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ABSTRACT This paper shows a proposal for a control scheme for the trajectory tracking problem in a
Two Degree of Freedom Helicopter (2DOFH). For this purpose, a control scheme based on a feedback
linearization combined with a Generalized Proportional Integral (GPI) controller is used. In order to
implement linearization by feedback, it is required to know and have access to all the physical 2DOFH
parameters, however, angular velocity and viscous friction are often not available. Commonly, state observers
are used to know the angular velocity, however, estimating friction results out to bemore complex. Therefore,
we propose the use of a Convolutional Neural Network (CNN) to estimate viscous friction and angular
velocity. The variables estimated by the CNN are entered into both the GPI and feedforward controllers.
Thus, the system is brought to a linear representation that directly relates the GPI control to the dynamics of
perturbations and non-model parameters. Finally, results of numerical simulations are shown that validate
the robustness of our scheme in the presence of disturbances in the tail rotor, as well as the advantages of
using a feedforward control based on a CNN.

INDEX TERMS Friction estimation, neural networks, non-linear system, tail rotor disturbance, two degrees
of freedom helicopter.

I. INTRODUCTION
In recent years, rotary wing Unmanned Aerial Vehicles
(UAV) have been used in areas where human actions are
restricted [1]–[3]. One of the most popular rotary wing UAV
is the helicopter, some of its main features are: Ability to
rotate on its own axis, levitate, take off and land vertically,
and move sideways or backwards while in air. [4]. Despite the
number of applications in which a helicopter can be used [5],
fully autonomous scale helicopters are not yet available. This
is due to non-linearities, strong coupling, uncertainties and
aerodynamic disturbances associated with this vehicle [6].

The associate editor coordinating the review of this manuscript and
approving it for publication was Francesco Piccialli.

Nowadays, there are different study areas focused on
helicopters, being of special interest the improvement of
its stability, autonomous navigation, takeoff and landing
control, trajectory tracking, disturbance rejection, among
others [7]–[10]. To achieve the above, it is necessary to know
the behavior of the disturbances that frequently occur, which
greatly impairs the Tail Rotor (TR), causing stability prob-
lems during flight and limiting maneuvering space [11], [12].

Hence, different experimental prototypes have been devel-
oped to study helicopter dynamics [13]–[15]. One of the most
popular consists of a Two Degree of Freedom Helicopter
(2DOFH), which recreates the dynamic behavior of the
helicopter in its pitch (θ ) and yaw (ψ) rotations [15],
[16]. The orientations are controlled by two Motor-Propeller
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Pairs (MPP) located at the ends of a rigid shaft, which can
rotate on the horizontal and vertical axis [17].

Several studies have focused on the design of control algo-
rithms for helicopters. For example, in [18] an observer based
on sliding modes proposes to estimate angular velocities,
obtaining results close to the real ones. Regarding the control
of these systems, in [19] an output feedback algorithmH∞ is
used to study the problem of disturbance attenuation. In [20],
a control scheme based on the active rejection of disturbances
for a 2DOFH is proposed. The algorithm contemplates the use
of GPI-type observers to estimate the speed and disturbances
caused by non-modeled dynamics and external disturbances.

The design of algorithms and control schemes for UAV,
such as those mentioned above, require solid mathematical
model foundations to develop a controller based on themodel.
If you have a reliable mathematical model, it is possible
to design a controller based on the model, which tends to
linearize the system [21]. However, these controllers require
a priori knowledge of the mathematical model parameters.
Parametric identification allows an attractive option to obtain
a numerical approximation of the unknown coefficients,
when prior knowledge is absent [22].

UAVs are used in operations in operations where several
types of disturbances exist, which are produced due to envi-
ronmental conditions and their non-linear dynamics. Further-
more, parameters such as the fiction of the actuators tend to
change with respect to time; furthermore, not all variables can
always be measured directly. This affects the performance of
control algorithms based on the dynamic model [23].

Therefore, various works have been developed focused on
the implementation of parametric identification techniques in
UAVs. For example, [24] carries out the experimental identi-
fication of the rotational inertia and coefficient of friction of
a quadrotor, which is achieved using Levenberg Marquardt
optimization and quadratic optimization to minimize error
criteria. Under another scheme, in [25] an extended Kalman
filter is used to identify the linear and angular velocities
of a quadrotor. Finally, in [26] the inertial parameters of a
helicopter are identified using recursive least squares, high-
lighting that the method is capable of updating the estimated
parameters while the vehicle is in flight.

As mentioned, there are different techniques used for
parameter estimation. It should be emphasized that the imple-
mentation of model-based control schemes requires knowl-
edge of the variables in real time, therefore, online estimation
techniques shall be used [27]. Under this premise, machine
learning techniques are a reliable alternative option to per-
form parametric identification online, with artificial neural
networks being the most used.

One of the most widely used neural networks consists of
the Multi-Layer Perceptron (MLP) architecture [28], how-
ever, the accuracy of its results is affected by problems
in the learning algorithm such as local minimums or lack
of information. Some works on parametric identification
for aeronautical systems using MLP topology are: [29]
and [30], showing the feasibility of incorporating this type

of schemes into aircraft control algorithms. Therefore, the
MLP has been modified, resulting in a Convolutional Neural
Network (CNN) algorithm, which is a deep learning tech-
nique [31]. Although CNNs are mostly used for image pro-
cessing, it has been reported that CNNs can also be used for
the identification of non-linear systems [32].

Therefore, in this paper we propose the use of a CNN to
estimate the coefficient of viscous friction, θ̇ and ψ̇ , which are
introduced to a feedforward control, linearizing the system
around all its equilibrium points. The feedforward controller
is combined with a GPI to provide robustness in the presence
of disturbances in the TR.

This work is organized as follows: section 2 describes
system mathematical model of the system considering dis-
turbances in the TR. Section 3 shows the proposed control
scheme for trajectory tracking. In section 4 we describe
the CNN design for the estimation of θ̇ , ψ̇ and viscous
friction. Moreover, section 5 shows the comparison of two
feedforward control schemes, highlighting the differences
when using information from CNN. Finally, the last section
contains the conclusions of this work.

II. MATHEMATICAL MODEL
Figure 1a shows the 2DOFH prototype used in this work,
which has dimensions of 74 cm long and 35 cm high. In addi-
tion, it has a mechanical coupling to generate disturbances
(see Fig. 1b and c).

Fig. 2 shows the free body diagram of the 2DOFH, as well
as the parameters and variables of interest in the system.
FTR and FMR are the thrust forces generated by TR and the
Main Rotor (MR), respectively. Fg corresponds to the force
of gravity and Lcm is the length from the center of mass to the
pitch axis. ry and rp are the distance from TR and MR to θ ,
respectively. Finally,ψ is the angle around the Z axis and φ is
the angle of incidence of the TR (φ directly affects the thrust
force of the TR).

The displacement in the X , Y and Z axes depends on the
variation of the 2DOFH angles and is expressed by

X = Lcmcψcθ,

Y = Lcmsψcθ,

Z = Lcmsθ, (1)

where s· = sin(·) and c· = cos(·). Subsequently, the dynamic
model is obtained from the Euler-Lagrange (EL) form [33]

d
dt
∂L
∂ q̇
−
∂L
∂q
= τ − Bq̇; (2)

with L = T − U , T and U denote the kinetic and potential
energies respectively, τ = [τθ τψ ]T are the generalized force
associated with the generalized coordinates q = [θ ψ]T and
B = [Bθ Bψ ]T is the viscous friction.

Next, the kinetic and potential energy are defined as:

T = Trp + Try + Tt ,

U = mhLcmgsθ, (3)
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FIGURE 1. 2DOFH prototype design.

FIGURE 2. 2DOFH diagram.

where mh is the mass of the helicopter, g is the force of
gravity. Tt is the translational kinetic energy, Trp and Try are
the rotational kinetic energy in ψ and θ , defined as [34]:

Trp =
1
2
Jeq_pθ̇2,

Try =
1
2
Jeq_yψ̇2,

Tt =
1
2
mh
(
V 2
x + V

2
y + V

2
z

)
, (4)

with Jeq_p and Jeq_y equal to the moments of inertia when
rotating over θ and ψ , respectively. The velocity on each
axis is obtained with the rotation angles and equation (1).
Therefore, total kinetic energy is defined as:

T =
1
2
Jeq_pθ̇2 +

1
2
Jeq_yψ̇2

+
1
2
mhL2cm

(
θ̇2 + (ψ̇cθ )2

)
. (5)

Thus, equation (2) results in:[
θ̈(Jeq_p + mhL2cm)+ mhL

2
cmsθcθψ̇

2
+ mhgLcmcθ

ψ̈(Jeq_y + mh(cθLcm)2)− 2mhL2cmθ̇sθcθψ̇

]

=

[
kpp kyysφ + kpycφ
kyp kyycφ + kpysφ

] [
Uθ
Uψ

]
−

[
Bθ θ̇
Bψ ψ̇

]
, (6)

where τθ and τψ are the torque applied to each axis of
rotation,Uθ andUψ are the control actions applied to the MR
and TR, respectively. kpp and kyy are the thrust force constants
in relation to the control action [Nm/%pwm] derived from the
direct incidence of the rotor thrust of the rotor MR and TR
on the axis θ and ψ , respectively. kpy and kyp are the thrust
force constants in relation to the control action [Nm/%pwm]
derived from the torque generated by the rotation of the rotor
propellers TR and MR in the axis θ and ψ [15], [35].

A. PARAMETRIC IDENTIFICATION USING CNN
The implementation of control algorithms based on the math-
ematical model requires knowledge of all parameters. If any
parameter is unknown, the mathematical model must be
adjusted to experimental data by a parameter identification
algorithm. In this context, there are on-line and off-line meth-
ods based on the least squares method [36], [37].

Currently, Artificial Neural Networks (ANN) are used to
model and identify parameters in dynamic systems, due to
their ability to approximate nonlinear functions and pre-
dict variables [38]–[42]. Therefore, deep learning methods
together with Neural Networks (NN) have been used for the
identification of unknown parameters, unmodeled dynam-
ics and external perturbations for control systems [43]–[46].
Under this approach, most identification applications use
adaptive or recursive NN, another common deep neural net-
work is the CNN [38], [47].

In particular, since the estimation of friction coefficient
is a complicated task, in this work we propose the use of
a CNN to estimate viscous friction and velocity at each
degree of freedom of the helicopter. CNN training is per-
formed offline (calculation of synapotic weights). After
training, the CNN is implemented in line with the control
scheme. In other words, viscous friction and speed are esti-
mated online, these variables are introduced into the control
scheme.

The estimation of the friction and velocity term is carried
out using CNNs, for which, a different CNN is used for each
of them, i.e. β̂θ = Bθ θ̇ and β̂ψ = Bψ θ̇ , with β̂θ and β̂ψ are
the output of the respectively CNN. Thus, we can estimate the
velocities ˆ̇θ and ˆ̇ψ in the form:

ˆ̇θ = β̂θ/Bθ ,
ˆ̇ψ = β̂ψ/Bψ , (7)

where, Bθ and Bψ are estimated constants of the viscous
friction of Bθ and Bψ .
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FIGURE 3. CNN for parametric estimation of Bθ θ̇ and Bψ ψ̇ .

Thus, (6) is rewritten as a function of the variables esti-
mated by the CNN, resulting in:[
θ̈ (Jeq_p + mhL2cm)+ mhL

2
cmsθcθ

ˆ̇ψ2
+ mhgLcmcθ

ψ̈(Jeq_y + mh(cθLcm)2)− 2mhL2cm
ˆ̇θsθcθ ˆ̇ψ

]

=

[
kpp kyysφ + kpycφ
kyp kyycφ + kpysφ

] [
Uθ
Uψ

]
−

[
β̂θ

β̂ψ

]
, (8)

To estimate the friction terms, we use the Nonlinear Auto
Regresive Exogenous (NARX) model:

β̂ = CNN
[
ϕ(0)

]
, (9)

where CNN[·] is the proposed strucuture of the CNN and ϕ(0)

is the input, It is defined for each CNN as:

ϕ
(0)
θ (ξ ) =

[
τp(ξ ) · · · τp(ξ − rθ1 ) θ (ξ ) · · · θ (ξ − rθ2 )

]T
,

ϕ
(0)
ψ (ξ ) =

[
τy(ξ ) · · · τy(ξ − rψ1 )ψ(ξ ) · · · ψ(ξ − rψ2 )

]T
,

(10)

ξ indicates the current instant of time, rθ and rψ are the
regression order for each data.

Fig. 3 shows the structure of the CNN, this being our pro-
posal for the estimation of β̂θ and β̂ψ . Our proposal consists
of two convolutional blocks (n = 4) followed by a fully
connected layer.

Each convolutional block consists of two different lay-
ers, a convolutional layer and a subsample layer, with their
respectively hyper-parameters. The first is the fundamental
part of this algorithm [48], in it the convolution operation
is carried out between the input of the convolutional block
ϕ(`−1) and the filters of this layer κ (`) which theirs size are 3,
thus generating the feature maps χ (`) as follows:

χ
(`)
h = κ

(`)
h � ϕ

(`−1)
h , (11)

where the superscript (`) indicates the current layer in which
the operations are performed, � represents the convolution
operation and h represents how many filters there are present
in the layer.

Once these maps have been generated, we proceed to use
the ReLU activation function [48]:

ϑ
(`)
h = max(χ (`)

h , 0). (12)

The max(·, ·) operation picks up the largest element of its
arguments and passes them to the next layer, this operation is
applied to each element in the feature maps. The subsample
layer, in which the max-pool operation is performed [49],
follows this activation function, here the large value in a group

of consecutive elements of the input vectors are chosen this
is a simplification applied only to vectors instead of matrices,
thus obtaining the output of the convolutional block as:

ϕ
(`)
h = max-pool(ϑ (`−1)

h , ss(`)), (13)

ss indicates the amount of elements to be considered in the
max-pool operation, this value can vary in each convolutional
block. These steps are repeated for the amount of convolu-
tional blocks that are occupied within the structure.

After the convolutional block is complete, the output of
CNN is generate by:

β̂ = V%, (14)

where V are the synaptic weights in the output layer and % is
the concatenated vector of the output of the last convolutional
block defined as:

% = [ϕn1 ϕn1 · · · ϕ
n
1 ]. (15)

To train the CNN, the back propagation algorithm is
employed and modified in order to adapt it to the convolu-
tional blocks.

The weights V in the final layer of CNN are fully- con-
nected as in a MLP. The cost function to be minimized is the
square error defined as:

J (r) =
1
2
e2(r) =

[
β̂(r)− β(r)

]2
, (16)

where r is each the training iteration. The update law for the
output weights is:

Vi(r + 1) = Vi(r)− η
∂J
∂Vi

, (17)

with Vi been each element in matrix V . For the sub-sample
layer, the update law here its defined as:

∂J
∂ϑ (`−1) = up

(
∂J
∂ϕ(`)

, ss(`)
)
, (18)

where up(·, ·) is the opposite function to the maxpool. This
operation passes the gradient to the position of the elements
that in the feedforward had the largest contribution in this
layer, i.e. the elements chosen by the operation maxpool so
the gradient is propagated through the CNN.

Then, the reverse operation to ReLU function is used,
where its derivative f

′

(x) needs to be defined first as:

f
′

(x) =

{
1 if x > 0
0 otherwise.

For the convolutional layers, there are two operations, one
is to update the filters, the other one is to propagate the
gradient to the previous layer. The update law for the filters
is given by;

∂J

∂κ
(`)
h,a

=

N−fl∑
i=0

∂J

∂ϑ
(`)
i

∂ϑ
(`)
i

∂χ
(l)
i

∂χ
(`)
i

∂κ
(`)
i

, (19)
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Algorithm 1 Estimation of β̂θ and β̂ψ
1: Acquire the training (DTR) and testing (DTE) data-sets

from the system in open loop, with DTR 6= DTE
2: Choose the hyper-parameters: number of layers `, train-

ing epochs r , filters κ and learning rate η
3: Initialization the weights V in [0, 1] and the filters κ in

[−1, 1]
4: Training stage:
5: for r times do
6: Forward CNN
7: Backward CNN
8: end for
9: Testing stage:

10: Forward CNN
11: Calculate the MSE
return Return the hyper-parameters and weights matrix used
to Control simulation

where

∂ϑ
(`)
i

∂χ
(l)
i

= f
′
(
χ
(l)
h,i

)
. (20)

So, (19) can be written as:

∂J

∂κ
(`)
h,a

=

N−fl∑
i=0

(
δ
(`)
h,i

)
ϕ
(`−1)
h,i+a , (21)

with

δ
(l)
h,i =

∂J

∂ϕ
(`)
h,i

f
′
(
χ
(`)
h,i

)
. (22)

To obtain the gradient of the previous layers, we have:

∂J

∂ϕ
(`−1)
i

=

fl−1∑
a=0

∂J

∂χ
(`)
i−a

κ (`)a , (23)

which in terms of a convolutional operation this previous
equation is:

∂J

∂ϕ
(`−1)
h

= δ
(`)
h � rot180

(
κ
(`)
h

)
, (24)

where rot180(·) is equivalent to performing a convolution
of δ(l)h with the filter K (l)

h starting with the last element in the
vector and finishing woth the first one ◦, � is the convolu-
tional operation.

TheAlgorithm 1 explains the methodology to estimate the
frictions terms (β̂θ , β̂ψ ). Even with ANN architectures like
the one proposed in this work, the accuracy of the CNN esti-
mation depends on the hyper-parameters, however, there is no
deterministic way to choose them. Therefore, they are chosen
randomly and based on trial and error, the best possible ones
are selected within a given set of tests.

FIGURE 4. Proposed control scheme, feedforward GPI control with
variables estimated by the CNN.

III. CONTROL SCHEME
The control objective is to track the trajectory in θ and ψ
despite the presence of disturbances in the TR. For this,
a control strategy is proposed that combines a feedback lin-
earization with a GPI controller (see Fig. 4), this is made
up of 2 control actions Uθ and Uψ in charge of compen-
sating the dynamics of the system (6) (with φ = 0) and
likewise has auxiliary control actions Vθ and Vψ dedicated
to compensating endogenous and exogenous disturbances.
Thus, the system approximates a form γ̈ = Vi + ξ , where
ξ are the endogenous and exogenous disturbances and γ̈ the
acceleration of the coordinate [3], [15].

A. STRATEGY CONTROL
From the above, based on (6) (with φ = 0), the following
feedforward controllers are proposed for the θ and φ angles:

Uθ =
[
Vθ (Jeq_p + mhL2cm)− kpyUψ + β̂θ

ˆ̇θ

+mhL2cmsθcθ
˙̂
ψ2
+ mhgLcmcθ

] 1
kpp
;

Uψ =
[
Vψ (Jeq_y + mh(cθLcm)2)+ β̂ψ ˆ̇ψ

− 2mhL2cm
˙̂
θsθcθ ˙̂ψ − kypUθ )

] 1
kyy
, (25)

where Vθ and Vψ are auxiliary controls, defined as [3], [15]:

Vγ = γ̈ ∗ − K3γ ˙̂eγ (t)− K2γ eγ − K1γ

∫ t

τ1=0
eγ (τ1)dτ1

−K0γ

∫ t

τ1=0

∫ τ1

τ2=0
eγ (τ2)dτ2dτ1, (26)

with γ = θ , ψ ; eγ (t) = γ (t) − γ ∗(t); ˙̂eγ (t) = ˙̂γ (t) −
γ̇ ∗; γ ∗, γ̇ ∗ and γ̈ ∗ are the desired position, velocity, and
accelerations, respectively. Kσγ are the gains of the con-
trollers, with σ = 0, 1, 2, . . . , 4. ˙̂γ corresponds to the
estimates of the variables θ̇ and ψ̇ , respectively, which are
obtained using the CNN described in Section 3.

From the above, substituting (25) into (8) and solving the
equation:

0 = −θ̈ + Vθ +
−kpy + kyysφ + kpycφ

Jeq_p + mhL2cm
Uψ ; (27)
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TABLE 1. Poles and gains.

0 = −ψ̈ +
(
cφ +

kpy
kyy

sφ
)
Vψ

+

(
1− cφ −

kpy
kyy

sφ
)
kypUθ − Bψ ψ̇+2mhL2cmθ̇sθcθψ̇

Jeq,y+mhc2θL2cm
,

(28)

then, substituting (26) for (27) and (28):

0 = ëθ − K3θ ˙̂eθ (t)− K2θeθ − K1θ

∫ t

τ1=0
eθ (τ1)dτ1

−K0θ

∫ t

τ1=0

∫ τ1

τ2=0
eθ (τ2)dτ2dτ1

+
−kpy + kyysφ + kpycφ

Jeq_p + mhL2cm
Uψ ; (29)

0 =
(
cφ +

kpy
kyy

sφ
)ψ̈∗ − ψ̈

cφ + kpy
kyy
sφ
− K3ψ ˙̂eψ (t)

− K2ψeψ−K1ψ

∫ t

τ1=0
eψ (τ1)dτ1

−K0ψ

∫ t

τ1=0

∫ τ1

τ2=0
eψ (τ2)dτ2dτ1


+

(
1− cφ −

kpy
kyy

sφ
)
kypUθ − Bψ ψ̇ + 2mhL2cmθ̇sθcθψ̇

Jeq,y + mhc2θL2cm
.

(30)

From the above, performing the Routh-Hurwitz analysis,
the controller is capable of compensating for step-type dis-
turbances, for tracking step and ramp trajectories in yaw and
parabola type for the pitch axis. So, for when φ is zero and
by differentiating equations A and B twice, obtain

0 = e(4)θ + K3θe
(3)
θ + K2θ ëθ + K1θ ėθ + K0θeθ ; (31)

0 = e(4)ψ + K3ψe
(3)
ψ + K2ψ ëψ + K1ψ ėψ + K0ψeψ . (32)

B. TUNING
For GPI controller tuning, the resulting dynamics are
expressed in terms of the tracking error, obtaining the follow-
ing characteristic polynomial [15], [50]:

S4 + K3γ S3 + K2γ S2 + K1γ S + K0γ = 0, (33)

the coefficients kσγ are selected so that the characteristic
polynomial has its roots on the left side of the complex plane
(Hurwitz) [50], [51]. The gains of the GPI controller for θ and
ψ are shown in the Table 1:

FIGURE 5. Estimation of the terms (a) β̂9 and (b) β̂θ .

FIGURE 6. Disturbances.

TABLE 2. MSE obtained with CNN, DN and MLP.

TABLE 3. Bezier polynomial parameters.

IV. NUMERICAL SIMULATIONS
In this section the results of this work are described. First,
the behaviour of the CNN for estimating the friction and
velocity present in each coordinate are shown. Subsequently,
we proceed to incorporate the CNN into the control scheme,
showing the numerical results.

A. CNN RESULTS
Simulations for the estimation of friction terms are shown
next. Two data set were used, consisting of 9250 samples of
position, torque and friction. One data-set was used for train-
ing, whereas the other was used for testing. These data-set
were obtained from the system in open loop and this process
was made off-line. The matrix weights of the final iteration
are used in control stage. For each CNN, the structure has two
convolutional blocks, which implies that are 2 convolutional
layers and 2 subsample layers, i.e. n = 4. The initialization
of hyper-parameters is made within the range of [−1, 1].

With respect to β̂θ , the CNN as the regression order rθ1 =
rθ2 = 4, there are h = 10 filters in each convolutional
layer, the subsample length are s(2) = s(4) = 2. Estimation

VOLUME 10, 2022 73479



M. C. Maya-Rodriguez et al.: Integration of CNN in a Dynamic Model-Based Controller for Control of a 2DOF Helicopter

TABLE 4. 2DOFH parameters.

FIGURE 7. Speed estimation by CNN.

results are presented in Fig. 5a, theMean Square Error (MSE)
obtained is 4.07× 10−4.
For β̂9 , the regression order are rθ1 = 18 and rθ2 = 10,

18 filters were used in each convolutional layer and subsam-
ple length are the same as before, s(2) = s(4) = 2. Simulation
results are shown in Fig. 5b, obtaining an MSE of 0.0011.

The results obtained were compared with a MultiLayer
Perceptron (MLP) and a modern Deep-Neural Net-
work (DNN) structure [52]. It should be noted that CNN
presented a lower MSE compared to MLP and DNN (see
Table 2).

The DNN used for comparison contains 5 hidden layers
and 80 entries for theta, 150 entries for psi and approximately
200 training epochs were needed to obtain acceptable results.
The synaptic weight matrices were randomly initialized. Sim-
ilar conditions were used for MLP, highlighting the better
performance of the proposed CNN.
Remark 1: The coefficients obtained in Table 2 shall be

interpreted alongisde with the simulation conditions and their
subsequent applicability in a physical environment for exper-
imental tests, this means that the application of the DN and
MLP architectures will hardly be used since their precision.
It will be subject to specific conditions in the selection of
a robust digital control system that guarantees the correct
estimation of the parameters necessary for the control of the
helicopter. Therefore, the CNN proposed by having more
relaxed characteristics such as the number of inptus, will
facilitate its application in a control system.

B. TRAJECTORY TRACKING
Several numerical simulations were made for the validation
of the control scheme described in (25). The control objective

is to follow Bezier polynomial (γ ∗) trajectories in both θ
and ψ . Table 3 shows the parameters used for the reference
trajectories, (γ ∗i ) and (γ ∗f ) correspond to the initial and final
position, respectively; while (ti ) and (tf ) indicates the start
and end time of the trajectories.

The simulations were carried out considering the following
initial conditions: θ (0) = 0.92 rad (equivalent to the initial
state of the system is at rest), ψ(0) = 0 rad , θ̇ = ψ̇ =

0 rad/s. Table 4 shows the physical parameters of 2DOFH.
The experiments carried out were based on 3 scenarios:

The first considers the RC without disturbances present;
whereas the second considers step-type disturbances that
occur randomly in the RC; finally, the presence of constant
oscillations in φ is contemplated (see Fig. 6).

V. COMPARISON AND DISCUSSION
In this section, we evaluate our proposed control scheme
against the one reported in [15]. Both schemes use feedfor-
ward GPI controllers; however, [15] proposes the use of an
integral reconstructor to approximate γ̇ , which is used only
within the GPI controller; therefore, an exact linearization of
the system is not achieved. In contrast, the current proposal
contemplates the use of a CNN to estimate the speed and
friction present in each degree of freedom, achieving a better
compensation of the 2DOFH dynamics.

Thus, both control schemes were subjected to the distur-
bances described in Section IV-B. Subsequently, the Incre-
mental Error (IE), Incremental Absolute Error (IAE),and
Mean Square Error (MSE) metrics obtained in each experi-
ment were compared.

Fig. 7 shows behavior of the velocities in θ and ψ for
cases 1, 2 and 3, which are compared with the estimation
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FIGURE 8. Results when using the variables estimated by the CNN.

FIGURE 9. Results when using an integrative reconstructor.

TABLE 5. Incremental error (IE).

TABLE 6. Incremental absolute error (IAE).

TABLE 7. Mean of the squared error (MSE).

given by CNN. The CNN takes approximately 0.5s to con-
verge to the real value of the velocity (even in case 3). How-
ever, it is observed that the network has a lower performance
in the presence of aggressive disturbances. Despite the above,
the estimation is quite good and favors the performance of the
control scheme.

Figs. 8 and 9 show the results obtained for the trajectory
tracking in θ and ψ , respectively. The results correspond
to the cases defined in Section IV-B. Fig. 8 shows the
system behaviour before a feedforward GPI controller in

FIGURE 10. IE for θ and ψ .

combination with the estimation of speed and friction by
means of a CNN; for its part, Fig. 9 shows the behavior
of the helicopter when using the scheme described in [15].
It is observed that the proposed controller better approximates
the desired trajectories. We must highlight the considerable
improvement in the angle θ ; however, it seems that the angle
ψ (case 3) has a similar behavior in both schemes, which is
due to the direct incidence of RC disturbances in ψ , although
the oscillations are of smaller amplitude when CNN is used.
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The results of the IE, IAE and MSE metrics are shown
in Tables 5, 6 and 7, respectively. The indices were applied
in both control schemes to quantitatively evaluate their per-
formance. It should be noted that for case 1, the IE and the
IAE are lower when using an integral reconstructor; however,
in the presence of disturbances, the feedforward scheme in
conjunction with CNN performs better.

Fig. 10 shows the behavior of IE, which presents oscilla-
tions closer to zero with the scheme feedforward with CNN
compared to the feedforward with an integral reconstructor.

VI. CONCLUSION
The simulation results showed that the feedforward controller
in combination with the CNN provides higher performance
compared to the scheme reported in (25). It should be noted
that both schemes retain the active disturbance rejection prop-
erties of a GPI controller; however, the use of CNN reduces
the need for integral reconstructors and allows the system to
be approximated to a more linear representation.

The proposed CNN showed a good estimation of the
parameters even when the system was subjected to distur-
bances in the TR. Despite the deviation that usually occurs
in the estimation when subjecting the system to disturbances,
the friction and speed obtained allowed a good compensa-
tion of the 2DOFH dynamics. Hence, the robustness of the
proposed scheme against disturbances in the TR is demon-
strated. Also, we must emphasize that CNN does not update
its weights in real time, which reduces the computational
requirements for its future implementation. Finally, it is
important to mention that the use of CNN to estimate veloci-
ties and frictions consumes a higher computational cost com-
pared to the integral reconstructor.
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