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ABSTRACT In the classification problem, datasets often have a large number of features, but not all
features are useful for classification. A lot of irrelevant features may even reduce the performance. Feature
selection is to remove irrelevant features by minimizing the number of the feature subset and minimizing
the classification error rate.So it can be regarded as a multi-objective optimization problem. Because of its
simple structure and easy implementation, Harris Hawks Optimization algorithm (HHO) is widely employed
in optimization problems. In this paper, the multi-objective HHO is applied to address the feature selection
problem. In order to improve the search ability of the algorithm, associative learning, grey wolf optimization
and chaotic local search are introduced into it. An external repository is used to save non-dominant solution
set. The results of feature selection on the sixteen University of California Irvine (UCI) datasets show that
the proposed method can effectively remove redundant features and improve the classification performance
of the algorithm.

INDEX TERMS Multi-objective Harris Hawks optimization, feature selection, associative learning, chaotic
local search.

I. INTRODUCTION
Classification is an important task in machine learning and
data mining. The goal of classification problem is to get a
model based on the training set by learning and use this
model to predict the unknown class in the test set. Many
practical problems in real world are considered as classifi-
cation problem, such as image analysis, medical care and
statistical problems. There are a lot of features in the real data
sets, including relevant, irrelevant and redundant features,
which leads to a large search space, named ‘‘the curse of
dimensionality’’ [1]. In order to reduce the feature dimen-
sion, irrelevant and redundant features need be eliminated.
Feature selection can reduce the dimensionality of the data
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and improve the classification performance by reducing or
eliminating redundant and irrelevant features [2].

Feature selection selects the most useful (relevant) fea-
tures to create a better performance model. But it is not
easy to select only relevant features in practical application,
due to the complex interaction between features. Feature
interaction existing frequently in many areas is two-way,
three-way or complex multiway interactions among features
[3]. The relevant features may improve classification per-
formance, while irrelevant features may be redundant fea-
tures and reduce classification performance. There will be
2n possible feature subsets for an n-dimensional dataset.
It is impossible to get all solutions for a large n. So feature
selection is an NP-Hard problem [4], which cannot be solved
by exhaustive approaches in most cases. A variety of search
approaches are proposed to solve the problem of feature
selection, such as sequential forward selection [5] (SFS)
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and sequential backward selection [6] (SBS). However, all
of these approaches have drawbacks, which may lead to
premature convergence or high computational complexity.
In order to better solve the problem of feature selection,
an efficient global search technology is needed. Evolutionary
computation (EC) technology is well known for their global
search ability [7]. The most commonly used EC technolo-
gies in feature selection include Genetic Algorithm (GA)
[8], Particle Swarm Optimization (PSO) [9]–[12], Grey Wolf
Optimization (GWO) [13], [14], Artificial Bee Colony (ABC)
[3], [15], Whale Optimization Algorithm (WOA) [16], [17]
and Salp Swarm Algorithm (SSA) [18], [19].

There are two conflict objectives in feature selection,
which are to minimize the size of feature subset and
maximize the classification accuracy. Therefore, feature
selection can be considered as multi-objective optimization
problem. EC technologies particularly are good at dealing
with multi-objective optimization problem, because their
population-based search mechanism can produce multiple
trade-off solutions in a single run. So some EC technolo-
gies are employed to handle multi-objective feature selection
problem, such as GA, PSO, GWO and ABC in [8], [9],
[13], [15]. No-Free-Lunch (NFL) theorem asserts that there
is not a good enough optimization algorithm to solve all
optimization problems, which indicates that the current fea-
ture selection approaches may have performance degradation
on some problems. Harris Hawks optimization [20] (HHO)
which simulates the foraging behavior of Harris Hawks is a
new global search algorithm and effective on the numerical
optimization problems and several real-world engineering
problems. In addition, in the field of feature selection, some
new researches about HHO have emerged. For example,
In [21], a novel HHO, named IHHO, is proposed by embed-
ding the salp swarm algorithm (SSA) into the original HHO
to improve the search ability of the optimizer and expand
the application fields. To enhance feature selection of Harris
Hawks Optimization, the novel control factor and Brownian
motion are employed in [22]. In [23], the paper introduces
an improved HHO (IHHO) by utilizing elite opposite-based
learning and proposing a new search mechanism. In [24],
to overcome local optima and population diversity draw-
backs, Chaotic HHO is proposed, in which the chaotic maps
and simulated annealing algorithm are applied to enhance the
population diversity and improve HHO exploitation, respec-
tively. However, these researches are singe-objective based
approaches and these algorithms easily converge to local
optima. Furthermore, the results obtained by these algorithms
are affected by the parameter a in the evaluation function,
while in the multi-objective based approaches, parameter a
is not used. So HHO is employed to solve feature selection in
the paper including single-objective and multi-objective.

Based on the above-mentioned motivation, the main goal
of this paper is to improve a feature selection approach based
on HHO. Compared with using all features, the solution
obtained by this approach should get smaller feature subset
size and classification error rate. In order to achieve this goal,

a multiobjective HHO algorithm with associative learning
and chaotic local search (MOHHOAC) is proposed to solve
feature selection problem. Search strategy of the GWO also
is adopted to enhance performance of MOHHOAC. In addi-
tion, an external repository is used to save nondominated
solution set. To maintain diversity of non-dominated solution
set, grid strategy is introduced into MOHHOAC. Finally,
a comprehensive experiment is designed to verify perfor-
mance of HHO including singleobjective and multiobjective.
Single-objective HHO is compared with two tradi-
tional approaches, three single objective approaches,
and MOHHOAC is compared with four wellknown
multi-objective feature selection approaches on the 16
benchmark datasets including various features, classes and
instances. Multi-objective approaches also is compared with
single-objective approaches with respect to classification
error rate. Experiment results show that MOHHOAC can
present promising performance to solve the feature selection
problem.

Specifically, the research goals are as follows:
1) The performance of singleobjective HHO approach

in reducing the size of feature subset and improving
classification performance is analysised versus two
traditional approaches and three singleobjective evolu-
tionary algorithm on 16 UCI datasets.

2) A multi-objective HHO with associative learning and
chaotic local search is proposed to solve feature selec-
tion problem.

3) The performance of the proposed MOHHOAC is eval-
uated on 16 UCI datasets to research its efficiency for
the feature selection.

The organization of the rest of the paper is as fol-
lows. The knowledge of standard HHO algorithm, basic
conception of multi-objective optimization, Harris hawks
optimizer based approaches, the recent research on feature
selection and multi-Objective Grey Wolf Opimization are
introduced in Section II. Then, the proposed feature selection
approach based on HHO algorithm is detailed description in
Section III. The experimental design is offered in Section IV
and the experimental results and discussion are presented in
Section V. Finally, summarization and the future develop-
ment trend are showed in Section VI.

II. LITERATURE REVIEW
In this section, the standard HHO algorithm is described, the
definition of multi-objective optimization problem is given,
and the literature about feature selection is briefly reviewed.

A. HHO ALGORITHM
HHO algorithm is a swarm intelligence algorithm. The main
idea of HHO algorithm is inspired by the cooperative behav-
ior of Harris Hawks when they hunt the escaped prey (mostly
rabbits) [25]. HHO is a population-based and gradient-free
optimization technique; Hence, it can be applied to any opti-
mization problems subjecting to a proper formulation. HHO
algorithm is divided into exploration and exploitation phase.
The detailed introduction of each phase is listed as follows.
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1) EXPLORATION PHASE
In the HHO algorithm, the Harris Hawks perch randomly
on some locations and wait to find rabbit based on two
strategies Eq.(1).

X (t + 1) =


Xrand(t)− r1 |Xrand (t)− 2r2X (t)| q ≥ 0.5

(Xrabbit(t)− Xm(t))
− r3 (LB+ r4(UB− LB)) q < 0.5

(1)

where X (t + 1) is the position vector of hawks in the next
iteration t , Xrabbit (t) is the position of rabbit, X (t) is the cur-
rent position vector of hawks, r1, r2, r3, r4 and q are random
numbers inside (0, 1), which are updated in each iteration, LB
and UB are the lower and upper bounds of variables, Xrand (t)
is a randomly selected hawks in the current population, and
Xm(t) is the average position of the current population of
hawks. The average position of hawks is obtained by Eq. (2).

Xm(t) =
1
N

N∑
i=1

Xi(t) (2)

where Xi(t) represents the location of each hawk in iteration
t and N indicates the total number of hawks.

2) TRANSITION FROM EXPLORATION TO EXPLOITATION
TheHHOalgorithm can transfer from exploration to exploita-
tion, and then change different exploitation behaviors accord-
ing to the escaping energy of rabbit. In the process of rabbit
escaping, the energy will be reduced, and the energy of rabbit
is simulated by Eq. 3.

E = 2E0

(
1−

t
T

)
(3)

where E indicates the escaping energy of the rabbit, T is the
maximum number of iterations, and E0 denotes the initial
state of energy.

3) EXPLOITATION PHASE
During the phase, the Harris Hawks will pounce on rabbit
found in the previous phase, but the rabbit will try to escape.
Therefore, there will be different chasing styles in real life.
According to the escaping behaviors of rabbit and chasing
strategies of the Harris Hawks, four possible strategies are
proposed in the HHO to model the attacking stage [20]. They
are soft besiege, hard besiege, soft besiege with progressive
rapid dives and hard besiege with progressive rapid dives. The
following are four strategies.

a: SOFT BESIEGE
This behavior is modeled by Eq. (4) and Eq. (5).

X (t + 1) = 1X (t)− E |JXrabbit(t)− X (t)| (4)

1X (t) = Xrabbit (t)− X (t) (5)

whereX (t) is the difference between the rabbit position vector
and the current position in iteration t , J = 2(1−r5) indicates
the random jump strength of the rabbit escaping process, r5 is

a random number inside (0, 1). The J value will randomly
change in each iteration to simulate the nature of rabbit
motions.

b: HARD BESIEGE
In this situation, the current positions are updated by Eq. (6).

X (t + 1) = Xrabbit (t)− E|1X (t)| (6)

c: SOFT BESIEGE WITH PROGRESSIVE RAPID DIVES
In order to perform a soft besiege, we supposed that the hawks
can decide their next action according to Eq. (7).

Y = Xrabbit (t)− E |JXrabbit (t)− X (t)| (7)

We supposed that hawks will dive based on the LF-based
patterns by Eq. (8).

Z = Y + S ∗ LF(D) (8)

whereD is the dimension of the problem, S denotes a random
vector by size 1 ∗D and LF is the levy flight function, which
is calculated by Eq. (9).

LF(x) = 0.01 ∗
u ∗ σ

|v|
1
β

, σ =

 0(1+ β) ∗ sin
(
πβ
2

)
0
(
1+β
2

)
∗ β ∗ 2

(
β−1
2

)


1
β

(9)

where u, v are random values inside (0, 1), β is a default
constant and is set to 1.5. Therefore, the final strategy for
updating the positions of hawks during the soft besiege phase
can be executed by Eq. (10).

X (t + 1) =

{
Y if F(Y ) < F(X (t))
Z if F(Z ) < F(X (t))

(10)

where Y and Z are calculated by Eq. (7) and Eq. (8),
respectively.

d: HARD BESIEGE WITH PROGRESSIVE RAPID DIVES
Eq. (11) is performed in hard besiege condition.

X (t + 1) =

{
Y if F(Y ) < F(X (t))
Z if F(Z ) < F(X (t))

(11)

where Y and Z are calculated by Eq. (12) and Eq. (8).

Y = Xrabbit (t)− E |JXrabbit (t)− Xm(t)| (12)

where Xm(t) is obtained by Eq. (2).

B. MULTI-OBJECTIVE OPTIMIZATION
Many problems involve two or more than two conflict-
ing objectives, which are called multi-objective optimization
problems. Without loss of generality, it can be formulated as
follows [26].

MAX: F(x) = f1(x), f2(x), . . . fo(x)

Subject to: gi(x) ≥ 0, i = 1, 2, . . . ,m

hi(x) = 0, i = 1, 2, . . . , p

Li ≤ xi ≤ Ui i = 1, 2, . . . , n (13)
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where n is the number of variables, o indicates the number
of objective functions, m denotes the number of inequalities
constraint, p represents the number of equalities constraint.
gi means the ith inequality constraint, hi indicates the ith
equality constraint. Li,Ui are the boundaries of ith variable.
In the single-objective optimization problem, it is easy to

obtain the optimal solution due to only one objective function.
However, in the multi-objective optimization problems, the
optimal solution can’t be obtained by simple comparison due
to the conflict between objectives and the phenomenon of
incomparability. In this case, a solution is superior to another
solution if and only if it shows better or equal values on
all objective functions and has better values on at least one
objective function. Therefore, the following concepts about
multi-objective optimization are introduced.

1) Pareto Dominance: Supposed that there are two vectors
such as: x = (x1, . . . , xk ) and y = (y1, . . . , yk ). Vector x
dominates vector y(denote as x � y)

∀i ∈ {1, . . . , k}, f (xi) ≥ f (yi)

∧∃i ∈ {1, . . . , k} : f (xi) > f (yi) (14)

2) Pareto Optimality: A solution x � y is called Pareto
optimal, if and only if

@y ∈ X | F(y) � F(x) (15)

3) Pareto Optimality set: The set of Pareto optimal solutions
is Pareto optimal set.

Ps = {x ∈ X | x is Pareto optimal} (16)

4) Pareto front: In Pareto optimality set, the set containing
objective value corresponding to the Pareto optimal solution
is called the Pareto front.

Pf = {F(x) | x ∈ Ps} (17)

C. EXISTING FEATURE SELECTION APPROACHES
Feature selection problem is to select relevant features, elim-
inating irrelevant and redundant features, and reduce data
dimension. Feature selection approaches are divided into
three types: filter approach, wrapper approach and embed-
ded approach. In filter approach, feature selection depends
on data features, and does not use learning algorithm [27].
The filter approach has lower computational complexity; the
wrapper approach uses classification algorithm and selects
feature subsets according to the classification performance of
the algorithm; The embedded approach obtains the optimal
subsets in the learning process, which depends on the per-
formance of the classifier. The computational complexity of
embedded approach is lower than wrapper approach, but the
embedded approach is more complex, and the model is not
easy to modify [28]. The wrapper approach is widely used.

1) SINGLE OBJECTIVE EVOLUTIONARY
COMPUTATION-BASED APPROACHES
In order to solve the defects of traditional feature selec-
tion approaches, researchers use evolutionary computation

technology to solve the problem of feature selection.
It includes GA [8], GP [29], PSO [9] and ABC [15].
The feature selection approach based on GA is proposed
by Raymer et al. and is better than SFFS [30]. Oh et al. [31]
implemented the hybridized GA (HGA) by embedding
local search operation. The experimental results show that
the performance of HGA is better than the standard GA.
Chen et al. [32] proposed the feature selection approach
based on multi-swarm PSO using the classification accuracy
and the F-score in a weighted manner. HHO algorithm is
very suitable for solving optimization problems and it is
improved to solve feature selection. Zhang et al. [33] pro-
posed an effective feature selection method based on firefly
algorithm (FFA), where three aspects which are an indicator
based on the return-cost, a Pareto dominance-based strategy
and a binary movement operator based on the return-cost
attractiveness are employed to enhance the capability of
preventing premature convergence. Xue et al. [34] proposed
a self-adaptive particle swarm optimization (SaPSO) algo-
rithm for feature selection with large-scale features, where
an encoding scheme and a typical self-adaptive mechanism
are proposed. The experimental results show that the SaPSO
algorithm is suitable for solving feature selection problems,
particularly large-scale feature selection problems.

2) MULTI-OBJECTIVE EVOLUTIONARY
COMPUTATION-BASED APPROACHES
There are two conflicting objectives in feature selec-
tion, which are regarded as multi-objective problems. The
multi-objective optimization algorithm based on evolutionary
computation is used to solve the problem of feature selection,
and the classification error rate and the number of features
is regarded as the two objectives. Hamdani et al. [35] pro-
posed a genetic algorithm based on non-dominated sorting II
(NSGA2). Waqas et al. [36] proposed a multi-objective GA
based on wrapper approach, using decision tree as the clas-
sifier. Xue et al. [9] proposed a multi-objective PSO feature
selection approach based on the wrapper approach, which
was inspired by crowding distance, non-dominated sort-
ing and mutation. The experimental results show that the
performance of this approach is superior to the NSGA2.
Although there are many feature selection approaches based
on EC, most of them are single objective, which only take
classification accuracy as objective. At present, there are
few literatures regarding feature selection as multi-objective
problem. Recently, it is found that the HHO algorithm
is used in multi-objective feature selection. Dabba et al.
[37] introduced a multi-objective binary Harris Hawks opti-
mization (MOBHHO) for gene selection, where SVM with
LOOCV classifier and KNN with K-fold classifier are used
as two fitness functions to solve competing objectives.
Dokeroglu et al. [38] proposed a new multi-objective HHO
algorithm for binary classification problem and a new dis-
crete exploration and exploitation operators for the hunt-
ing patterns of the hawks is developed. However, these
researches are worked for binary classification problems or
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gene selection. In this paper, we solve feature selection prob-
lem with different feature numbers and class numbers.

D. HARRIS HAWKS OPTIMIZER BASED APPROACHES
Harris hawks optimizer (HHO) is a recently developed
meta-heuristic algorithm that has previously shown excel-
lent performance on function optimization and real world
applications. However, HHO still has some drawbacks such
as trapped in local optima and low solution precision in
solving more complicated optimization problems. To over-
come these drawbacks, some improved HHOs are proposed.
Hao et al. [39] proposed an enhanced DE driven multi-
population HHO (CMDHHO) algorithm, in which chaos
strategy, topological multipopulation strategy, and differen-
tial evolution (DE) strategy are integrated to improve the
performance of HHO. Long et al. [40] presented an improved
HHO named LIL-HHO, where a modified escaping energy
strategy based on sine function, the personal best position
of each hawk, and lens-imaging learning (LIL) operator are
introduced to achieve a good transition, modify the posi-
tion search equation and maintain the population diversity
respectively. Additionally, LIL-HHO also is employed to
solve feature selection problem. Hu et al. [41] proposed
an improved binary Harris hawk optimization (HHO) algo-
rithm in combination with a kernel extreme learning machine
to determine the factors that play a decisive role in the
early recognition and discrimination of COVID-19 severity.
This method uses specular reflection learning to improve
the original HHO algorithm, called HHOSRL. The exper-
imental results show that the proposed model provides an
effective strategy for accurate early assessment of COVID-19
and distinguishing disease severity. Suresh et al. [42] pro-
posed a Chaotic Multi Verse Harris Hawks Optimization
algorithm based Deep Kernel Machine Learning Classi-
fier (CMVHHO-DKMLC) method for medical diagnostics,
by which the feature selection (FS) is done for finding ideal
feature subset of medical documents. Li et al. [43] presented
a called RLHHO, where two novel strategies are integrated
into the original HHO to enhance exploration and exploitation
capabilities. An exploration strategy based on logarithmic
spiral and opposition-based learning and a local search tech-
nique for Rosenbrock Method (RM) are proposed to improve
the exploration ability and enhance algorithm’s local search
capability of HHO. In [44], a hybrid optimization method,
called SCHHO, is proposed for numerical optimization and
feature selection, which fuses sine-cosine algorithm into
the standard HHO to enhance exploitation by dynamically
adjusting candidate solutions. SCHHO shows promising
performance on the sixteen datasets with low and high-
dimensions exceeding 15000 attributes. Dokeroglu et al. [45]
proposed a new multiobjective HHO algorithm for the solu-
tion of the well-known binary classification problem in
which a new discrete exploration (perching) and exploita-
tion (besiege) operators for the hunting patterns of the
hawks is developed. Moreover, it is applied to a real-world
dataset, Coronavirus disease (COVID19) dataset. In [46],

to automatically detect COVID-19 in radiological images,
a two-stage pipeline composed of feature extraction fol-
lowed by feature selection is proposed. HHO with Simulated
Annealing and Chaotic initialization is used to eliminate the
non-informative and redundant features. The experimental
results show the proposed algorithm can decrease the num-
ber of features selected by around 75%, which is better
than other algorithm. Ridha et al. [21] proposed a Boosted
HHO (BHHO) to achieve a more stable model and effectively
estimate the parameters of the single diode PV model. In the
BHHO, random exploratory steps of evolution inspired by the
flower pollination algorithm (FPA) and a powerful mutation
scheme of the differential evolution (DE) with 2-Opt algo-
rithms are combined to the standard HHO to accelerate the
convergence rate but also assist it in exploring new regions.
In addition, Kuolu et al. [47] proposed a Multi-Objective
Harris Hawk Optimization (MOHHO) for multi-objective
optimization problem, where an archive repository is added
to the HHO algorithm to save and retrieve the Pareto optimal
results.

E. MULTI-OBJECTIVE GREY WOLF OPIMIZATION
In the Multi-Objective Grey Wolf Optimizer (MOGWO)
[26], a fixed-sized external archive is integrated to the
GWO for saving and retrieving the Pareto optimal solu-
tions. This archive has been employed to define the
social hierarchy and simulate the hunting behavior of grey
wolves in multi-objective search spaces. In order to perform
multi-objective optimization by GWO, MOGWO integrates
two new components. The first one is an archive, which is
responsible for storing non-dominated Pareto optimal solu-
tions obtained so far. The archive adopts grid mechanism to
maintain diversity performance. In the method, the objective
space is divided into several grids. These grids are adjusted
according to the solution in the archive, over the course of the
iteration. If a newly obtained solution lies outside the grid, all
the grid locations should be recalculated to cover it. If a new
solution lies within the grid, it becomes the portion of the grid
with the lowest number of solutions. To enhance convergence
performance, non-dominated solution obtained so far should
be put into the archive, during the course of evolution. How-
ever, the archive has a maximum number of members. When
a non-dominated solution obtained enters the archive, it needs
to compare against the archive residents. If the new solution
is dominated one or more members within the archive, the
dominated members are removed from the archive and the
new solution should be inserted into the archive. If the new
solution is nondominated with solutions in the archive, the
new solution should be added to the archive. If the archive
is full, the grid mechanism should be called to redivide the
grid of the objective space and find the most crowded grid to
remove one of its solutions. Then, the new solution should
be inserted to the least crowded segment in order to improve
the diversity of the final approximated Pareto optimal front.
If the new solution is dominated by at least one member of
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the archive, the solution should not be allowed to put into the
archive.

The second component is a leader selection mechanism
that assists to choose alpha, beta, and delta solutions as the
leaders of the hunting process from the archive. In order
to explore objective space freetly with the hope to find a
solution close to the global optimum, three best solutions are
commonly selected as leaders to guide the other agents. How-
ever, in the multi-objective space, the best solution cannot
easily be compared according to Pareto dominance. In order
to select best solution, a leader selection mechanism which
is similar to that of the MOPSO is employed. The leader
selection mechanism is done by a roulette-wheel method with
the following probability for each grid:

Pi =
c
Ni

(18)

where c is a constant number and N is the number of obtained
Pareto optimal solutions in the i-th grid. From Eq.(18), it may
be seen that less crowded grids have higher probability as new
leader from the archive.

III. THE PROPOSED ALGORITHM
As mentioned in above sections, feature selection can be
regarded as a multi-objective problem, which has two con-
flicting objectives: minimizing the size of feature subsets
and maximizing classification accuracy. HHO algorithm is
a new kind of swarm intelligence algorithm, which hasn’t
been widely used. In this paper, we try to improve the HHO
algorithm and use it to solve the problem of multi-objective
feature selection. The standard HHO algorithm is used to
deal with single objective problems. The standard HHO algo-
rithm is improved to solve multi-objective problems. In this
paper, the concept of dominance relationship and external
archive in MOPSO is introduced into HHO algorithm to get
multi-objective HHO algorithm. To solve feature selection
problem, solution representing feature subsets in the algo-
rithm is within the range of 0 and 1. If a dimension in a solu-
tion is greater than 0.5, the corresponding feature is selected;
otherwise, it is not selected. In order to express clearly,
firstly, the whole framework of the algorithm is described
(Algorithm 1) and the flowchart of the algorithm is showed
in Figure 1, and then the multi-objective HHO algorithmwith
Grey wolf optimizer, associative learning and chaotic local
search is described in detail.

A. GREY WOLF OPTIMIZER
Grey wolf optimizer [26] imitates the social hierarchy and
the hunting technique of grey wolves. Hunting process is a
strong search behavior because of considering information
about the location of the optimum solution. Hunting process
is guided by the three best solutions considered as α, β and δ.
In order to improve exploration of HHO, hunting process is
combinated with HHO. The mathematical model of hunting
process is described as following:

Dα = |C1 · Xα − X | ,

Dβ =
∣∣C2 · Xβ − X

∣∣ ,
Dδ = |C3 · Xδ − X | (19)

X1 = Xα − A1 · Dα,

X2 = Xβ − A2 · Dβ ,

X3 = Xδ − A3 · Dδ (20)

X (t + 1) =
X1 + X2 + X3

3
(21)

where α is the fittest solution. β and δ are the second and third
best solution respectively.However, in the multi-objective
optimization, these best solutions are selected from the exter-
nal repository using leader selection mechanism [26].C1, C2,
C3, A1, A2 and A3 are coefficients updated by Eqs. (22, 23).
r1 and r2 are two random vectors in [0, 1]. Components of a
are linearly decreased from 2 to 0 over the course of iterations.

Ai = 2ar1 − a i = {1, 2, 3} (22)

Ci = 2 · r2 i = {1, 2, 3} (23)

B. ASSOCIATIVE LEARNING
Associative learning is a new tactic which can improve the
exploratory performance of algorithm [48]. In order to accel-
erate speed of theHHO, during the learning phase, associative
learning is combined to the proposed HHO. Therefore, the
new position of hawk is computed as follows:

X (t + 1) = X (t)+ 0.001 G (X (t)− lb, ub − X (t))

+ S1r1 (Xr (t)− X (t))+ S2r2
(
Xp(t)− X (t)

)
(24)

where r1 and r2 are two random numbers in (0, 1), Xr indi-
cates a random solution selected from the previous popu-
lations, Xp is the best solution, which is selected from the
external repository using leader selection mechanism. S1 and
S2 denote adaptive cognitive and social factors, respectively.
The values of S1 and S2 are updated in each iteration using:

S1 = (1− t/T) (25)

S2 = 2(t/T) (26)

With iteration increasing, the value of S1 reduces
from 1 to 0, to decrease the impact of the random leader on the
search pattern of hawks. However, the value of social factors
S2 raises to improve the impact of the random hawks. The
design rule can enhance hawks to gradually approach to the
high-quality solution.

C. CHAOTIC LOCAL SEARCH
In order to further refine the quality of solution, chaotic local
search is embedded into the proposed algorithm. The local
search is to find better solution near the current best solution.
Due to randomicity and ergodicity of the chaotic sequence,
Chaotic local search is very beneficial to further improve the
quality of one solution by generating new solution around
the best hawks. Hence, a new individual X (t + 1) is gen-
erated by chaotic local search presented in Eq.(27) at each
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Algorithm 1: Framework of the Proposed Algorithm

-21 Initial the population X, external repository REP and parameter;
-22 Evaluate the initial population X ;
-23 Determine Pareto dominance of the population X ;
-24 Move nondominated solutions to REP;
-25 Create grid for REP;
-26 while t < MaxIt do
-27 Select the leader of hawks by roulette wheel selection;
-28 Update parameter a = 2− t ∗ (2/MaxIt);
-29 for each hawks Xi do do
-210 Update the initial energy E0 by E0 = 2 ∗ rand()− 1 and Jump strength J = 2 ∗ (1− rand());
-211 Update E using the Eq.(3);
-212 if |E| >= 1 then
-213 if q < 0.5 then
-214 Update the location vector using Eq.(21);
-215

-216 end if
-217 else
-218 Update the location vector using Eq. (24);
-219

-220 end if
-221

-222 end if
-223 if |E| < 1 then
-224 if r >= 0.5 and |E| >= 0.5 then
-225 Update the location vector using Eq.(4);
-226

-227 end if
-228 if r >= 0.5 and |E| < 0.5 then
-229 Update the location vector using Eq.(6);
-230

-231 end if
-232 if r < 0.5 and |E| >= 0.5 then
-233 Update the location vector using Eq. (10);
-234

-235 end if
-236 if r < 0.5 and |E| < 0.5 then
-237 Update the location vector using Eq.(27);
-238

-239 end if
-240

-241 end if
-242

-243 end for
-244 Add new solutions to Population;;
-245 Determine dominance relationship to obtain nondominated solutions;
-246 Merge REP with the nondominated solutions and keep only non-dominated solutions in the REP;
-247 Update the grid;
-248 if REP is full, remove extra solutions from REP;
-249 t ← t + 1;
-250

-251 end while
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generation.

zm+1 = 4 ∗ zm ∗ (1− zm)

X (t+1) =


Xbest +rand1 · (2·zm−1) , if rand2

< 1−(t/MaxIter )
Xbest, otherwise

(27)

where m is the chaotic iteration index, which equals the
current iteration t here. zm is the value ofmth chaotic iteration,
and its initial value z0 is randomly generated in [0, 1]. t is the
current iteration and MaxIter is the maximal iteration times.
rand1 and rand2 are two random numbers in the range [0, 1].
Xbest is the current best leader, which is selected from the
external repository using leader selection mechanism [26].

D. EXTERNAL REPOSITORY
The main goal of the external repository is to keep a historical
record of the nondominated solutions obtained in the search
process. The external repository consists of two parts: the
repository controller and the grid. First, the process of the
controller is introduced. The repository controller is to decide
whether a solution should be included in the external repos-
itory or not. The nondominated solutions obtained in each
iteration will be compared with the solutions in the external
repository. At the beginning of the search, the external reposi-
tory is empty, and the current population nondominated solu-
tions are accepted by the external repository. If a new solution
is dominated by an solution in the external repository, the
solution is automatically called. If a solution in the repository
is dominated by a new solution, the solution is removed from
the repository. If the external repository reaches its maximum
capacity, removing solution process is called. The basic idea
of the external repository is to use an external repository to
store solutions, which are not dominated by the repository
content. In order to maintain diversity, the grid is employed
in the external repository [49].

E. THE COMPUTATIONAL COMPLEXITY
The complexity of the proposed algorithm (Algorithm 1)
depends on mainly the determining the Pareto dominance
in line 23 and line 247 and producing new solution from
line 29 to line 245. The computational complexity of the
determining Pareto dominance is O(N ∗ N ∗ m), where N is
the size of population and m is the number of objectives. The
computational complexity of the producing new solution is
O(N∗dim). the other steps in theAlgorithm 1 is the create grid
and remove extra solutions. Their computational complexity
are O(m ∗ div) and O(|REP| − N ), where div is the number
of grids per dimension and |REP| is the size of the external
repository. Therefore, the whole computational complexity of
the Algorithm 1 is O(N ∗ N ∗ m).

IV. EXPERIMENTAL SIMULATIONS
In this experiment, 16 datasets in UCI machine learning
library [50] are selected, which include different feature

numbers (from 4 to 617), class numbers (from 2 to 26) and
sample numbers (from 32 to 7797), as shown in Table 1.KNN
classifier is selected as the classifier in the algorithm, where
K is set to 5. In the experiments, the samples in each dataset
are randomly divided into two sets: 70% as the training set
and 30% as the test set.

The proposed multi-objective HHO feature selection algo-
rithm is compared with a variety of algorithms, including two
traditional approaches, three single objective approaches and
four multi-objective approaches. Two traditional approaches
are linear forward selection (LFS) [51] based on SFS and
greedy stepwise backward selection (GSBS) [52] based on
SBS. Their performance is better than SFS and SBS and they
are implemented in Waikato Environment for Knowledge
Analysis (WEKA) platform [53]. The experiment of LFS and
GSBS are completed via WEKA platform and 5NN is used
to evaluate feature subset obtained by the approaches on test
datasets.

The single objective feature selection approaches
involves the standard GA [31], PSO [32] and HHO [20] algo-
rithm, and the classification error rate and number of features
(Eq. 28) are employed to evaluate the performance of the
algorithm with the weight way determined by parameter a.

fitness = a
SubsetSize
AllsetSize

+ (1− a)ErrorRate (28)

where a is a constant within [0, 1], SubsetSize is the size of the
feature subset, AllsetSize denotes the number of all features
for the dataset and ErrorRate indicates the classification error
rate of the feature subset. For the experiments, the parameter
values of used algorithms are set as follows: the population
sizes in each algorithms are set to 30; the maximum number
of iterations take the value of 100. Crossover rate and Muta-
tion rate used in GA are defined as 0.7 and 0.1, respectively.
The parameters of PSO are Inertia Weight, Inertia Weight
Damping Ratio, Personal Learning Coefficient and Global
Learning Coefficient set to w1 = 1, wdamp = 0.99, c1 =
2 and c2 = 2. There are no extra parameters used in HHO.
The multi-objective approaches include: MOGWO [26],

MOPSO [49], NSPSOFS [9] and NSGA2 [35]. These algo-
rithms are improved to solve feature selection problems.
ErrprRate and number of selected features are considered as
two objective functions to evaluate performance of the multi-
objective algorithms. For the experiments of multi-objective
algorithms, the defined parameter values are as follows: the
population size is empirically set to 30; the maximum number
of iterations is empirically defined as 100; the parameters of
MOPSO are employed as in [9] where c1= 1, c2= 2 and iner-
tial weight= 0.5; the external repository size and the number
of grids per dimension the are set to 100 and 7, respectively;
the parameters of NSGA2 are selected according to [35]
where crossover rate and mutation rate are set to 0.7 and
0.1; In the MOHHOAC andMOGWO, an external repository
and grid technology are used where the external repository
size and the number of grids per dimension are also set to
100 and 7. Taking the number of features and classification

72980 VOLUME 10, 2022



Y. Zhang et al.: Multiobjective Harris Hawks Optimization With Associative Learning and Chaotic Local Search

FIGURE 1. The flowchart of the MOHHOAC.

error rate as the optimization objective, the Pareto front is
obtained, and the performance of the algorithm is evaluated.

Due to unknown of the true Pareto front, Hypervolume (HV)
indicator is employed to measure the performance of the
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TABLE 1. Description of datasets.

proposed algorithm. Its definition is listed as follows:

HV = volume
(
U|P|i=1vi

)
(29)

Hypervolume indicator gives the volume of hypercube cov-
ered by the members of Pareto-solutions. |P| is the size of
Pareto-soultion set. vi is the volume of ith Pareto solution
and reference point. Each algorithm runs 30 times separately.
Finally, the classification accuracy and feature subset size are
obtained. The experimental results are presented in the fifth
sections. The traditional approaches LFS and GSBS can get
a unique feature subset on each data set; The single objective
approaches get an optimal result after executing 30 times
on each data set; The multi-objective algorithms get a set
of feature subsets after executing on each data set. All the
experimental results are analyzed and compared.

V. EXPERIMENTAL RESULTS
The experimental results are mainly divided into three parts:
1) the comparisons between single objective and traditional
approaches; 2) the comparisons between multi-objective
approaches; 3) the comparisons between multi-objective and
single objective approaches. To have statistically sound con-
clusions, the Wilcoxon’s rank-sum test for independent sam-
ple at a 0.05 significance level, which is a nonparametric
statistical test method, is conducted to judge the significance
of the results between two algorithms in terms of HV value
in Table 4. Signs +, − and ∼ indicate that the corresponding
comparative algorithm is worse than, better than, and similar
to MOHHOAC, respectively. Moreover, the Friedman test
with Bonferroni-Dunn’s procedure is employed to achieve
the final ranking of different algorithms on the different type
datasets, according to classification error rate in Table 5.

A. THE COMPARISONS BETWEEN SINGLE OBJECTIVE
AND TRADITIONAL APPROACHES
The experimental results of this part are shown in Table 2,
where the best results are highlighted in red block and the
second good results are highlighted in blue block, including
five single objective approaches PSO, GA, WOA-SA, GWO

and HHO, and two traditional approaches LFS and GSBS.
The classification error rate and the number of features are
taken as the evaluation index and KNN algorithm is used as
classification model. In single objective approaches, Eq. (28)
is also used as the evaluation index.

From Table 2, single objective evolutionary algorithm can
obtain better result than traditional approaches on the most
datasets, which indicates that single objective evolutionary
algorithms have stronger search performance. The traditional
approaches only obtain the lowest error rate on the four
datasets, Iris, Page_blocks, Musk1 and Vehicle, while on the
number of selected features, they do not obtain fewer selected
features. However, single objective evolutionary algorithm
can obtain smaller number of features, but error rate is not
the lowest. For 12 out of 16 datasets, single objective evolu-
tionary algorithm can achieve the lowest classification error
rate and number of features. The reason may be that single
objective evolutionary algorithm considers both classification
error rate and number of features. For single objective evolu-
tionary algorithm, GWO can perform much better than HHO
and PSO in terms of the classification error rate. According
to classification error rate, HHO can obtain the best result on
three datasets and second best result on two datasets, ranked
thrid in the all algorithms, which HHO has stronger search
ability than traditional approaches.

B. COMPARISONS BETWEEN MULTI-OBJECTIVE
APPROACHES
Due to poor ability of HHO, an improved version of
MOHHO, multi-objective harris hawks optimization with
associative learning and chaotic local search, named
MOHHOAC, is proposed. In order to verify ability of
MOHHOAC, a comprehensive experiment is designed.
Firstly, MOHHOAC is compared with the original MOHHO
to prove the effectiveness of three strategies adopted in the
proposed algorithm. Figure 2 and Table 3 show the results of
non-dominated Pareto fronts and the average classification
error rate obtained by MOHHOAC and MOHHO respec-
tively. Then, MOGWO, NSGA2, MOPSO and NSPSOFS are
employed to compare with MOHHOAC. Table 4 presents
the overall results of using the HV indicator for perfor-
mance comparisons between the multi-objective algorithms.
Figure 3 shows the results of non-dominated Pareto fronts
obtained by these algorithms.

1) COMPARISONS BETWEEN MOHHO AND THE
PROPOSED MOHHOAC
The results obtained byMOHHO andMOHHOAC are shown
in Figure 2 for comparison from two dimensions, including
classification error rate and selected feature number. It is
noted that the number of selected features and classification
error rate are treated as two dimensions, respectively corre-
sponding to x axis and y axis. From Figure 2, it is seem that
the proposed algorithm can obtain better performance than
the originalMOHHOon themost datasets. According to clas-
sification error rate, Table 3 presents average results obtained
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TABLE 2. Results obtained by traditional approaches and single-objective approaches.

TABLE 3. Average classification error rates obtained by MOHHO and
MOHHOAC.

by MOHHO and MOHHOAC. From Table 3, it is seen that
MOHHOAC shows better classification performance than
the original MOHHO. Therefore, the results in the Figure 2
and Table 3 demonstrate that the three strategies used in the
MOHHOAC, Associative learning, grey wolf optimization,
and chaotic local search, can improve the performance of the
original MOHHO and enhance search ability of the proposed
algorithm.

2) COMPARISONS BETWEEN THE PROPOSED ALGORITHM
AND OTHER MULTI-OBJECTIVE APPROACHES
From Table 4, it is noted that the proposed algorithm
MOHHOAC can obtain the best performance on the
9 datasets, accounting for 56.25%, with respect to HV
indicator. The MOGWO can attain the best performance
on the Page_blocks, Audit_risk, Hillvalley_with_noise and
Lungcancer datasets. Winner is 4 out of 16. MOGWO
ranks the second place in the all algorithms. However,
MOGWO also doesnt́ obtain HV value on the Wine dataset.
On the Audit_risk dataset, MOGWO can obtain the same
performance with the proposed MOHHOAC. NSGA2 and
NSPSOFS can achieve the best HV value on the only
one dataset, Audit_risk, and they show the same perfor-
mance with MOHHOAC. NSPSOFS and MOGWO on the

Audit_risk dataset. MOHHO can obtain the best HV value
on the 4 datasets. However, MOPSO cannot obtain the best
HV value on the all datasets, which presents MOPSO can-
not search the better Pareto front. On the wine dataset,
MOHHOAC, MOGWO, NSGA2 and NSPSOFS doesn’t
search the Pareto front. In addition, according to the com-
parison from Table 4, MOHHOAC is significantly better
than others. Individually compared with MOHHOAC, these
numbers are (9, 4, 3) with respect to MOGWO, (13, 2,
1) with NSGA2, (14, 2, 0) with MOPSO, (12, 0, 4) with
NSPSOFS, and (12, 4, 0) with MOHHO, where three num-
bers denote significantly better, worse and equivalent, respec-
tively. In brief, from Table 4, MOHHOAC shows the best
performance in the all algorithms on 9 out of 16 datasets.
The main reasons maybe that in the proposed algorithm,
associative learning and chaotic local search are introduced
into MOHHO, to enhance the exploration and exploitation
ability of MOHHO.

In Figure 3, the results obtained by these algorithms are
shown for comparison from two dimensions, including clas-
sification error rate and selected feature number. Average
results running 30 times by each algorithm are presented in
the figure 3. From Figure 3, it is noted that number of features
and classification error rate are treated as two dimensions,
respectively corresponding to x axis and y axis. On the iris
dataset, the Pareto front obtained by MOHHOAC cannot
converge the Pareto optimum. MOPSO can obtain the clas-
sification error rate, while number of features obtained by
it is the largest. On the Page_blocks dataset, MOHHOAC
can obtain nearly the same Pareto Front, where NSGA2
can get the best error rate on the seven features. On the
Wine dataset, MOHHOAC can obtain similar shape of Pareto
front, but MOPSO can achieve the best performance. For the
datasets, zoo, Audit_risk, Vehicle, Ionosphere, Lungcancer,
Hill_ Valley_without_noise, Musk1, Urban_Land_Cover and
Movement_libras, MOHHOAC can converge the Pareto opti-
mum in terms of the Pareto Front obtained by it. On the
dataset, German, MOHHOAC not only obtains the mini-
mum classification error rate, but also achieves the minimum
feature subset. For the remaining one dataset, MOHHOAC
can obtain the better classification error rate when the
number of features is less than 5, while MOPSO can
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FIGURE 2. Pareto fronts obtained by MOHHO and MOHHOAC.

TABLE 4. HV values obtained by multi-objective evolutionary approaches.

obtain the best classification error rate when the number of
features is 11.

C. COMPARISONS BETWEEN MULTI-OBJECTIVE AND
SINGLE-OBJECTIVE APPROACHES
In the section, single-objective evolutionary algorithms com-
pare with multi-objective optimization algorithm on the

feature selection problem, with respect to classification error
rate. Classification error rate is the key goal for the feature
selection problem. From Table 5, it is noted that MOHHOAC
can obtain the minimum classification error rate on the seven
datasets. The performance ofMOHHOAC is superior to other
algorithms including multi-objective evolutionary algorithms
and single-objective evolutionary algorithms. It is seen that
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TABLE 5. Classification error rates obtained by multi-objective approaches and single-objective approaches.

FIGURE 3. Pareto fronts obtained by MOHHOAC, MOGWO, MOPSO, NSGA2, NSPSOFS on the (a) Audit_risk, (b) German,
(c) Hill_Valley_with_noise, (d) Hill_Valley_without_noise, (e) Ionosphere, (f) Iris, (g) Isolet5, (h) Lung-cancer, (i) Movement_libras,
(j) Musk1, (k) Page-blocks, (l) Spect, (m) Urban_Land_Cover, (n) Vehicle, (o) Wine, (p) Zoo datasets.

single-objective evolutionary algorithm can obtain the best
classification error rate on the three datasets, German, isolet5
and Musk1. For the remaining datasets, multi-objective evo-
lutionary algorithms can show better performance. The rea-
son maybe that in the multi-objective evolutionary algorithm,
feature selection problem is considered as a bi-objective
optimization problem, which can optimize two objectives
simultaneously, classification error rate and feature subset

size, and multi-objective evolutionary algorithm can obtain a
non-dominated solution set which can cover various feature
subset size in a run. However, in single-objective evolutionary
algorithm, classification error rate and feature subset size
both are considered as a fitness function by a coefficient.
So results obtained by single-objective evolutionary algo-
rithm vary with the coefficient. In addition, the Friedman test
with Bonferroni-Dunn’s procedure is implemented based on
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TABLE 6. Average rankings of the algorithms (Friedman).

TABLE 7. Post Hoc comparison Table for α = 0.05 (FRIEDMAN).

KEEL software, and the results are reported in Table 6 and 7.
As shown in Table 6, MOHHOAC obtains the best place.
In Table 7, p-values obtained by applying post hoc meth-
ods over the results of Friedman procedure. From Table 7,
MOHHOAC can obtain significantly better performance than
all algorithms, except for MOGWO and NSGA2. There-
fore, MOHHOAC shows superior performance in the all
algorithms.

VI. CONCLUSION
In the paper, a multi-objective Harris Hawks optimization
with associative learning and chaotic local search algorithm,
named MOHHOAC, is proposed to solve feature selection
problem. In the proposed algorithm, to improve perfor-
mance of Harris Hawks optimization, associative learning
and chaotic local search are introduced into it. A comprehen-
sive experiment is designed to demonstrate effectiveness and
efficiency of the MOHHOAC. In the experiment, traditional
algorithms (LFS and GSBS), single objective algorithms
(GA, PSO,HHO,WOA-SA,GWO) andmulti-objective algo-
rithms (MOGWO, MOHHO, MOPSO, NSGA2, NSPSOFS)
are compared on 16 benchmark datasets. The experiment
results show that MOHHOAC outperform other compared
algorithms in terms of classification error rate and feature
subset size by fair comparison.

Despite the good performance, there are also some draw-
backs with MOHHOAC, for instance it is computationally
expensive, and their scalability to datasets with thousands
of features is still unknown. In the future, the performance
of multi-objective evolutionary algorithm on the imbalanced
dataset and large-scale dataset with a large of features and
samples should be investigated to enhance their scalability.
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