
test instances with a true value of 1.

2) True negative (TN): the number of test instances with
true and predicted values of 0 divided by the number of
test instances with a true value of 0.

3) False positive (FP): the number of test instances with a
true value of 0 and a predicted value of 1 divided by the
number of test instances with a true value of 0.

4) False negative (FN): the number of test instances with
a true value of 1 and a predicted value of 0 divided by
the number of test instances with a true value of 1.

When combined together, these four measures generate the
confusion matrix.

We used the following six performance parameters in this
work:

1) Accuracy: measures the ratio of correct predictions
using the following equation:

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(1)

2) Precision: measures the ratio of the accuracy of positive
predictions using the following equation:

Precision =
TP

TP+ FP
(2)

3) Recall: measures the ratio of positive instances cor-
rectly detected by the classifier using the following
equation:

Recall =
TP

TP+ FN
(3)

4) F1 score: measures the harmonic mean of precision and
recall using the following equation:

F1Score = 2 ∗
TP

TP+FN ∗
TP

TP+FP
TP

TP+FN +
TP

TP+FP

(4)

5) Training time
The time required to train the classifier using the train-
ing subset.

6) Testing time
The time required for the trained classifier to process
one input instance and produce a prediction.

C. TRAINING AND TESTING STRATEGY
To select the best-performing classifier, we chose five differ-
ent types of classifiers to train and test. These classifiers were
the random forest (RF), logistic regression (LR), decision
tree (DT), Gaussian Naive Bayes (GNB), and support vector
machine (SVM). Our goal was to create a lightweight solu-
tion. Accordingly, we chose not to use deep neural networks
because of their high computational requirements compared
to the five selected models [27].

The experiments were split into multiple phases as follows:
1) Initial training and testing: The dataset was randomly

split into 75% training subset and 25% testing subset to
obtain the initial results using all five classifiers.

2) Feature selection: The next step was to select a lower
number of features from the original 215. The method
used in the feature selection was recursive feature elim-
ination (RFE) based on the feature importance. This
method will be explained in Section V-E. After the
feature selection process, the resulting reduced dataset
was used to retrain the classifiers and produce a new set
of results.

3) 10-fold cross-validation: We used 10-fold cross-
validation on the reduced-feature data as an additional
validation step. In the 10-fold cross-validation process,
the data were randomly split into 10 subsets. The data
then went through 10 cycles of training and testing.
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TABLE 4. Initial results with 215 features.

In each cycle, one subset of the 10 was excluded from
the training process and used for the testing process.
This was repeated for 10 times until all 10 subsets
had been used for testing one time. Each cycle pro-
duced a classifier with specific performance parame-
ters. If these parameters have a high variance, then the
classifier suffers from overfitting and is not properly
generalizing within the dataset. If the variance is low,
then themean values of the performance parameters are
reliable.

4) Additional datasets testing: For further validation, the
trained classifiers are tested using two more datasets to
ensure that the classifiers generalize well beyond their
training dataset.

D. INITIAL TRAINING RESULTS
As mentioned in Section V-C, five classifiers were created
for training and testing. These five classifiers were trained
using 75% of the dataset, which was randomly selected, and
tested using the remaining 25%. The dataset used in the initial
training stage was the full dataset with 215 features. Table 4
presents the initial performance measurements obtained from
the initial testing process.

In Table 4, the RF classifier yielded the highest accuracy
of 0.9865, whereas the LR classifier exhibited the lowest
testing time of 0.3149 µs/instance. This result implies the
high accuracy needed as we progress in the creation of a
lighter-weight model. Figure 3 illustrates the AUC of the five
classifiers using the 215-feature dataset. Examining Figure 3
and Table 4, we found the GNB classifier producing the
lowest accuracy of 0.7199.

E. FEATURE SELECTION AND ITS RESULTS
One of the major contributions of our research is to select
a lower number of features without compromising accuracy
of the malware detection system. As we explored statistical
dimensionality reduction algorithms such as principal com-
ponent analysis, singular value decomposition, and linear
discriminant analysis, we found that these algorithms raise
two concerns. The first is that the reduction in the number of
features takes place in the features fed into the classifier only.
It does not impact the data acquisition and hence does not
have a noticeable impact on efficiency. The second concern
is that all of these algorithms require resource intensive pre-
processing to the acquired data to prepare it before being fed
into the classifier in real-life deployments. Hence, we decided

FIGURE 3. Area under the curve (AUC) for the classifiers with
215 features.

to utilize recursive feature elimination. Algorithm 1 presents
the steps followed in RFE.

In each cycle of RFE, the dataset is randomly split into
75% training subset, and 25% testing subset. A random forest
classifier is then created and trained using the training subset.
Following this training, the classifier is tested using the test-
ing subset. Afterwards, the feature importance is calculated
for all features used in training the classifier. Feature impor-
tance can be measured as the averaged impurity decrease
computed from all decision trees in the forest, without assum-
ing that the data is linearly separable or not [28]. The feature
with the lowest importance value is then eliminated. Then,

Algorithm 1 Recursive Feature Elimination Based on
Feature Importance

1 Input: Dataset with 215 features
2 Output: Dataset with 35 features

3 Array← Dataset
4 model ← RandomForestClassifier
5 TargetFeatures← 35
6 while Features(Dataset) > TargetFeatures do
7 RandomSplit(Array)→ Train_Array,Test_Array
8 train model with Train_Array
9 importance← FeatureImportance(model)
10 i← index of feature with lowest importance
11 Array.DeleteFeature(i)
12 end
13 Dataset ← Array
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FIGURE 4. Impact of the feature reduction on the generated F1 score.

the cycle is repeated while closely monitoring the system’s
performance by recording the F1 score of the tested clas-
sifier. The process is repeated until a certain threshold is
reached. This threshold is chosen upon the system witness-
ing rapid drop in performance. As shown in Figure 4, the
threshold chosen in our experiment was 35, as we noticed a
rapid drop in the classifier’s F1 score beyond the 35-feature
threshold.

Based on this reduction method, the number of features
that need to be used in the prediction in live deployments was
reduced, not only the dimensionality of the data input to the
system. This enabledmore efficient data acquisition, training,
testing, and lightweight real-life deployment.

As mentioned in Section II, several other papers relied
on feature importance to select features with the highest
importance. Our research did not follow the same method
of selecting features with the highest importance. It instead
relied on the repetitive elimination of the feature with the
lowest importance and model re-training. This successive
elimination assured that any correlation between the features
will not affect the independent feature importance. In other
words, the importance of one feature might be affected by
the existence (and the elimination of) another feature. Hence,
we retrained and re-calculated the importance after each
feature was eliminated.

We used the new dataset with 35 features to train and test
the classifier models. Table 5 shows the accuracy, precision,
recall, F1 score, and training and testing times for the five
classifiers. Figure 5 illustrates the AUC for the five classifiers
with the reduced dataset.

Examining Table 5, the accuracy dropped less than 0.006 in
the RF classifier, 0.02 in the LR classifier, and 0.01 in the DT
and SVM classifiers. In contrast, the GNB classifier accuracy
improved by 0.17. The timing parameters improved in all
models with the reduction of the features from 215 to 35.
Appendix A presents comparisons of the performance mea-
sures for all classifiers using the 215- and 35-feature datasets.
Figures 6, 7, 8, 9, and 10 illustrate the confusion matrix
for the 35-feature RF, LR, DT, GNB, and SVM classifiers,
respectively.

FIGURE 5. Area under the curve (AUC) for the classifiers with 35 features.

FIGURE 6. Confusion matrix of RF classifier with 35 features.

FIGURE 7. Confusion matrix of LR classifier with 35 features.

The results show that the RF classifier outperformed the
other classifiers in terms of accuracy by approximately 2%.
In addition, RF yielded the lowest FP and FN rates with
values of 0.0385 and 0.0090 respectively. In terms of perfor-
mance, LR achieved the lowest training time of 0.0028µs per
instance. The difference in the accuracy in high-sensitivity
applications like malicious application detection is not some-
thing to be overlooked. Hence, we chose the RF classifier as
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TABLE 5. Results after the feature reduction process.

FIGURE 8. Confusion matrix of DT classifier with 35 features.

FIGURE 9. Confusion matrix of GNB classifier with 35 features.

the final proposed model to conduct further testing and verify
the generalization capabilities of the model.

F. 10-FOLD CROSS-VALIDATION RESULTS
As explained in Section V-C, we conducted a 10-fold cross-
validation to assure that the trained model can properly gen-
eralize. Table 6 presents the cross-validation results for the
chosen RF classifier.

In Table 6, the classifier maintained a high accuracy dur-
ing all 10 folds, yielding a mean accuracy of 0.9820. The
standard deviation in the accuracy measure was minimal
with 0.002511. This result proved that the model generalized
well and did not suffer from overfitting. Furthermore, the
other performance measures maintained high resilience all

FIGURE 10. Confusion matrix of SVM classifier with 35 features.

TABLE 6. 10-Fold cross-validation results for the random forest classifier.

throughout the 10 folds and caused only a minimal standard
deviation.

G. TESTING WITH MALGENOME-215 AND
CICMalDroid2020
We used two additional testing dataset to further ensure
the generalization capability of the model. The first testing
dataset, which is the Malgenome-215 dataset [25], also has
215 features. It comprises 3799 instances, in which 2539were
benign, and 1260 were malicious. We extracted a subset of
the Malgenome-215 dataset with only the 35 features chosen
for our proposed model, and then ran these instances through
our model for testing. Table 7 presents the testing results.
Figure 11 depicts the confusion matrix plot for the test using
the Malgenome-215 dataset.

The results obtained by testing with the 35-feature version
of the Malgenome-215 dataset show that the classifier main-
tained a very high accuracy of 0.9873 while maintaining a
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TABLE 7. Performance measure for the proposed system using
35 features from the Malgenome-215 and CICMalDroid2020 datasets.

FIGURE 11. Confusion matrix for testing the RF classifier with the
35-feature version of Malgenome-215.

low processing time of 0.7661µs. Furthermore, the classifier
achieved a very low FN rate of 0.6% and a FP rate of 2.38%.
These values are a good indication that the classifier general-
izes well to data not seen before.

The second testing dataset was CICMalDroid2020
dataset [26]. We extracted the 35 features that were selected
earlier to feed them into the trained classifier to tests it. The
11,598 instances were sent through our model for testing.
Table 7 presents the testing results. Figure 12 depicts the con-
fusion matrix plot for the test using the CICMalDroid2020
dataset.

The results obtained by testing with the 35-feature version
of the CICMalDroid2020 dataset show that the classifier
maintained a very high accuracy of 0.9798 while maintain-
ing a low processing time of 0.8206µs. Furthermore, the
classifier achieved a very low FN rate of 0.87% and a FP
rate of 3.96%. These values are a good indication that the
classifier generalizes well to data not seen before.

VI. EXPLAINABILITY OF THE MODEL
One of the goals of this research is to produce an explainable
model, which will increase trust in the proposed solution.
Explainability not only builds trust in the model, but also
ensures that the achieved accuracy originates from explain-
able conditions, and not from a black-box operation.

In explaining our proposed model, we will rely on Shap-
ley Additive Explanation (SHAP). In 2017, [29] introduced
SHAP as a model-agnostic method for explaining machine

FIGURE 12. Confusion matrix for testing the RF classifier with the
35-feature version of CICMalDroid2020.

learning models. SHAP is based on the Shapley values taken
from the game theory [30]. Shapley values are calculated by
measuring the impact of each individual player in a team
game by computing the team performance with and without
that player. In machine learning, this method calculates the
impact of each feature by calculating the difference between
the model performance with and without the feature. This
helps us understand how much each feature contributes to the
prediction in a positive or negative way.

As discussed in [31], SHAP values are considered as a
better explanation method compared to feature importance.
Feature importance is the technique of calculating a score
for all the input features for a given model. This score rep-
resents the importance of each feature. Feature importance is
calculated through Gini importance using node impurity and
can only be calculated in linear machine learning algorithms,
such as linear and LR, RF, and DT. In contrast, SHAP values
are model-agnostic and can be used to explain any type of
classifier, including deep learning. The way the SHAP values
are calculated can provide better insights into the impact of
each individual feature on the classification decision.

Figure 13 shows a summary plot of the SHAP values of
the top 10 features within the dataset. These 10 features were
arranged in a descending order from the feature with the
highest impact on the decision to that with the lowest impact.

To obtain a better understanding of the SHAP explanation,
we must re-iterate that the prediction of the proposed model
is 1 when the prediction is ‘‘malware’’ and 0 when ‘‘benign’’.
In Figure 13, the values on the left side of the vertical axis
drag the prediction value down, making the prediction closer
to ‘‘benign’’. Meanwhile, the values on the right side of
the vertical axis push the prediction value up, making the
prediction closer to ‘‘malware’’. The red dots represent a high
feature value, while the blue dots represent a low feature
value. Most of the features used in our model were binary
features; hence, the red dots represent 1, while the blue dots
represent 0.
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FIGURE 13. Summary plot of the SHAP values for the 10 highest impact features.

TABLE 8. Comparison of the performance measures of PAIRED with those presented in previously published studies.

Figure 13 depicts that the ‘‘SEND_SMS’’ feature holds
the highest impact on the prediction. With a value of 1,
it pushes the prediction closer to malicious. With a value of 0,
it brings the prediction closer to benign. This comes from the
fact that many malware instances would send text messages
either to share the infection with other devices or to subscribe
to premium service numbers that would cause significant
financial losses to the user. In a similar manner, the value
of 1 in the ‘‘READ_PHONE_STATE,’’ ‘‘TelephonyMan-
ager.getDeviceId,’’ and ‘‘android.Telephony.SmsManager’’
features would push the prediction closer to malware.
READ_PHONE_STATE is an application permission that,
when granted, allows reading access to the phone state,
including the current cellular network information, status of
any ongoing calls, and list of any calling accounts regis-
tered on the device. This information can be used to cap-
ture coarse location through cellular network information,
which is a serious privacy violation. Applications can use the
TelephonyManager.getDeviceId action to retrieve the Inter-
national Mobile Equipment Identity, which is the unique
identifier of a phone’s SIM card. This number can be used
in spoofing attacks to take over the phone number and in
mobile banking fraud or other types of fraud. Meanwhile,
android.Telephony.SmsManager is an object that manages
SMS operations, such as sending data, text, and pdu SMS
messages. This feature connects to the SEND_SMS feature,
but gives a different access to the application in reading and
sending SMS messages. An individual examination of these

three features might not conclusively indicate the application
to be ‘‘malware’’. However, when combined together, and
with other features (e.g., SEND_SMS), their combination
becomes very suspicious.

The second feature in terms of impact is ‘‘bindService’’.
In an Android environment, bindService would allow a
client to be bound to an existing service when called.
This feature’s value of 1 pushes the prediction closer to
benign because this service does not allow a client to
bind to a service without authorization. Hence, in most
cases, it is a technique that is useless to malware
creators. The ‘‘Ljava.lang.Class.getCanonicalName’’ and
‘‘Ljava.net.URLDecoder’’ features have the similar effect
of pushing the prediction closer to benign when having a
value of 1. This comes from the fact that these two ser-
vices are rarely used by malware. Both features are relevant
to resolving domain names to IP addresses. As with most
malware, when communicating with a command and control
(C&C) center, they directly communicate using IP addresses
without needing to resolve a domain name. By contrast, most
benign applications rely on domain names, such that they
need not update the applicationwhen their server IP addresses
change. Appendix C presents the SHAP summary plot for the
35 features.

VII. DISCUSSION
The results provided in Section V show very good perfor-
mance measures with 0.9807 accuracy, 0.9806 F1 score,
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FIGURE 14. Impact of feature reduction on the RF classifier.

FIGURE 15. Impact of feature reduction on the LR classifier.

FIGURE 16. Impact of feature reduction on the DT classifier.

0.7631 µs test time, 1.00 AUC, 0.0238 FP, and 0.0067 FN.
Having such a high accuracy with a very low FN value makes
the classifier model a powerful tool for malware detection.
Table 8 presents a comparison of the performance of the
proposed system with other state-of-the-art approaches.

Table 8 shows that the proposed system outperformed
most of the state-of-the-art approaches in terms of the per-
formance measures despite the fact that it was designed to
be lightweight. Although [15] presented a higher F1 score,
it was based on MLP with 93,324 features, making it heavily

FIGURE 17. Impact of feature reduction on the GNB.

FIGURE 18. Impact of feature reduction on the SVM.

resource-intensive and requiring a testing time of approxi-
mately 5 s. By contrast, PAIRED requires only 0.7µs.

When compared to [21], our proposed system does not
only provide a higher F1 score, but also presents itself to
be of lighter weight. Although [21] utilizes 27 permission-
dependant features only, it uses MLP as its classifier type.
It is well-known that neural-network based classifiers are
considered much more resource intensive in comparison to
RF classifiers [27]. This makes our proposed system more
suitable to Android devices of lower processing power.

The proposed systemwas successful in producing a smaller
version of the Drebin-215 dataset with only 35 features while
maintaining a high accuracy. This sets the stage for further
research using the reduced dataset to produce more agile and
efficient malware detection systems. Appendix B provides
the list of selected features.

The proposed system meets all of its design principles in
delivering high accuracy and efficiency, being lightweight,
and being a generalizable classifier. High accuracy was
achieved with a 0.9807 accuracy value in testing. The
lightweight state was achieved by using 35 features instead
of the full 215 features. The 84% reduction in the clas-
sifier input translates to a lower memory requirement of
approximately 169 MB and lower processing requirements.
The memory and processing requirements in neural networks
were much higher than those for the RF; hence, using the
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FIGURE 19. SHAP summary plot for the 35 features.

RF classifier instead of neural networks also contributed to
the creation of a lightweight system. High efficiency was
apparent in the classifier’s testing time (i.e., 0.7631µs). The
efficiency improvement occurred in the feature extraction
phase, where only 35 instead of 215 features were extracted.
Testing showed that the model generalizes well beyond
the training dataset. We demonstrated this by splitting the
dataset into 75% training subset and 25% testing subset to
assure that testing is done with previously unseen instances.
Another testing step was the 10-fold cross-validation. The
proposed model performed very well in the cross-validation,
yielding a mean accuracy of 0.9820 and a standard devi-
ation of 0.002511. Further testing was done to assure
generalization through testing with two different dataset,
called the Malgenome-215, and CICMalDroid2020 datasets.

The Malgenome-215, and CICMalDroid2020 datasets pro-
duced accuracy of 0.9873, and 0.9798 respectively. These
high performance metrics prove that the produced classifier
generalizes well beyond the training dataset.

The size of the trained classifier model was very small
(approximately 8 MB); thus, the model could be retrained
when new malware data become available. The updated
trained model can easily be downloaded as a system update.
This provides high flexibility in addressing the future types
of malware.

VIII. CONCLUSION AND FUTURE WORK
In this study, we presented an explainable lightweight high
accuracyAndroidmalware detection system, called PAIRED.
PAIRED extracted 35 static features from applications and
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TABLE 9. Feature importance for the 35 selected features.

passed them to a trained machine learning classifier to pro-
duce a prediction of whether an application is malicious
or benign. The testing results showed that the proposed
PAIRED system performs very well compared to the state-
of-the-art approaches. PAIRED achieved a high accuracy
of 0.9802 with a very low FN rate of 0.0090. The nov-
elty of our contribution is summarized by the creation of a
lightweight system with high accuracy, the production of a
reduced version of the Drebin-215 dataset, and the improve-
ment of the efficiency and generalization of the proposed
system. The model was also explained using SHAP values
to increase trust and understand the internal operations of the
proposed classification model.

Our future research directions lean toward the creation of a
robust cloud-based machine learning model update function.
Another direction would be working further on the reduction
of the memory and processing requirements of the classifier.
Finally, further work can be done to improve accuracy by
using additional datasets and classifiers.

APPENDIX A
COMPARISONS OF THE PERFORMANCE MEASURES FOR
THE CLASSIFIERS USING 215 AND 35 FEATURES
Figures 14, 15, 16, 17, and 18 show the impact of feature
reduction on the performances of the RF, LR, DT, GNB, and
SVM classifiers, respectively.

APPENDIX B
SELECTED 35 FEATURES
See Table 9.

APPENDIX C
SHAP SUMMARY PLOT FOR THE 35 FEATURES
See Figure 19.
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