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ABSTRACT In recent years, the need for the efficient deployment of Neural Networks (NN) on edge
devices has been steadily increasing. However, the high computational demand required for Machine
Learning (ML) inference on tiny microcontroller-based IoT devices avoids a direct software deployment on
such resource-constrained edge devices. Therefore, various custom and application-specific NN hardware
accelerators have been proposed to enable real-time Machine Learning (ML) inference on low-power and
resource-limited edge devices. Efficient mapping of the computational load onto hardware and software
resources is a key challenge for performance improvement while keeping low power and a low area footprint.
High performance and yet low power embedded processors may be attained via the usage of hardware
acceleration. This paper presents an efficient hardware-software framework to accelerate machine learning
inference on edge devices using a modified TensorFlow Lite for Microcontroller (TFLM) model running
on a Microcontroller (MCU) and a dedicated Neural Processing Unit (NPU) custom hardware accelerator,
referred to as MCU-NPU. The proposed framework supports weight compression of pruned quantized NN
models and exploits the pruned model sparsity to reduce computational complexity further. The proposed
methodology has been evaluated by employing the MCU-NPU acceleration for various TFLM-based NN
architectures using the common MLPerf Tiny benchmark. Experimental results demonstrate a significant
speedup of up to 724x compared to a pure software implementation. For example, the resulting runtime
for the CIFAR-10 classification is reduced from about 20 sec to only 37 ms using the proposed hardware
acceleration. Moreover, the proposed hardware accelerator outperforms all the reference models optimized
for edge devices in terms of inference runtime.

INDEX TERMS TinyML, neural processing unit, TensorFlow-Lite for microcontrollers, hardware-software
codesign.

I. INTRODUCTION
In recent years, the need to deploy artificial neural networks
and machine learning algorithms on embedded platforms,
such as Internet-of-Things (IoT) edge devices has been
steadily increasing. Running deep learning models on these
IoT devices, enables data analytics to be directly performed
at the edge near the sensor, expanding the scope of Artificial
Intelligence (AI) applications [1].

The associate editor coordinating the review of this manuscript and

approving it for publication was Mario Donato Marino .

The IoT devices are based on low-cost, low-energy
microcontrollers (MCUs). Although Machine learning (ML)
inference is one of the most required applications on
these IoT devices, the high computational demand for ML
inference avoids a direct real-time deployment on such
resource-constrained edge devices. Applying ML infer-
ence at the edge, particularly using low-power MCUs,
is gaining increased interest in the industrial and academic
ML community.

Custom hardware accelerators and application-specific
Neural Networks (NN) hardware accelerators enable
real-time ML inference on low-power and resource-limited
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edge devices [1]. Various novel quantization and compression
methods, as well as new training approaches, have been
developed to reduce the computational cost and memory
footprint of NN to fit the limited computing capability and
storage capacity of MCU-class devices [2], [3].

TinyML is a unique approach to edge computing exploring
machine learning models to be efficiently deployed and
trained on MCU edge devices [1]. The TinyML enables
running ML models on edge devices with low-power and
low-memory microcontrollers by integrating quantization,
compression, and optimized machine learning techniques.

To facilitate the deployment of TinyML models on MCUs,
several specific software frameworks and integrated NN
libraries have been developed. Robert et al. [4] introduce
an open-source ML inference framework, so called the
TensorFlow Lite Micro (TFLM), for running deep-learning
models on limited-resources embedded systems. TFLM is
characterized by low resource requirements and minimal
runtime performance overhead and, therefore, can tackle
the embedded-system resource constraints such as limited
memory and limited computation power.

A hardware-software efficient codesign is required to fully
utilize the potential of efficient ML inference in MCU edge
devices [5]. Using a general-purpose microcontroller for such
systems typically results in a design that fails to meet the NN
application-specific requirement [6]. To achieve the desired
requirements, one may use extensible MCUs, which offer
the flexibility of adding custom ML hardware accelerators
and enabling real-time NN processing on small-scale edge
devices. Various FPGA-based hardware platforms provide
the ability to add custom hardware accelerators to common
microcontrollers [7], [8].

A new generation of micro-controller-based Neural Pro-
cessing Units (micro NPUs) promises efficient ML inference
and low-power embedded execution of AI workloads while
supporting compression and pruning [9]. This work proposes
an efficient NPU to accelerate ML inference on edge devices
using a modified TFLM model and a unique custom hard-
ware accelerator. The proposed framework supports weight
compression of pruned quantized NN models and exploits
the pruned model sparsity for reducing the computational
complexity.

A TFLite model is represented in a format known as a Flat-
buffer, which includes all the information regarding a given
network model. An efficient representation of the network
model that is adapted to a specific hardware implementation
is proposed. The TFLM Flat buffer is reorganized to separate
the information regarding the weights matrices from the
network model. This results in a significant reduction of the
FlatBuffer size and enables storing the compressed weights
in external memory.

The key contributions of this paper are as follows:

• An efficient hardware-software codesign for hardware
acceleration of TFLM inference on edge devices.

• A new framework for efficient and compact representa-
tion of the TFLM network model separating the weights

from the network model and enabling a low-memory
footprint for applying the network model.

• Adding real-time decompression capabilities to the
common TFLM framework by integrating HW-based
lossless DNN weight compression approach enabling
on-the-fly decoding of one weight per clock cycle.

• Leveraging fine-grained pruning (yielding high sparsity)
for TFLM network models and using RLE to efficiently
represent a sequence of zero weights enabling signifi-
cantly faster computation.

• Evaluating the proposed method using the common
MLPerf Tiny benchmark, demonstrating a significant
speedup compared to a pure software implementation.

The rest of this paper is organized as follows: Section II
presents an overview of related work. Section III provides
a thorough description of the proposed approach. Finally,
experimental results are presented in Section IV, while
conclusions are given in Section V.

II. RELATED WORK
This section reviews some related work in the area of
AI inference on edge devices. First, a review of common
existing frameworks and available deep learning compiler
toolchains are presented. Then, the focus is on some
optimized TFLM implementation for specific hardware and
custom hardware-based models for neural networks.

A. EMBEDDED AI SOFTWARE FRAMEWORKS
Recently, several software frameworks and integrated
libraries have been developed to facilitate the deployment of
ML models on microcontrollers and edge devices.

Robert et al. [4] introduce the TensorFlow Lite Micro
(TFLM), an open-source ML inference framework for
running deep-learning models on embedded systems. TFLM
tackles the embedded-system resource constraints such as
limited memory and limited computation power. TFLM is
characterized by low resource requirements and minimal
runtime performance overhead. To optimize the required
memory size and improve latency, TFLM applies both
quantization and weight pruning.

To enable efficient AI inference on edge devices, STMi-
croelectronic present a unique dedicated framework, the
X-Cube-AI for the STM32 microcontroller [10]. The
X-Cube-AI software tool converts pre-trained neural net-
works into memory and computation optimized C library.
The tool also offers the possibility to compress the model
to decrease the memory size with minimal accuracy loss.
Quantization is used to convert weights and activations from
32-bit floating-point to 8-bit integer precision.

Several works [11]–[13] present a benchmark comparison
between the two popular frameworks. Although the X-Cube-
AI seems to outperform the TFLM in terms of average
inference time and memory size, it is a proprietary library
that supports only the STM32 device, while the TFLM is
open-source, widely available, and can be applied to various
MCUs.
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Microsoft has released an open-source library Embedded
Learning (ELL) [14], suggesting a framework that enables
the deployment of pre-trained ML models on constrained
platforms. Facebook has developed a machine learning
compiler, so-called Graph Lowering (GLOW) [15], that
accelerates the performance of deep learning frameworks on
different hardware platforms. Ji. L. et al. [16], [17] propose a
unique framework, so called MCUNet, that enables efficient
AI inference on low-power microcontrollers. This work focus
on the common TFLM framework due to its easy and efficient
deployment [11].

B. TFLM KERNEL OPTIMIZATION
This section reviews some optimized TFLM implementations
for specific hardware.

An efficient NN kernel targeted for optimized AI inference
on intelligent IoT edge devices, the CMSIS-NN, is presented
by L. Lai et al. [18]. Arm proposes an optimized version of
the TensorFlow Lite kernels that use CMSIS-NN to deliver
fast performance on Arm Cortex-M cores. When running
neural networks, CMSIS-NN reduces the cycle count by
78.3%, reducing energy consumption by 79.6%. The software
library CMSIS-NN achieves these results using a Single
Instruction/Multiple Data (SIMD) unit and quantizing the
neural networks [19].

An open-source optimized library, the PULP-NN, which
is based on the CMSIS-NN framework, is proposed by
Garofalo et al. [2]. The PULP-NN includes a set of kernels
and utilities to support an efficient inference of quantized NN
on a DSP-optimized RISC-V-based processor [20]. By fully
exploiting the DSP extensions available in the Instruction Set
Architecture (ISA), they achieve a speedup factor of 9 with
respect to the plain ISA. Optimization of the convolution
kernel by improving the data reuse, yields a further 20%
performance gain with respect to the original kernel of
CMSIS-NN.

Jure V. et al. [19] propose a simple instruction set extension
with two main components, hardware loops and dot product
instructions. To evaluate the effectiveness of the extension,
an optimized assembly functions for the fully connected and
convolutional neural network layers have been developed.
When using the extensions and the optimized assembly
functions for CNN layers, they achieve an average clock cycle
count decrease of 73% for a small-scale CNN network.

Custom hardware-based neural network accelerators can
surpass general-purpose processors in terms of both through-
put and energy efficiency [21]. Therefore, we propose to use
dedicated hardware-based Neural Processing Units (NPUs)
as the main accelerator engine.

C. NEURAL PROCESSING UNITS
A new generation of micro-controller-based Neural Process-
ing Units (micro NPUs) promises efficient ML inference
and low-power embedded execution of AI workloads while
supporting compression and pruning [9].

Manor et al. [3] propose a hardware/software codesign
partitioning methodology for ML inference acceleration
using TFLMmodels. The proposed method is based on graph
analysis of theNNmodel architecture and extracting common
patterns into hardware accelerators, providing a speedup of
up to 3 orders of magnitude compared to software-only
implementation.

Leon H. et al. [22] present a unique development frame-
work, providing optimized TFLite models and, on the other
hand, hardware kernel generators for use with the proposed
framework. The proposed flow automatically creates an edge
AI computing platform with custom hardware accelerators
designed specifically for the given NN model. Executing
the model on the RISC-V NMU using Tensor-Flow Lite
Micro yields a speedup factor of 48 for the fully-connected
operations. A modified TFLM model replaces the model’s
accelerated operations with a custom operation, which is
integrated into the TFLM runtime. However, the presented
framework is limited in its ability to support generic models
with different topologies.

A proprietary microNPU accelerator designed by Arm is
aimed to accelerate neural network inference on Cortex-M
with a low area and low power consumption [23]. The
microNPU shares the neural network processing with the
host Cortex-M. An offline optimizer generates a TFLite
FlatBuffer file which is deployed on the target device. The
FlatBuffer file contains information on either the specific
neural network layer is executed on the microNPU or the
Cortex-M processor. Paired with a Cortex-M processor, the
microNPU delivers up to a 137x ML performance uplift
compared to previous Cortex-M generations [24].

This work proposes an efficient NPU in terms of Power-
Performance-Area (PPA) to accelerate ML inference on
MCU using a modified TFLM model and custom hardware
accelerator. The TFLM flat file is reorganized to contain only
the NN model, while the weights matrices are extracted and
located in external memory.

The proposed framework supports the weight compression
of pruned NN models and exploits the pruned model
sparsity to reduce the computational complexity. Both
data compression and zero-skipping techniques relies on
sparsity [25]. The sparsity measure represents the number of
zero weights in the weight’s matrix. In the pruning process a
zero value is assigned to the weights which have low values
(under a predefined thresholds), and therefore the sparsity
is increased. The combination of the TensorFlow built-in
pruning tool with the proposed compression algorithm [26]
yield better results as the sparsity increases.

III. THE PROPOSED APPROACH
This section describes the proposed NPU and the accompa-
nying framework in detail.

A. NPU ARCHITECTURE
Fig. 1 depicts the proposed NPU architecture and its interface
to the MCU and external memory. The NPU performs
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FIGURE 1. The proposed NPU architecture.

matrices multiplication of the weights and the data inputs and
writes the activation data output to the external memory using
the AXI4 master agent.

The proposedNPU is a loosely-coupled accelerator located
outside the MCU. Both The MCU and the NPU can access
shared memory through an on-chip interconnect (like the
AXI4 bus). The NPU includes two main modules: the
data-path and the interfaces (I/F). The data path is comprised
of three main blocks: (a) a Real-Time Decoder (RTD), (b) a
Dot Product Engine (DPE), and (c) a Quantization and
Activation Engine (QAE). The I/F module contains three bus
agents: (a) an AXI4-Lite slave, (b) a DMA master, and (c) an
AXI4-master [27].

Each data-path element contains a register file (RF) array
to store the configuration parameters received from the
MCU. The MCU configures the RF through the use of the
AXI4-Lite agent. The RTD block fetches and uncompresses
the compressed weights from an external memory through
the DMA agent. Then, the DPE module performs matrices
multiplication of the weights and the data inputs. The
QAE module is responsible for quantization, generating, and
storing the activation data into the external shared memory.
Both the DPE and QAE modules can access the shared
memory using the AXI4 master agent. The QAE writes the
activation data output to the external memory using the AXI4
master agent.

This work suggests adapting the TFLite 8-bit quantization
scheme [28], to provide hardware support for inference with
quantized TFLite models. The 8-bit quantization approxi-
mates floating-point values using Eq. 1, where the weights are
represented as a signed integer with a zero-point equal to 0,
and activations/inputs are represented as a signed integer with
a zero-point in the range −128 to 127.

real_value = (int8_value−zero_point)× scale (1)

The data path is designed in accordance with the TFLite
convention and is a bit-accurate implementation of the
TFLite software kernels. Fig. 2 depicts the basic computation
required for every single neuron. Multiplying the input
vector (Ed) by the weights vector (Ew), adding a bias (b),
and quantization. The weights are of type int8 and the
activations are of type uint8. First, the unit8 input vector
is converted to a 32-bit integer (by adding a zero-point
offset) and multiplied by the weights vector to generate 32-bit

FIGURE 2. TFLite basic computation for a single neuron.

accumulating products. Then, a bias (b) is added and the
result is scaled down (s−1). To convert the result back to uint8
(for efficient storage) an offset is added. Finally, the activation
function is applied to yield the unsigned 8-bit output.

1) REAL-TIME DECODER
This work use the HW-based real-time DNN lossless weight
compression approach for the RTD module [26]. The com-
pression algorithm is based on the Huffman algorithm and
is applied to pre-partitioned weight classes according to the
appearance probability of the weights. In the decompression
phase, the encoded weights are extracted in a sequential
manner, deploying weight-by-weight decoding. The RTD is
used for fetching and decoding (i.e., decompressing) the
compressed weights stored in the external memory.

The proposed RTD decompression hardware module is
implemented using a four-stage pipeline, allowing the decod-
ing of one weight per clock cycle [26]. The uncompressed
weights are transferred to the DPE module through the
AXI4 stream interface. For efficient compression, the weights
matrices are first pruned using fine-grained pruning, which
results in better sparsity. The TFLite also has support for
pruning optimization. As a result, sparse matrices can be
efficiently compressed [29]. H. Mao et al. show that in
terms of accuracy, the fine-grained pruning (i.e., pruning of
individual weights by applying a unique pruning criterion for
each weight) gives the best results with up to 0.8 sparsity
within the weights matrix [30].

2) DOT PRODUCT ENGINE
The Dot Product Engine (DPE) is responsible for performing
the dot-product multiplication of the weights and data. Fig. 3
depicts the DPE architecture. The DPE module comprises
the following four main components: a Register File (RF),
Run-Length Encoding (RLE) block, Arithmetic Unit (AU),
and a Control Unit (CU).

The MCU can configure the DPE mode of operation by
setting the appropriate RF parameters through the AXI4-Lite.
The following parameters are configurable: layer type (con-
volution or fully connected layer), input data address, input
data offset, input data dimensions, filter data dimensions,
output data dimension, and filter stride. The DPE is coupled
with both data and weight memory.

The uncompressed weights are streamed from the RTD
module to the DPE. Then, the DPE uses Run-length

VOLUME 10, 2022 73487



E. Manor, S. Greenberg: Custom Hardware Inference Accelerator for TensorFlow Lite for Microcontrollers

FIGURE 3. The proposed Dot Product Engine (DPE).

FIGURE 4. An example of the Run-Length Encoding (RLE) usage.

encoding (RLE) for efficient representation of a sequence
of zero weights. Detecting those ‘‘zero’’ weights enables
efficient and faster computation. Fig. 4 shows an example
of the RLE encoder functionality. Sequences of ‘‘zero’’ are
replaced by only one zero, followed by the number of the
repeated ‘‘zeros’’.

The control unit is responsible for fetching the input
data from the external memory and the weights from the
RLE module. The input data are fetched through the AXI4
master bus and stored in internal memory. The control unit
can perform a continuous partial data loading to reduce the
internal memory size if required. This can be done without
stalling the CPU, however, at a high cost of increased power
consumption.

To keep the required memory for the weights small, only
a relatively small set of weights are fetched from the AXI4
stream bus at a time for each dot product multiplication with
the whole input data. Therefore, although a relatively small
weight memory is required, the flow still allows a continuous
and fast operation.

The CU allows using different data indexing types to
support various NN layers. The proposed framework supports
the following six layers: Convolution, Depthwise Convolu-
tion, Fully Connected, Max Pool, Avg Pool, and Softmax.
The Arithmetic unit supports MAC operation, maximum and
average pooling, and bypass operation (transferring the data
directly to the QAE module for Softmax computation).

The last block is used as an AXI4-Stream protocol
converter. For each value in the dot-product matrix (a scalar
data) the CU adds a valid bit (meaning it can be used by the

Algorithm 1 Pseudocode of the Software Convolutional
Layer

Parameters: U ,V ,F,R,C
Inputs: X ,W ,B, S,O
Output: Y

1: for u = 0; u < U ; u++ do
2: for v = 0; v < V ; v++ do
3: for f = 0; f < F ; f ++ do
4: for kh = 0; kh < R; kh++ do
5: for kw = 0; kw < R; kw++ do
6: for c = 0; c < C ; c++ do
7: Y fu,v+ = (W f ,c

kh,kw + 0) ×
(X cu+kh,v+kw + Ox);

8: end for
9: end for
10: end for
11: Y fu,v+ = Bf ;
12: Y fu,v∗ = S f −1;
13: Y fu,v+ = Oyf ;
14: end for
15: end for
16: end for

QAE), and the last bit represents the end of the specific layer
computation.

Algorithm 1 depicts the software implementation of the
TFLM Conv2D layer. The Convolution process is carried out
using the six nested loops (lines 1-6). The inputs X , W , B,
S, and O stand for the input data matrix, weights matrix,
bias, scaling vector, and the offsets vector, respectively. The
output dot-product Y is calculated in line 7 and quantized in
lines 11-13. The parameters U , V , and F represent the size
of the 3D output matrix, while R and C define the size of the
weight matrix.

Algorithm 2 depicts the pseudocode for the hardware
implementation of the TFLM Conv2D layer. For an efficient
hardware implementation, the order of the loops (used for
filter selection) has been changed to enable applying the
selected filter (W f ) to the whole input matrix (lines 1-3) in
the same iteration. This results in reducing the number of the
required memory access for fetching the filter bank from the
external memory. The same hardware module can be utilized
for both convolution and fully connected layers.

3) QUANTIZATION AND ACTIVATION ENGINE
The QAE module is responsible for data quantization,
generating, and storing the activation data into the exter-
nal shared memory (using the AXI4 master agent). The
module comprises four main blocks: a register file (RF),
a TFLite-based Scaler, anActivationUnit (AU), and aControl
Unit (CU).

Fig. 5 depicts the QAE architecture. The AXI4 master
bus interface includes two FIFOs: one is used to transfer the
bias dot-product output and the other for the shift parameter
derived from the TFLite. The quantization is carried out using
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Algorithm 2 Pseudocode of the Hardware Convolutional
Layer

Parameters: U ,V ,F,R,C
Inputs: X ,W ,B, S,O
Output: Y

1: for f = 0; f < F ; f ++ do
2: load(W f );
3: for u = 0; u < U ; u++ do
4: for v = 0; v < V ; v++ do
5: the same loops as in lines 4-13 of Alg. 1
6: end for
7: end for
8: end for

FIGURE 5. TFLite quantizer module (QAE).

the Scaler unit, which allows performing a set of conditional
shift operations to convert the accumulated 32-bit into 8-bit
value. Then, an offset (i.e., the zero-point in Eq. 1) is added,
and finally, in the last phase, the Relu activation function is
performed. The result is stored in the external memory via the
AXI4 master.

B. FLATBUFFER CONVERSION
A TFLite model is represented in a format known as
FlatBuffer (identified by the .tflite file extension). The
FlatBuffer includes all the information regarding a given
network model, i.e., the network topology, the various
network parameters (such as input/output size, number of
channels/filters, the activation type, etc.), weights matrices,
and the configurable quantization parameters (offset and
scaling).

Amore efficient networkmodel representation adapted to a
specific hardware implementation is proposed. The main idea
is to separate the information regarding the weights matrices
from the network model. The new representation includes

FIGURE 6. TensorFlow Lite inference flow.

two different data structures: a mini-Flatbufer and a weights
array. This results in a significant reduction of the FlatBuffer
size (75% on average) and enables storing of the compressed
weights in external memory.

Since the micro-controllers (used in edge devices) have
limited internal memory storing the compressed weights in
an external memory has a significant advantage enabling
the implementation of a larger network model. The latency
derived by accessing the external memory is hidden by using
a prefetch mechanism using DMA and storing the prefetch
weights in an internal relatively small buffer.

The proposed hardware accelerator utilizes the separation
of the weights from the part representing the network model.
This enables storing the whole network model in a relatively
small internal memory (using cache or TCM) and saves the
long latency derived from accessing an external memory.
Moreover, the weights can be compressed and stored in
external memory while the decoding is carried out on the fly
in real-time, enabling the decoding of a single weight on each
cycle using the proposed unique RTD module.

Fig. 6 illustrates the standard flow for TFLite inference on
a target MCU. The network is trained on a host computer
using TensorFlow API to generate a network model which is
stored in a unique structure called Protobuf. Then, the TFlite
converter produces the FlatBuffer, which is an efficient seri-
alized representation that keeps the memory footprint small
and enables efficient inference implementation. A dedicated
TFLM interpreter contains code to load and run the network
models on the target device. The TFLM interpreter expects
the model to be provided as a C++ array. Therefore, the
FlatBuffer is converted into an appropriate C byte array.
The TFLM library is compiled for the MCU and contains
the interpreter, the FlatBuffer model, and information for the
TFLite schema.

Fig. 7 depicts the proposed new flow. First, the original
TFLite FlatBuffer is converted into a readable data structure
file (.json). Then, the weights of each layer are extracted
in order according to the network model topology. The
extracted weights are stored in a single C array. The
proposed mini-FlatBuffer represents the network model
excluding the weights. To preserve the original program
flow and enable access to the weights while using the mini-
FlatBuffer, an index is provided for each layer representing
the offset location of that layer in the extracted weights
C-array. The TFLM library has been modified to support the
proposed scheme and the new indexing used for accessing the
appropriate weights.

Fig. 8 depicts the proposed hardware-software TFLM flow
that is applied to the target device. The target device is
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FIGURE 7. The proposed TFLite FlatBuffer conversion.

FIGURE 8. Hardware/Software TFLM proposed flow.

comprised of MCU, the proposed NPU, internal SRAM, and
external memory. The network model is represented by the
mini-FlatBuffer and is interpreted using the MCU, while the
NPU is served as an inference accelerator for the various
network layers. The compressed weights are stored in the
external memory and accessed directly by the NPU when
required.

IV. EXPERIMENTS AND RESULTS
The proposed methodology has been evaluated by employing
the MCU-NPU acceleration for various TFLM-based Neural
Network (NN) architectures. The achieved speedup is
evaluated in comparison to software-only implementation,
i.e., using MCU without the hardware accelerator using the
original TFLM software.

In this work, the MicroBlaze processor is selected as the
target MCU. The MicroBlaze processor is configured using
a predefined real-time configuration [31], featuring a 16KB
cache, and a tightly coupled on-chip memory, utilizing about
4000 logic cells. An external DDR memory is used for data
storage.

The development environment is based on the Xilinx
Embedded System Design flow and the Xilinx Vitis 2021.2.
A first-order software optimization has been applied using
the software GNU Compiler Collection (GCC), a common
standard C compiler, with -Os flag for code size optimization.
This MCU implementation is used as the baseline reference
for further performance evaluations in all the following
stages.

The proposed NPU module has been synthesized using a
high-level synthesis (HLS) environment. The HLS enables
using common C code (with additional libraries and coding
styles) that is directly converted and mapped into an RTL

TABLE 1. NPU hardware accelerator utilization.

TABLE 2. MCU-NPU performance evaluation.

design. The code is verified in terms of functionality versus
the outputs of the TFLite software version. Table 1 shows
the NPU hardware implementation utilization, the power
consumption for the various NPU hardware models, and
the Microblaze MCU implemented on the Xilinx Ultra96
FPGA development board with a 100 MHz clock [32]. The
complete system, including the NPU and theMicroBlaze, has
been synthesized using the Xilinx Vivado 2021.2 software
tool. The Vivado implementation report shows that the
total NPU design requires about 5, 400 logic elements,
Including 2423 Look-up Tables (LUTs), 2985 Flip-Flops
(REGs), 14 Block RAMs (BRAMs), and 3 Digital Signal
Processors (DSPs). The NPU hardware accelerator consumes
only 47 mW as derived from the Xilinx Power Estima-
tor (XPE) tool. An appropriate NPU software kernel has been
developed and added to the TFLM software library to support
the proposed NPU hardware accelerator.

Table 2 depicts the performance of the proposed
MCU-NPU hardware accelerator compared to nine various
TFLM-based network models in terms of inference runtime,
and number of Floating-Point operations (FLOPS). The nine
reference network models include the four NN models of
the common MLPerf Tiny benchmark [5], [33]: (a) Keyword
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TABLE 3. ARM-based microNPU comparison (in 103 cycles).

TABLE 4. The new FlatBuffer size for the evaluated models.

Spotting (KWS) - used to detect keywords from an audio
spectrogram, (b) VisualWakeWords (VWW) - an image
classification for determining the presence of a person in
an image, (c) Image Classification (IC) - multi-class image
classification of the CIFAR10 dataset, and (d) Anomaly
Detection (AD) - used to identify anomalies in machine
sounds.

To further evaluate the proposed methodology, we exam-
ined the two network models presented in [3]: (a) Google
network for ’Gesture Recognition Magic Wand’ (GRMW)
that was trained to detect wand gestures [34], and (b) an
MNIST network used for Handwritten Digit Recognition
(HDR) [35]. The rest three reference networkmodels used for
comparison are (a) the model presented in both [18] and [2]
for CIFAR-10 database classification and the two following
popular network models, (b) LeNet-5 with the CIFAR-10
database, and (c) VGG-7 with MNIST database.

Table 2 shows that the proposed hardware accelerator
MCU-NPU outperforms all reference models in terms of
runtime.

Executing the model presented in [22] on the RISC-V
NMU using TFLM yields a similar speedup factor (of about
50) to our proposed model for the fully-connected operations.
However, while they demonstrate an overall speedup of 2.9,
the proposed frameworks achieved an overall speedup of
factor 4 for the same NN model. Moreover, the presented
framework is limited in its ability to support generic models
with different topologies, as noted in [22].

TABLE 5. Comparison of the size of the compressed pruned weights
matrices.

TABLE 6. The hardware acceleration per layer (for the KWS MobileNet
model).

The proposed NPU is also compared to the ARM-based
microNPU [23]. The comparison has been performed with
the ARM Cortex-M55 for the various NNmodels as depicted
in Table 3. The ARM-based NPU can be configured with a
32/64/128 MAC units. The achieved acceleration is linear
to the number of the MAC units. Since the proposed NPU
has only one MAC, the microNPU results are normalized
accordingly, as depicted in Table 3. A curve estimation is
used for evaluating the required cycles while using a single
MAC. Results show that the proposed NPU outperforms the
ARM microNPU in terms of runtime by an average factor of
about 8.

Each reference network model is first pre-trained using
TensorFlow and then converted to TFLite using 8bit quan-
tization of both weights and data. The weights are extracted
from the FlatBuffer to provide the proposed mini-FlatBuffer
and the separated weights array.

Table 4 shows the size of the FlatBuffer and the proposed
mini-FlatBuffer for the nine various reference network
models. Using the mini-FlatBuffer yields a memory saving of
up to 98% (for the VGG-7 model) and an average saving of
about 75%. The differences in the mini-FlatBuffer size results
from the different network topology, derived from the number
of layers and the non-extracted parameters (bias, scale and
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TABLE 7. Hardware accelerator speedup for the MLPerf Tiny benchmark.

FIGURE 9. Accuracy vs. Sparsity for various MLPerf Tiny models.

offsets). Therefore, the saving factor is different for each
network model.

Fig. 9 depicts the achieved accuracy as a function of
various sparsity of the pruned weights matrices for the
MLPerf Tiny benchmark network models. The results have
been obtained using the TFLite framework and its built-in
pruning tool. It can be seen that the model accuracy is kept up
to the sparsity of 0.8, in accordance with the results presented
in [30]. Therefore, weights pruning with 0.8 sparsity is
applied for all network models for performance evaluation.

The pruned weights are further compressed using the
HW-based real-time DNN lossless weight compression
approach presented in [26]. Table 5 shows the size of the
uncompressed and compressed pruned weights matrices.
An average memory saving of about 65% is achieved for the
chosen sparsity of 0.8.

Table 6 demonstrates the acceleration capabilities eval-
uation for the five various network layers for the KWS
mobilenet network model. The results shown in Table 6
have been obtained by emulation using Xilinx FPGA. The
Table shows the achieved speedup for both the pruned and
non-pruned cases compared to the software-only imple-
mentation in terms of runtime. For the convolution layer
(Conv2D), speedup factors of 278 and 974 are demonstrated
for the non-pruned and the pruned weights, correspondingly

compared to software implementation. The overall achieved
speedup factor is 185 and 644 for the non-pruned and
the pruned weights, correspondingly, compared to software
implementation. An average speedup of about 4x is achieved
while using the pruned weights with the proposed RLE
encoding, demonstrating the benefit of using the proposed
NPU-RLE unique module for weights zero-skipping.

Table 7 demonstrates the overall hardware accelerator
speedup compared to the software model, for both pruned
and non-pruned implementations, for the various evaluated
network models. The table shows that the proposed hardware
accelerator MCU-NPU outperforms all reference models in
terms of runtime. An average speedup of 136 and 492 is
achieved for the non-pruned and the pruned weights, corre-
spondingly. A speedup factor of up to 724 is demonstrated
(for VWWmodel), providing a total of 5.05 MOPs per MHZ.

V. CONCLUSION
This paper presents an efficient hardware/software frame-
work to accelerate machine learning inference on edge
devices using a modified TensorFlow Lite for Microcon-
troller (TFLM) model running on a Microcontroller (MCU)
and utilizing a custom Neural Processing Unit (NPU)
hardware accelerator. The new framework suggests an
efficient and compact representation of the TFLM network
model, separating the weights from the network model and
enabling a low-memory footprint for applying the network
model. In addition, the proposed framework supports weight
compression of pruned quantized NN models and exploits
the pruned model sparsity to reduce the computational
complexity. We also suggest adding real-time decompression
capabilities to the common TFLM framework by integrating
an HW-based lossless DNN weight compression approach
enabling on-the-fly decoding of one weight per clock cycle.
The efficiency of the proposed methodology has been eval-
uated by employing the MCU-NPU acceleration for various
TFLM-based Neural Network (NN) architectures using the
common MLPerf Tiny benchmark. The proposed hardware
accelerator outperforms all reference models optimized for
edge devices in terms of inference runtime. Experimental
results demonstrate a significant speedup of up to 724x
compared to a pure software implementation.
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