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ABSTRACT Outlier detection is a significant research direction in machine learning and has many
applications in finance, network security, and other areas. Outlier detection of Euclidean datasets is a
mainstream problem in outlier detection. Most detection methods often ignore the connection of its nodes.
To collect the representation information of feature sets and node connections to improve the detection of
outliers in Euclidean datasets Accuracy rate, we propose a novel Graph Convolutional and Attention-Based
Outlier Detection (GCA).The GCA first converts the Euclidean structure data into directed graphs using
locally sensitive hashing; then, by applying a Graph Convolutional Network, the data features and their
connectivity graph are fed into the neural network; secondly, it fuses the extracted features and the features
reconstructed by the attention mechanism; finally, calculating the outlier factors of the objects. Comparing
eight state-of-art algorithms on ten real-world datasets shows that GCA achieves the highest Area Under
ROC Curve (AUC) on datasets and also achieves equally good results in Accuracy (ACC) and False Alarm
Rate (FAR). This study fills the gap of upgraded GCNs in detecting outliers to the best of our knowledge
and provides a new way to convert Euclidean data to graphs.

INDEX TERMS Outlier detection, graph convolutional network, directed graph, attention mechanism,
feature fusion.

I. INTRODUCTION
Outlier detection, one of the fundamental tasks of data min-
ing, has become an active branch of information science after
a long research history and has received wide attention in
the fields of database, data mining, machine learning, and
statistics. The definition of outlier is generally considered: if
a point is relatively less dense on its own than the high-density
pattern clusters in its vicinity or if its density is relatively
higher than the low-density pattern regularity in its vicin-
ity [1]. Outlier detection covers a wide variety of dataset
applications, including Euclidean datasets for text, audio,
etc., and non-Euclidean datasets for graphs such as social net-
works and transportation networks. The significance lies not
only in the more accurate perception of ordinary objects but
also in the enormous amount of information andmining value
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it contains in itself. Outlier detection has an extensive range
of applications in many fields: bank fraud [2]–[4], video
surveillance [5]–[10], network anomalies [11]–[14], finding
new celestial objects [15], [16], etc. The available outlier
detection algorithms can be broadly classified into: distance-
based algorithms [17]–[20], density-based algorithms
[21]–[23], clustering-based algorithms [24], [25], statistical
methods [26], integration-based methods [27], numerous
neural network-based algorithms [28] and graph-based algo-
rithms [29] etc.

Most graph algorithms only work on graph-structured
data, and the same goes for GCN [30]. However, the node
representation of GCN requires both node information and
adjacency information, which allows upgrading GCN to pro-
cess Euclidean data. Previous outlier detection algorithms for
Euclidean datasets represented by samples and dimensions
tend to focus on independent features, neglecting the connec-
tion between points, and graph-based algorithms and neural
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network-based outlier detection algorithms work separately.
For GCN, considering the relationship of the graph space,
that is, the probability conduction matrix, it can be applied
to the Euclidean dataset, but the neighbor weights are not
dynamically learned. GAT can dynamically learn neighbor
weights, but it ignores the existence of nodes themselves and
cannot be applied to Euclidean datasets. From this point of
view, we propose Graph Convolutional and Attention–Based
Outlier Detection (GCA).In this paper, we adopt the aggre-
gation model of two feature extraction channels. The first
channel generates the adjacency matrix for the feature dataset
by Locally Sensitive Hash (LSH) algorithm and trains the
adjacency matrix by Graph Convolutional Network (GCN).
The second channel uses the attention mechanism to recon-
struct the feature dataset by assigning weights. The feature
matrices output from the two channels are merged into a
single feature set using typical correlation analysis feature
fusion, and finally, outliers are determined using the Local
Outlier Factor (LOF) algorithm.

Our work has the following advantages and contributions:

1) We propose a new outlier detection method based on
GCN and Attention dual-channel feature fusion recon-
struction methods. To the best of our knowledge, the
GCA algorithm is the first application of the GCN
fusion algorithm to the outlier detection problem.

2) We use the LSH algorithm to convert the point-to-point
relationship into a graph so that Euclidean datasets can
be trained in graph neural networks.

3) We upgraded the traditional GCN from operating only
on undirected graphs to being able to operate on
directed graphs to retain more information.

4) Experimental results from ten real datasets, including
those from the medical industry, demonstrate that the
GCA algorithm is comparable to the current main-
stream outlier point detection algorithms.

II. RELATED WORK
The outlier application scenarios are very diverse, not only
in the fields of network security and finance, but also in
the fields of public health and astronomy. Long-established
and mainstream outlier detection methods for datasets can be
classified as proximity-based methods, statistical methods,
clustering-based methods, integration-based methods, and
there are also numerous neural network-based algorithms and
graph-based algorithms.

The core idea of proximity-based methods is to define a
proximity metric between data and determine outliers based
on the value of this metric. The typical methods are distance-
based and density-based. The principle is that the proximity
of an outlier object to its nearest neighbors significantly
deviates from the proximity of other regular objects in the
dataset to their nearest neighbors. Specific samples with
similar characteristic attributes can be considered similar
in their target attributes. The former reflects proximity in
terms of distance, and points far away from most of their

neighbors or do not have enough neighbors are most likely to
be outliers. The latter reflects proximity in terms of density,
and it is generally believed that outliers generally exist in
low-density areas and non-outliers appear in dense areas.
The most commonly used distance-based outlier detection
and identification method is the k-nearest neighbor (KNN)
and its extended algorithm [30] that focuses on the concept
of the local neighborhood, where the k-value is the nearest
K neighbors. The paper discards the previous practice of
assigning fixed k-values to all test samples and provides
training in the classification process of KNN to learn k-values
for samples with different k values, making the algorithm run
at a similar cost to the traditional KNN algorithm but with
improved accuracy. Algorithms based on nested loops using
randomization and pruning rules [31], [32] provide nearly
linear time performance on most data sets.

Distance-based methods also include solution set meth-
ods [33], based on the main idea of using a solution set to
solve the outlier prediction and detection problems. Three
solution algorithms are proposed to compute the solution set:
the solution set algorithm, the robust solution set algorithm,
and the mini-robust solution set algorithm. The classical
density-based outlier detection methods are the Local Outlier
Factor (LOF) [34] algorithm, which defines a local outlier
factor for each object by comparing the density of each point
with its neighboring points, and the determination for outliers
is transformed into the determination of the outlier factor.
In addition to the LOF algorithm, The INFLuenced Outlier-
ness degree algorithm (INFLO) [35] adds the influence of
neighbors and reverse neighbors to the density of LOF and
becomes a classical algorithm in outlier detection based on
symmetric neighborhood relations. The connectivity-based
outlier (COF) [23] factor algorithm is similar to that of LOF.
The contamination parameter can specify the proportion of
outliers in the data.

It is arguably the group of statisticians who first discovered
the existence of outliers, as outliers can be easily identified in
the statistical data process. Thus statistically based methods
were developed early and have various branches. Statistically
based methods assume that ordinary objects in a dataset are
generated by a stochastic process that can be viewed as a gen-
erative model, where objects in the model’s high probability
region are considered normal and vice versa. The fitting of
the generative model is generally divided into parametric and
nonparametric methods, and the classical literature [26] in the
parametric method has proposedmore than 100methods such
as one-dimensional Gaussian distribution and mixed Gaus-
sian distribution models. Box line plot is a simple method
to represent the five-number summary, which includes five
values, maximum, minimum, and three quartiles, and is a
standard algorithm based on statistics. Laurikkala et al. [36]
used a box line plot to identify multivariate outliers directly.
Typical methods in nonparametric methods Histogram visu-
alization methods have been used in the field of intrusion
detection [37] for a long time, also using histogram methods
is the Histogram Based Outlier Score [38] (HBOS) algorithm
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for numerical elements uses two types of histograms: static
box-width histograms and dynamic box-width histograms.

Most of the clustering methods determine outliers by the
relationship between data objects and clusters, and repre-
sentative methods include the ODC (Outlier Detection and
Clustering) [39] algorithm proposed by Ahmed and Mah-
mood, and the KMOR (K-means with outlier removol) [40]
algorithm proposed by Gan and Ng both algorithms perform
clustering while detecting outliers. The former uses a new
unsupervised method, i.e., the improved k-means algorithm,
to detect and remove outliers and then perform clustering,
while the latter introduces an iterative process to optimize
the objective function based on extended k-means, and all
outliers are saved in the clusters.

The most classic and currently popular ensemble-based
method is the Isolation Forest [27], proposed by Liu et al.,
widely used in large high-dimensional datasets. The main
principle is that anomalous samples can be isolated by less
random feature segmentation than ordinary samples, and the
method explicitly isolates anomalies instead of profiling nor-
mal points. Feature bagging [41] is similar to bagging in
basic idea, except that the object is the feature, and the final
result is obtained by fraction normalization and combination
method after selecting the base detector. Extreme Boosting
Based Outlier Detection (XGBOD) [42] and Locally Selec-
tive Combination in Parallel Outlier Ensembles (LSCP) [43]
also belong to the category of integration methods.

Network-based methods have become a hot research topic
in recent years. AutoEncoder [44] various extensions [45]
are used for outlier detection. AE is a model with an auto-
matic coding function composed of coding combinedwith the
neural network, which learns the representation of the input
information by using it as a learning target. Single-Objective
Generative Adversarial Active Learning (SO-GAAL) and
Multiple-Objective Generative Adversarial Active Learning
(MO-GAAL) [46] proposed by Liu et al. Using the idea
of Generative Adversarial Networks (GAN), Generator is
used to generate potential outliers (anomalous data), combine
noise and real data, let Discriminator discriminate between
noise and real data, and finally use Discriminator as an
anomaly detection classifier.

The outlier application scenarios currently, most of the
actual graph-based outlier detection is to find outliers in
the graph data. The primary outlier detection based on the
graph structure is Outrank [47], which constructs a fully
connected undirected graph and applies a Markov random
walk process on the graph. The smooth distribution of the
randomwalk is directly used as the outlier score. TheRandom
Walk [48] model combines a graphical representation with
local information around each object to construct a local
information graph and calculates the outlier score by per-
forming a random walk process on the graph. A cut-point
clustering algorithm (CutPC) based on a natural neighbor
graph is proposed [29]. The CutPC method performs noise
cutting when a cut-point value is above the critical value. This
algorithm can also be used for outlier detection

A comparison between the popular outlier detection meth-
ods and the method proposed in this paper is made in 1.

III. PROPOSED METHOD
The core idea of GCA for outlier detection is: first, use
the GCN to learn the feature embedding of the objects in
dataset X with their neighbors. Among them, the connectivity
graph is constructed through LSH; secondly, the attention
mechanism is used to assign different weights to the features
of the objects in dataset X, and reconstruction is based on
the magnitude of feature weights between objects; finally,
the feature matrix output by the GCN and the feature matrix
output by the attention mechanism are fused together, and the
LOF algorithm is used to detect them and the final outlier fac-
tor are calculated for each object. Statistical-based anomaly
detection algorithms usually assume that the data obey a
specific probability distribution, an assumption that is often
not valid. Moreover, clustering methods usually only give a
0/1 judgment and cannot quantify the degree of an anomaly
for each data point. In comparison, the density-based LOF
algorithm is more straightforward and more intuitive. It does
not require much about the data distribution and can quantify
the degree of the anomaly of each data point. However, for
independent LOF, the original feature dataset is not evident
in the case of the low efficiency of LOF algorithm detection;
after feature extraction and rearrangement, the detection rate
can be improved. The entire architecture of the model is
represented in Fig.1.

FIGURE 1. The entire structure of GCA for outlier detection, channel 1 is
input to GCN for training by creating a connection map through LSH,
channel 2 is trained by the Attention mechanism, and the result is input
to LOF by feature fusion.

A. CONSTRUCT GRAPH
The graph construction application Locality Sensitive Hash-
ing (LSH), which relies on a hash function, maps the points
aggregated in a specific range into the same hash bucket,
and the high-dimensional data points in different ranges are
mapped into different hash buckets. In the query, the other
points in the hash bucket where the queried point is located
are the potential neighbors of the queried point. We connect
the queried points to their potential neighbors to increase the
relevance of the points in the Euclidean dataset and produce
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TABLE 1. Description of the typical test method and its advantages and disadvantages.

FIGURE 2. Data points are mapped to different hash buckets. The
similarity of the data points in the original space is positively correlated
with the probability of being in the same bucket after mapping.

a new connectivity graph. The mapping principle of the LSH
midpoint is shown in Fig.2.

The projection of the query uses the L1 distance as (1),
Hash presents a family of hash functions:

Hash =
⌊
(X ∗ a− b)

w

⌋
(1)

X is the input dataset, a and b are random tuple arrays, and w
is the width of the hash bucket, which ensures that points in
the same quantized segment can be mapped to the same hash
bucket. The function Hash is (R, εR, P1, P2) sensitive, and
any two points p and q in Rd space satisfy the following two
properties as (2) and (3):

If |p− q| ≤ R then Pr (Hash (p) = Hash (q)) ≥ P1 (2)

If |p− q| ≥ εR then Pr (Hash (p) = Hash (q)) ≤ P2 (3)

m hash functions are constructed as a hash table HashT
by (4):

HashT = 〈Hash1,Hash2, . . . ,Hashm〉 (4)

The probability of mapping points of the same quantized
segment to the same hash bucket is further enhanced by
constructing 1 hash tables as (5):

HashBucket = 〈HashT1,HashT2, . . . ,HashTl〉 (5)

Given the k, the nearest neighbors of all data points are
retrieved, and the nearest neighbors are concatenated. The
matrix A is defined as the weightless matrix of data points
pointing to the k neighboring data points, X denotes the
feature matrix of all nodes, and Xi denotes the feature of the
ith node.
Spectral methods generally use Laplacian matrices to rep-

resent the structure of graphs, and in this paper, we use

VOLUME 10, 2022 72391



R. Qiu et al.: Graph Convolutional Networks and Attention-Based Outlier Detection

transition probability matrices to define the Laplacian of a
graph as a Hermitian matrix, and then we can perform graph
convolution operations on directed graphs as (6):

L = I −

(
φ

1
2 ×P× φ−

1
2 +φ−

1
2 ×PT × φ

1
2

2

)
(6)

where I is the unit matrix, PT denotes the conjugate transpose
of the transfer probability matrix P of the directed graph D,
and the ϕ matrix denotes the matrix whose diagonal is the
Perron vector of G and is zero elsewhere. The following
algorithm describes querying and joining after the points are
hash mapped.

Algorithm 1 Constructing Graph
Input: Given dataset X, the number of hashtable m, the
number of connections k, Full zeros matrix A
Output: Laplacian matrices L
1. for iteration=1:m
2. for each row in X as k do
3. put k into Hash(k);
4. end
5. end
6. for iteration=1:k
7. L←− L ∪ {p|search(p) = search(q)}
8. end
9. for i=1:length of X
10. for j=1:k
11. Aji = 1;
12. end
13. end
14.L =Laplace(A);
15. return L

B. ENHANCE FEATURE
1) FEATURE ENHANCEMENT USING GRAPH CONVOLUTION
NETWORKS
GCN learns an embedding separately for each node. The
embedding of a node is acquired by embedding its neigh-
boring nodes, which means that the graph convolution opera-
tor needs to propagate the embedding using the interaction
between nodes in the graph. This process is progressively
performed layer by layer through the graph convolution
operation, after which the embedding of all nodes is lin-
early transformed, and the output layer, i.e., the last layer
of the embedding, is used as the input for the down-
stream task. Our forward model then takes the simple
form (7):

H (l + 1) = σ
(
LaH lωl

)
(7)

H(l+1) and H (l) denote the input and output of the l-th
layer (H(0)=X), respectively. W l denotes the weight. LaHl

denotes the weighted average of all nodes. Since the strength
of the relationship between each nodes and its neighbors is
different, the weights between nodes should not be limited

to {0,1} but any suitable weight value. σ is the activation
function, in this paper, Leaky_ReLU is used as the activation
function in the hidden layer; compared with the Relu acti-
vation function used in most algorithms, the input value less
than 0 can also be updated with parameters without causing
the death of neurons.

The graph convolution layer aggregates neighboring nodes
to achieve transfer of neighborhood relations and propagates
between layers, using the information of edges to aggregate
node information, thus generating a new node representation.
Fig.3 represents the convolution process in a two-layer GCN
network:

FIGURE 3. Graph neural network model, subgraph extraction is
performed after node pre sampling, and graph neural network is
generated and trained after subgraph feature fusion.

In multilayer GCN, the Laplacian matrix L is fixed, and
it depends on the construction of the topological map. The
only parameter to be learned is the parameter ωl of the
transformation matrix, which can be learned and updated by
backpropagation. The cross-entropy loss function in (8) can
maintain the linear transfer gradient and effectively prevent
the gradient from vanishing.

Loss = −
[
y log y′ + (1− y) log

(
1− y′

)]
(8)

where y denotes the distribution of the actual sample and y′

denotes the distribution predicted by the model. Algorithm 2
represents the construction process in a two-layer GCN net-
work.

Algorithm 2 Training GCN
Input: Given dataset X, Laplacian matrix L, Learning rate η,
Number of iterations t
Output:Matrix O
1. InitializeW (0), b(0), W (1), b(1).
2. for iteration=1:t
3. Layer_1_output= X ∗ L ∗W (0)

− b(0);
4. Layer_2_output= X∗ Layer_1_output ∗W (1)

− b(1);
4. Loss = Cross-entropy;
5. UpdateW and b using batch gradient decent O w(Loss);
6. end
7. return O
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2) FEATURE ENHANCEMENT USING ATTENTION
MECHANISM
We use the attention mechanism to emphasize the differences
between features by assigning different attention weights
according to their importance. The input is the original feature
matrix, and the output is no longer context vectors but a
reassigned feature matrix. Fig.4 expresses the principle of the
Attention mechanism:

FIGURE 4. The attention mechanism enhances features with weight
redistribution. The model scores the input dimensions and then weights
the features according to the scores to highlight the impact of essential
features on downstream models or modules.

The reassigned feature matrix F is derived from the fol-
lowing (10):

F = X • wij (9)

wij represents the attention weight of a single element gener-
ated by a small neural network in the attention layer, starting
from the dense layer with a single neuron [49] This layer
outputs a score for each output: this score is used to measure
how well each output is aligned with the previous hidden
state. Finally, all scores are passed through the softmax layer
to obtain the final weights of the outputs. The weights are
calculated in (10):

Wij =
exp

(
νTa tanh

(
ψ1 Xi + ψ2Xj

))∑
j=1

exp
(
νTa tanh

(
ψ1Xi + ψ2X j′

)) (10)

ν, ψ1, ψ2 are the parameter matrices initialized by Glorot
uniform initialization, generating random weights and biases
by sampling from a uniform distribution function. We use
the Glorot initialization formula to maintain the activation
variance and back-propagate the gradient variance as the
network moves up or down [50]. This initialization is shown
in (11).

ψ ∼ U

[
−

√
6

√
wj+wj+1

,

√
6

√
wj+wj+1

]
(11)

where U represents the consistent distribution of the interval
and aj represents the columns of the weight matrix.The con-
struction of Attention is given in Algorithm 3:

Algorithm 3 Attention Mechanism
Input: Given dataset X
Output:Matrix A
1.Initialize: Hidden,W (1), b(1), W (2), b(2),W (V ), b(V )

2.Layer1=Fully Connect(X , W (1), b(1));
3.Layer2=Fully Connect(Hidden,W (1), b(1));
4.Scores=Fully Connect(tanh(Layer1+ Layer2));
5.AttentionWeights=Softmax(Fully Connect(Scores,
W(V),b(V)));
6. A = attentionWeights.∗X ;
7. return A.

3) FEATURE FUSION
We fuse the featurematrixO fromGCNoutput and the feature
matrix A from attention output to generate a single feature
matrix. It is more discriminative than any of the input fea-
ture matrices, which is achieved by using the feature fusion
technique of CCA [51]. Typical correlation analysis is widely
used to uncover correlations between data. The covariance
matrix S represents all the information associated with the
overall feature pairs obtained by (12).

S =
(
cov (O) cov (O,A)
cov (A) cov (O)

)
=

(
SOO SOA
SAO SAA

)
(12)

SOO denotes the intra-group covariance matrix of the GCN
output matrix, SAA denotes the intra-group covariance matrix
of the attention module output matrix, and SAO and SOA rep-
resent the inter-group covariance matrix of the GCN output
matrix to the attention module output matrix and the attention
module output matrix to the GCN output matrix, respectively.

To further strengthen the correlations, CCA uses Lagrange
multipliers to maximize the pairwise correlations as (13):

corr
(
O∗,A∗

)
=

cov (O∗,A∗)
var (O∗) var (A∗)

(13)

The intergroup covariance between the two is maximized
at the constraint var (O∗) = var (A∗) = 1. Afterward, the
transformed matricesW ′O andW ′A are obtained by solving the
eigenvalue equation (14):{

S−1OOSOAS
−1
AA SAOW

′
O = 3

2W ′O
S−1AA SAOS

−1
OOSOOW

′
A = 3

2W ′A
(14)

32 is the diagonal matrix of eigenvalues, and W ′O and W ′A
are the sorted WO and WA corresponding to the non-zero
eigenvalues each forming the transformed matrix. O∗ and A∗

are presented as typical variables with the transformed data
as covariance matrices, O∗, A∗ having non-zero correlation
only at the corresponding indices, while the canonical varia-
tion of each data set is uncorrelated. After that, we perform
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feature fusion using the Z1 formula of Classical Correlated
Discriminant Features (CCDFs) as (15):

Z =
(
O∗

A∗

)
=

(
W T
OO

W T
A A

)
=

(
WO 0
0 WA

)T (O
A

)
(15)

The fused features will be used as input to the LOF, which
calculates outliers for the dataset by assigning each object an
outlier factor based on anomalous properties relative to its
surrounding space.

C. SEARCH OUTLIER
The Local Outlier Factor algorithm is a density-based method
for detecting outliers. The matrix Z generated by feature
fusion is used as the input to the LOF, and the algorithm
calculates the local outliers of the matrix Z by assigning an
outlier factor to each object through the outlier properties of
each object relative to the surrounding space. In this process,
the local outlier factor of point p of matrix Z is expressed
as (16):

LOFk (p) =

∑
o ∈ Nk (p)

lrdk (o)
lrdk (p)

|Nk (p)|
(16)

The o represents another point o in the matrix, Nk (p) repre-
sents the set of k nearest neighbors of p,and lrdk (p) represents
the locally reachable density at point p. k-distance(o) denotes
the location of the kth distance from o, excluding the point o.
d(o,p) means the distance between the point o and the point
p. The formula is (17):

lrdk (p) =
|Nk (p)|∑

Nk (p) max{k − dis tance(o), d(o, p)}
(17)

The larger the LOFk (p) value, the more likely it is to be an
outlier. Finally, the outlier points can be derived by perform-
ing a descending sorting operation on the local outlier factors
of each object in matrix Z and comparing the magnitude with
a custom threshold.

IV. PERFORMANCE EVALUATION
In order to verify the effectiveness of GCAmethod, this paper
compares it with Auto-encoder (AE) algorithm, Connectivity
outlier factor algorithm (COF), Cut-point clustering (CutPC)
algorithm, Isolation Forest (IForest) algorithm, K-Nearest
Neighbor (KNN) algorithm,Outrank algorithm, SO-GAAL
and MO-GAAL. We chose Network-based, Density -based,
Graph -based, Integration -based, and Distance -based outlier
detection algorithms. The performance of the algorithms can
be evaluated more intuitively by comparing them with sev-
eral algorithms from different domains. The data are taken
from the average of ten experimental results. This section
describes the experimental setup and evaluation criteria and
performs the ablation experiments.

A. DATASETS
We selected ten representative datasets from different
domains in the UCI repository proposed by the University
of California Irvine [52], which is most commonly used for

machine learning tests. To eliminate the effect of dimension-
ality and thus make the influence of each feature dimen-
sion on the objective function consistent and to improve the
convergence speed of the iterative solution, all data sets are
normalized using the maximum and minimum values in the
data columns, and the normalized values are between [0, 1],
and the maximum-minimum normalization formula is shown
in (18):

DSi =
(di − dm in)

(dm ax − dm in)
(18)

where DSi is the i-th normalized value in the dataset, di is the
original value of the i-th index, dmax is the maximum value
of the i-th index, and dmin is the minimum value of the ith
index.

All data sets are taken from the real world. Arrhythmia dis-
tinguishes the presence or absence of arrhythmia; Breastw is
from the Wisconsin Breast Cancer Data; cardio includes fetal
heart rate and uterine contraction characteristics based on
the classification of expert obstetricians; Glass describes the
oxide content of glass; ionosphre is a classification of radar
echoes from the ionosphere; lympho is from the University
Medical Center lymphography data; Pima from the National
Institute of Diabetes and Digestive and Kidney Diseases;
Vowels, a dataset that records 12 LPC cepstrum coefficients
for 640-time series, and Wbc, also from breast cancer data;
Wine, which focuses on the use of chemical analysis to
determine the origin of wine; These datasets from medical
or industrial sources are somewhat representative of the real
world.

The following 2 describes the details of the datasets,
including the size of the datasets and the outliers point
rate et al:

TABLE 2. Datasets description.

B. EVALUATION METRICS
The AUC (Area Under the receiver operating characteristic
Curve), ACC (Accuracy), and FAR (False Alarm Rate) are
used as the evaluation criteria for algorithm performance.
AUC is the area between the ROC (Receiver Operating Char-
acteristic) curve and the horizontal axis; ROC is a curve in
which horizontal and vertical coordinates are, respectively,
FPR (False Positive Rate) and TPR (True Positive Rate).
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AUC can be calculated from (19):

AUC =

∑ h−1
i=1 (xi+1 − xi)× (yi+1 − yi)

2
(19)

x ′i and y
′
i are the horizontal and vertical coordinates of the i-th

sample, respectively, and i is a positive integer; h+ and h- are
the number of positive and negative cases, respectively; h is
the total number of samples. ACC and FAR is shown in (20)
and (21):

ACC =
TP+ TN

TP+ TN + FP+ FN
(20)

FAR =
FP

TN + FP
(21)

The following 3 describes the definition of each parameter.

TABLE 3. TP, TN, FP, FN conceptual analysis.

C. EXPERIMENTAL SETUP
Our experiments were implemented on an Intel(R) Core(TM)
i5-7300HQ CPU @ 2.50GHz PC using the Matlab code
(R2021b).

The GCA and the comparison algorithm proposed in this
paper are implemented in Matlab. In GCN module, a two-
layer GCN is trained, with labels not involved in the train-
ing, and the inputs are the original dataset and the directed
graph generated by the previous module. The learning rate is
dynamically adjusted after setting the initial value.

4 indicates the setting of parameters in the GCA algorithm,
while 5 implies the setting of parameters in the comparison
algorithm:

The AE algorithm includes the data input layer, hidden
layer, and output reconstruction layer, and the input is the
feature dataset X. For the COF algorithm, the Number of
nearest neighbors is used to construct the SBN path, i.e., the
Number of neighbors for each observation to be compared
with the link distance. The input of CutPC is the only X
feature set. The training and test sets in KNN are split 7:3. The
parameters of the MO-GAAL algorithm are inherited from
SoGAAL except for the Number of sub_generator.

D. EXPERIMENTAL RESULTS
The experiment is executed, the mean value is calculated
for the 10 times results as the final result to ensure more
realistic experimental results. Fig.5 shows the experimental
AUC results of the GCA algorithm with the remaining eight
comparison algorithms on the Arrhythmia, Breastw, Cardio,
Glass and Ionosphre data sets. Fig.6 shows the experimental

TABLE 4. GCA’s experimental parameter settings.

TABLE 5. Comparison algorithm’s experimental parameter settings.

AUC results of the GCA algorithm with the remaining eight
comparison algorithms on the lympho, Pima, Vowels, Wbc,
Wine data sets.

From the AUC comparison results, it can be seen that the
GCA algorithm proposed in this paper significantly outper-
forms the remaining eight comparison algorithms in detecting
outliers on nine datasets. On the Cardio dataset, the accuracy
of the GCA method is second to the KNN method by a tiny
margin of 0.005. GCA performed the best on the Vowels
dataset, 4.51 percentage points higher than the second most
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FIGURE 5. AUC metrics of GCA with the eight comparison algorithms on
five data sets.

FIGURE 6. AUC metrics of GCA with the eight comparison algorithms on
five data sets.

accurate CutPc algorithm. The average AUC of GCA on
the ten datasets was 0.9319, and the average AUC of KNN,
the next best performer, was 0.8797 on the ten datasets. The
average AUCs of AE, COF, CutPC, IForest, Outrank, SO-
GAAL, and MO-GAAL are 0.7907, 0.7379, 0.8476, 0.8449,
0.8291, 0.6165, and 0.8066, respectively. The experimental
results show that the AUC accuracy of GCA far exceeds other
traditional or for network-based detection algorithms; one of
the reasons may be that the dataset is small. For example, the
GAAL algorithm does not perform well in small datasets.

Fig.7 shows the experimental ACC results of the GCA
algorithmwith the remaining eight comparison algorithms on
the Arrhythmia, Breastw, Cardio, Glass and Ionosphre data
sets. Fig.8 shows the experimental ACC results of the GCA
algorithmwith the remaining eight comparison algorithms on
the lympho, Pima, Vowels, Wbc, Wine data sets.

The comparison of ACCmetrics in Fig. 7 and Fig. 8 shows
the GCA achieved the best results in all datasets. The advan-
tage of GCA is most apparent in the Ionosphere and Wine
datasets, which are 4.58 and 3.19 percentage points higher
than the second-best performing algorithms, CutPC and IFor-
est, respectively. The average ACC value of the GCA algo-
rithm is 0.9320, and the next best performer is still the KNN
algorithm, with an average value of 0.8954. The average
AUCs of AE, COF, CutPC, IForest, Outrank, SO-GAAL,

FIGURE 7. ACC metrics of GCA with the remaining eight algorithms on
five data sets.

FIGURE 8. ACC metrics of GCA with the remaining eight algorithms on
five data sets.

and MO-GAAL are 0.8597, 0.8211, 0.8838, 0.8731, 0.8510,
0.6319, 0.8056.

The data on the false positive rate of GCA and the remain-
ing eight comparison algorithms on ten datasets are recorded
in 6.

The comparison of the FAR metrics in 6 shows that
the GCA algorithm achieves the lowest false positive rate
on the nine datasets. GCA is 5 percentage points lower than
the second-best KNN algorithm in terms of the average FAR
metric and 5 percentage points lower than the COF average
on FAR by 93%.

In summary, the GCA algorithm performs well compared
to the more classical and popular outlier detection algorithms.
The significant improvement in detection performance of the
proposed GCA algorithm is mainly due to the use of two
channels to jointly extract object features, which enhances
the capability of the original separate feature mapping and,
therefore, can better learn the potential feature data points in
the data. Aggregating neighboring nodes can better capture
the global information of the graph to represent the nodes’
characteristics better. On the one hand, the detailed knowl-
edge of the specific target of interest is learned, focusing
more on the critical information than on the whole, enhancing
the data features while discarding the interference of some
useless knowledge to the LOF algorithm during detection.
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TABLE 6. Comparison of GCA with the remaining eight algorithms in terms of FAR metrics.

TABLE 7. Effect of GCN inclusion and attention inclusion on the final AUC results.

TABLE 8. Effect of GCN inclusion and attention inclusion on the final ACC results.

TABLE 9. Effect of GCN inclusion and attention inclusion on the final FAR results.

E. ABLATION STUDY
To demonstrate the positive effect of GCN and Attention
on outlier detection, we evaluated the effect of each module
on detection performance with LOF as the baseline, AUC,
ACC, and FAR metrics on ten datasets. Also, the effect
of the number of layers of GCN on the final results was
investigated.

In order to verify the effect of GCN, the feature matrices
are directly outlier detection after GCN layer training; to
verify the effect of Attention, the outlier detection results are
obtained by inputting the reconstructed matrix of Attention
into LOF.

7, 8, and 9 show the effects of GCN inclusion and attention
inclusion on the final AUC, ACC, and FAR, respectively. The
first row indicates the detection results of LOF. The second
row corresponds to the case after using GCN alone. The third
row shows the improvement of LOF by usingAttention alone.
The fourth row shows the results of the proposed algorithm
GCA.

Comparing the GCA model output with the experimental
results of other separate modules shows that using only the
LOF feature matrix is not enhanced. The node information

is not significant, leading to the low accuracy of the output
results.

Outlier detection using the GCN module shows a signifi-
cant improvement in accuracy, indicating that the intercon-
nections in the features have an enormous impact on the
feature matrix, building significant topology. Thus, GCN can
effectively extract global information and enhance the overall
model. The use of LOF alone makes the graph not have
structural information and only contains node information,
which reduces the accuracy rate and can only achieve specific
results.

Similarly, the Attention module achieves comparable
effect accuracy, indicating that Attention can capture the
degree of importance among the nodes and assign higher
weights to the virtual nodes. It can be seen that focusing
on the critical part of the feature matrix is distinguishable
from unimportant information and can significantly impact
the results.

A comprehensive analysis can conclude that using GCN
can take advantage of the critical role of graph link-
ing relationships, focus on global features, and effectively
enrich the features of entities. Combined with Attention, the
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information of each node can be effectively aggregated, and
the global and partial parts work together.

Drawing on Kipf and Welling experiments on the depth
of the GCN on semi-supervised classification work [53], this
paper explores the effect on the final results when the GCN is
at 2, 4, and 6 layers, where the parameter dataset is essentially
constant except for the depth during the comparison experi-
ments. It can be seen that the optimal results are achieved
when the GCN is at 2 layers. The AUC results for different
number of layers of GCN are shown in Fig.9 and Fig.10. Fig.9
shows the variation of AUC when the number of GCN layers
varies in Arrhythmia, Breastw, Cardio, Glass and Ionosphre.
Fig.10 shows the variation in datasets lympho, Pima, Vowels,
Wbc, Wine. Based on the above ablation experiments, it can
be concluded that GCN, attention mechanism, and feature
fusion all improve the accuracy of outlier finding, and the best
results are obtained when the GCN is 2 layers.

FIGURE 9. Effect of GCN’s number of layers on the final results on five
data sets.

FIGURE 10. Effect of GCN’s number of layers on the final results on five
data sets.

Also, according to the observations in the experiments, the
experiment time increases significantly with each additional
layer. With each extra layer, the adequate context size of each
node increases with the size of its neighbors. As the number
of layers increases, the nodes learn more information about
their neighboring nodes, leading to an increasing convergence
of nodes, resulting in a general decrease in the results.

V. CONCLUSION
In order to solve the problem that outliers are difficult
to detect in the data set with obscure features and fur-
ther improve the accuracy of the outlier detection algo-
rithm, this paper proposes the Graph Convolutional and
Attention–Based Outlier Detection algorithm to solve the
problem of obscure features by using GCN and Attention
for feature In this paper, we propose a Graph Convolutional
and Attention–Based Outlier Detection algorithm to solve the
problem of inconspicuous features. Experimentally, we use
ten publicly available UCI datasets after maximum-minimum
normalization to compare with the remaining eight classi-
cal and widely used outlier detection algorithms. The GCA
algorithm excels in the AUC, ACC, and FAR metrics, sig-
nificantly improving outlier detection performance. Further,
we conducted ablation experiments to verify the effectiveness
of the method used in our model by comparing LOF outlier
detection with the addition of a GCN module alone and
an Attention module alone and by experimenting with the
number of GCN layers.

The reasons for the superior performance of GCA in outlier
detection mainly come from the following three aspects:

1) Our model uses LSH to reconstruct the map to
re-extract the original features as well as eliminate
redundant information, discard some useless features,
facilitate the operation of the LOF algorithm, and
improve the accuracy of outlier detection.

2) Graph Convolutional Network scaling the comprehen-
sive features, Attention mechanism focuses on the key
features, increases the attention to the key informa-
tion, amplifies the useful features, and widens the gap
between outliers and normal values.

3) The features extracted and combined from dual chan-
nels are more discriminative than GCN or Atten-
tion alone by Canonical Correlation Analysis Feature
fusion.

Based on the above analysis, the GCA algorithm has some
advantages in comparison with other algorithms. However,
the GCA algorithm still has a lot of room for improvement.
In this paper, we have only implemented outlier detection
in the text. In future work, we will study the application in
image datasets to solve more complex image outlier detection
problems.
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