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ABSTRACT Secure communication is the top concern of the Internet of Vehicles (IoV). The trust between
nodes can have a considerable impact on ensuring IoV security. Therefore, the trustworthiness of a received
message must be evaluated before acting upon it. A malicious node can broadcast bogus events to obtain net-
work control. False reports and malicious vehicles render the network unreliable during emergencies. In this
study, a unique trust framework is presented that considers most of the aspects of trust in IoV to accurately
identify malicious nodes and events. Previous studies have proposed some trust models for VANETs, which
have many deficiencies in serving IoV. In particular, they lack dynamism and practical implementations. All
the existing models have two things in common, first they work on fixed parameters, and second, they use
static scenarios. In contrast, the proposed framework is based on a context-awareness cognitive approachwith
artificial intelligence (AI) properties. The framework cognitively learns the environment from the received
report and creates a context around an event. In addition to trust management (TM), the proposed framework
offers a novel process for detecting and screening malicious nodes using anomaly outliers. The performance
of the framework was examined using an experimental simulation. The proposed framework was compared
with top benchmarks in the field. The results show inclining performance indicators. The proposed trust-
management framework has the potential to serve as a component of IoV security.

INDEX TERMS Internet of Vehicles (IoV), trust management (TM), vehicular ad hoc network (VANET),
context awareness.

I. INTRODUCTION
High-speed wireless communication has revolutionized the
Internet of Things (IoT). Currently, every other field is merg-
ing in IoT; likewise, vehicular communication has shifted
from vehicular ad hoc networks (VANETs) to the Internet
of Vehicles (IoV) [1]. IoV is in the development phase and
has not been applied to on-road traffic; however, it is soon
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expected to be part of on-road traffic. For IoV, communi-
cation security is a high-priority requirement. The informa-
tion shared among nodes is highly sensitive; if breached,
it can result in traffic accidents and life threats to humans.
Owing to Internet connectivity and wireless networks, IoV
is always vulnerable to serious security threats; the internet
has increased the attack surface for cyber threats. Malicious
nodes in a network can maneuver all vehicles by sending
fake messages, resulting in catastrophic outcomes [2]. Under
these circumstances, trust plays a vital role in enhancing
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FIGURE 1. Overview of the presented IoV architecture, where all nodes are equipped with OBU and local
data repository, linked to a central cloud-based system using BTSRsu.

wireless network security. Trust has always been a part of
vehicular network security [3]. Good trust management has
been proven to improve security while nodes communicate
vital messages [3], [4]. Trust management aims to ensure
the legitimacy of the received report regarding a critical
road event. Over the last decade, some fundamental work
has been conducted on trust management in VANETs. How-
ever, existing models have two significant problems: First,
existing models are not dedicated to IoV and lack essen-
tial requirements [5]–[8]. Second, the models are designed
to work on fixed notions and lack flexibility and adaption,
which is the utmost requirement of IoV. In addition, IoV
requires intelligent solutions to handle its diversity, which
can be covered by an artificial intelligence (AI) solution [10],
[10]. Context-awareness is an AI approach that deals with
making systems flexible and dynamic. Context-aware trust
management framework (CTMF) is presented to achieve IoV
trust. Unlike other models, CTMF emphasizes building all the
available information around an event, which helps to infer
trust accurately. The novel feature of the presented framework
includes the use of context-aware in trust management, three-
layer malicious node detection, confidence scoring, and mul-
tilevel uncertainty handling. These unique features make the
proposed trust-management framework much more effective.

A. IoV ARCHITECTURE
Prior to discussing the details of the proposed framework, it is
essential to discuss the IoV architecture owing to a lack of

standards. The generic IoV architecture is shown in Figure 1.
Accordingly, all the nodes are equipped with essential cir-
cuitry called an on board unit (OBU) and a local data repos-
itory (LDR). Roadside units (RSUs) form the major VANET
infrastructure where all nodes can connect and communicate.
The cloud provides a centralized IoV communication center.
Cloud services also manage a central data repository (CDR).
A base transceiver station (BTS) can be used as an RSU, and
the internet forms the backbone of IoV communication. The
LDR and CDR were synchronized after a frequent period.

The remainder of this paper is organized as follows; we
discuss the background literature on the trust model for IoV
in Section 2. In Section 3, we present the proposed frame-
work and its essentials. In Section 4, we provide a detailed
description of the trust evaluation. In Section 5, we present the
simulation and analysis of the proposed trust-management
framework. In Section 6, the model is validated by bench-
marking with related models. Finally, Section 7 presents the
conclusions of the study

II. RELATED WORK
Security has been identified as a critical concern in research
on the future challenges of IoV. A variety of security issues
have been raised with the development of IoV [11], making
security one of the primary challenges. However, existing IoV
trust evaluation and management approaches cannot provide
practical remedies [4], [12]–[14]. Several trust evaluation
methods have been proposed for vehicle communication, and
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some foundational approaches are discussed here. Most trust
models are based on VANETs/ITS, and there is a dearth of
recent works on IoV [15]–[17]. A few concept-level works
on IoV trust using blockchain technology were recently pre-
sented [16], [18]. Blockchain-based models present several
technical drawbacks, such as high computational require-
ments in terms of time and space, proof of work, scalabil-
ity, and centralized nature. The downside of the blockchain
makes it incompatible with IoV. Different types of trust
measuring models can be employed to classify all available
models. Data-centric, entity-centric, and hybrid models are
the most frequently used classifications of trust models in
VANETs. Several models were presented for each category.

A. DATA CENTRIC MODELS
Data centric models are based on node information used
to infer the trustworthiness of a report [19]. Most early
trust models were data-centric. According to some scholars,
data centric models are more appropriate for trust evaluation
[20], [21]. In an earlier data-centric model [22], researchers
focused on trust-based scalability by assigning different roles
and using their experiences. In data-centric models [23], [24],
neighboring vehicles share opinions about an event and com-
pute the trust of themaximum votes. The principal problem of
the data-centric approach is that it ignores information related
to the vehicle [12]. Besides, distributed attacks using opinions
are another drawback of these models. Opinion formulation
methods using such models are not defined in detail.

B. ENTITY CENTRIC MODELS
The second form of the model is based on building trust
against the nodes. In the methodology, experience is an indis-
pensable feature. In some entity-centric models, intravehicu-
lar communication is considered while measuring trust in real
time [7], [25]. Entity-centric techniques are more effective
and valuable than data-centric techniques [12]. In an entity-
centric trust approach, the trust level was measured using
fuzzy logic [25]. The fuzzy logic basedmisbehavior detection
scheme is an effective way to detect malicious nodes [26].
An alternative approach works on previous experience, cer-
tificate authority (CA), and opinions to construct node trust
[15]. Other keymethods [27], [28] utilize amixture of authen-
tication fromCA and encryption. Themain drawback of these
models is that it is impossible to assume malicious behavior
once a node has been verified. The second disadvantage is
reliance on CA. Overall, entity-centric models are great for
assessing trust, and they overlook the benefits of data-centric
models.

C. HYBRID MODELS
Hybrid models combine the characteristics of both data and
entities to establish the trustworthiness of a receivedmessage.
These models are the most renowned and well formulated.
Generally, there is an association between the data trust and
entity trust modules. One suchmodel is a combination of role-
based methods and experience [8]. Another hybrid approach

measures trust through neighbor opinions and similarity [29].
Typically, the implementation of a ‘‘long-term trust estab-
lishment’’ approach in a hybrid model ensures message
protection [30]. Some researchers have utilized probability
approaches, such as Bayes’ law, evidence theory, andMarkov
chain theory [7], [20], [31]–[34]. Another hybrid model is
based on pre-assigned trust and utility theory [12]; enormous
computation in real time is the disadvantage of this trust
model.

Blockchain based trust models are now an active research
area. A research study discussed that blockchains could be
useful for building lightweight authentication systems dur-
ing trust management [28], [35]; their result reveals that
the lightweight authentication approach is appropriate and
secure for dynamic networks. In order to meet the criteria of
IoT/IoV, authentication must be dynamic and efficient [36].
Therefore, researchers are working on lightweight authenti-
cation [37]. A research work suggested a lightweight authen-
tication method for IoT security and similar networks [38].
In a recent authentication-based framework, the researchers
have considered the blockchains for IoV [39]. However, the
blockchains in IoT-based networks are still dubious; there are
many challenges associated with blockchains, especially in
networks like IoT [40]. Another recent work on trust using
blockchain was conducted and found workable [41]. The
main problem with this study was dependency on RSUs.

Although hybrid models incorporate data and entities, they
lack dynamic integration [12]. However, based on the com-
plexity of the research, no such trust model employs all
available information during the event. All the models assess
trust based on a set of factors and scenarios. Likewise, the
suggested TM framework adopts a hybrid approach to trust
evaluation because it uses as much information as possible.
Meanwhile, all the existing models are for VANETS/ITS,
which is a novel trust model for IoV that operates on context
adaptation; no such trust model has yet been reported in the
field.

D. CONTEXT-AWARENESS
The fundamental goal of implementing context awareness
involves increasing flexibility by maximizing the usage of
available data [42]. In a review study [4], the authors
explained the potential requirement of an artificial intel-
ligence (AI) method for trust measurement in vehicular
communication. A well-known study has discussed the exis-
tence of rationality between VANET security and AI [4].
Rationality exists between contextual awareness and human
reasoning [43]. A context is a type of information that per-
tains to human problem-solving abilities [44]. Context aware-
ness is a concept related to human nature to understand
one’s surroundings. AImethods are suitable for context aware
systems [45]. The AI community has immense potential to
apply various techniques to work on context awareness [43].
The context model must be able to adapt to change and infer
a novel context [44]. As IoV is a new field, very few studies
have been conducted. Some context-based trust models are

VOLUME 10, 2022 73687



A. Rehman et al.: CTMF: Context-Aware Trust Management Framework for Internet of Vehicles

FIGURE 2. CTMF with four modules: parameters information, context
building, trust evaluation, and malicious node detection.

presented, such as [2], [8], [19], [26], [42]. The main problem
with these models is; that they have not Partially used context
and are unable to provide comprehensiveness in terms of con-
text. The proposed TM framework is novel for IoV security.
The framework aims to incorporate flexibility to satisfy the
dynamic requirements of IoV. Most renowned VANET TM
models do not provide a complete solution for IoV.

III. PROPOSED TM FRAMEWORK
An IoV TM framework was presented to solve the short-
comings of existing models for successful trust evaluation.
Figure 2 illustrates the proposed TM framework, which
comprises four major modules: parameter module, context,
module, the trust evaluation module, and malicious node
detection. The basis of the proposed framework is theVANET
best practices used by renowned trust models [7], [8], [25],
[29], [30], [46]. The framework components were built on
generic ‘‘context-aware’’ flow models [44], [47], [48]. Each
component of the TM framework is discussed in detail below:

A. PARAMETER INPUT LAYER
Parameter management is the first task of trust evaluation,
as shown in Figure 2. Information about an event is fil-
tered to retrieve the parameters from the received messages.
The framework categorizes all potential parameters for ease
of use. The categorization scheme is discussed in the next
section. Accordingly, the node’s information is organized
into ‘‘cues,’’ which are then supplied to the context layer for
context construction. As, certain elements have a more reli-
able source and weight than other elements, the fundamental
challenge is to prioritize them.

B. CONTEXT LAYER
A low-level context is data that is immediately available and
translated into a high-level context. The road-event context

TABLE 1. The nomenclature used in the article.

was established in this layer. Typically, context data or param-
eters are interconnected pieces of information with a degree
of uncertainty. Context acquisition is the first step during
parameter cue management in any context-building process,
where data are fed for further processing. The perimeter
module delivers information to the context module in the
form of easily comprehensible‘‘cues.’’ The last step is context
awareness, which presents the context data in an actionable
format. A system related to a context requires a quantitative
set of developed usable contexts. The deliverable of this layer
is the context developed using the available set of parameters.
The context provides complete information to evaluate trust
in an event. Ontology is used for context building, which
is based on formal logic and is one of the potential ways
for context construction. Context information is structured
around a road event with the support of an ontology. The
context of ontological details is discussed in the following
section.

C. TRUST EVALUATION LAYER
The layer determines the degree of trust. Owing to the use of
the context cognitive method, there is continuous information
exchange between the inference engine and trust evaluation
module. The trust evaluation layer comprises various mod-
ules. The best practices were used to align the evaluation
modules with suitable scenarios using context-awareness.
The commonly employed methods are experience, role, opin-
ion, and thread-based methods, which have been investigated
in the literature. Distinct situations require distinct evalua-
tion modules to calculate trust. Each road event had differ-
ent available parameters. Using context awareness, CTMF
links an appropriate trust evaluation module with an event.
Table 1 describes the symbols used in the article.

D. PROXIMITY
A simple distance formula can be used for theoretical con-
cepts, but it does not work for real-time calculations. The
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FIGURE 3. Malicious node detection.

framework uses the ’Haversine’ formula, which allows the
measurement of the distance between two geographical
points [49]. The latitude is denoted by ϕ, longitude λ, and R
denotes the Earth’s radius (6,371 km). All angles were con-
verted in radians to pass to functions, and Equation 1was used
for the conversion. Equation 2 computes the square of half
the chord length between two points. Equation 3 shows the
angular distance between two points in radians. Equation 4
calculates the distance between two geographical points on
the map.
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E. MALICIOUS VEHICLE DETECTION BY ANONYMITY
OUTLIERS
In vehicular networks and trust management, malicious node
detection is crucial for single out suspicious nodes [50].
Previous models also considered the identification of mali-
cious nodes. Anonymity is effective for detecting malicious
vehicles and suspicious reports in a system; anonymity is
effective [51]. Standard deviation (SD) is a powerful tool
for determining anomalies in systems [52]. Generally, nodes
that do not correspond to a certain limit are referred to as
outliers. An outlier is a data point that deviates from well-
structured data. The proposed framework focuses on identify-
ingmalicious nodes that affect the quality of trust values. This
module uses SD to detect the expected malicious vehicles in
the network. SD expresses how much the data are different
from the mean of the distribution.

The malicious-node detection module uses three param-
eters: time, speed, and distance. Nodes that fall out of the
lower or upper limits are considered malicious. These three
parameters allowfiltering out malicious nodes in the informa-
tion to make the system secure. The σ2 denotes the average
of the squared difference from the mean (µ). In Equation 5,
µ denote the speed, time, and distance. The µ, σ^2, σ were
independently calculated for each parameter, and Equation 5
was used to calculate the mean of each parameter. Equation 6
was used to calculate the variance, and Equation 7 was used
to calculate the SD of the three parameters discussed above.

The upper and lower bounds were set to ±2 SD of the mean.
Figure 3 illustrates the malicious node detection module, in
which the three parameters were evaluated for SD. Vehicles
that fall within these bounds are considered malicious.

µ =

∑
parameter

number of vehicles
(5)

σ 2
=

∑
(pvi − µ)

2

n
(6)

σ =

√
1
N

∑N

i=1
(pv− µ)2 (7)

F. TRUST PARAMETERS
The first step in context-building involves categorizing the
parameters. The categorization aims to manage cues for con-
text building, and Table 2 summarizes all possible parame-
ters. The first category comprises general parameters, such as
experience, number of reports, and opinions. Table 2 also lists
its type and availability. The parameters related to network
topology are specified in the second category. The parameters
contain information related to a single event, as listed in
Table 2. Different paraments in Table 2 are based on the
category type used by most of the trust models. As the event
changes, all the parameter values are refreshed for the next
event. The third category details parameters related to the
road events under consideration. The last category describes
parameters related to the sender vehicle.

G. TRUST EVALUATION PROCESS
The TM framework uses a critical road incident as the central
point of trust evaluation. The event is represented by Event
ID (Evn_ID). The node that reports the event is denoted
as (Rep_veh). The carrier vehicles that hop or beacon the
message are denoted as (Carr_veh). Local and centralized
databases were designated as local databases (Locl_DB) and
centralized databases (Cent_DB), respectively. Trslv repre-
sents trust value. Thus, the trust level of a particular event is
represented by (Ev_ID_Trslv), and the trust level of a vehicle
is denoted by (Veh_Trslv). Lastly, the trust level value was
synchronized with local and centralized data repositories.

H. CONTEXT ONTOLOGY
An ontology is a context-building approach that offers the
highest range of features and AI support. With ontology,
it is not compulsory to store all relations explicitly; the
present triplets can generate new facts. An ontology is an
explicit, methodical explanation of the observations in a cer-
tain domain. An ontology, a collection of individual class
instances, creates a knowledge base [53]. Here, the ontol-
ogy should be explicitly defined as not a set of instruc-
tions; instead, it is a set of interrelated concepts used for
inferencing. The taxonomical association of ontology com-
prises the following classes: Vehicle, Evaluation_Module,
and Event. All the trust evaluation components are subclasses
of class Evaluation_Module, namely Experience_Module,
Special_Vehicle, Opinion, Cluster_Based, Thread_Based,
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TABLE 2. List of parameters.

and Uncertainty. Rep_veh, Carr_veh, and Special_veh are
members of the vehicle class. The class is disjointed to pre-
vent abstract intersection by the reasoner. A brief ontology
diagram is illustrated in Figure 4, which illustrates the cat-
egorized classes and instances of the model. The instances
contained are linked with the node ID, event ID, location,
time, and direction.

I. TRUST LEVEL THRESHOLD
Trust (Trslv) was evaluated between 0 and 1, untrusted was
represented as 0, and maximum trust was represented as
1 [8], [54], [55]. Initially, all vehicles were allotted as
Trslv = 0 and special vehicles as 0.5. Central and local
databases store and update event trust information for future
authentication and trust evaluation. Multiple trust values are
combined to form the trust value of an event. The weight
allocation in Table 3 represents the initial trust, experience,
and trust rewards. Table 3 explains the reward a vehicle will
get after it reports a true event. This trust credit reward will
be added to the vehicle’s experience.

FIGURE 4. Hierarchical taxonomy, classes, and instances of IoV TM
ontology.

TABLE 3. Trust weight allocation.

Trust value is an aggregate of multiple trusts derived from
distinct modules. Trslv 1 denotes the average trust score of
all Rep_vehs obtained using Equation 8.Moreover, Rep_vehs
for an event consists of a general vehicle.

Trlv1 =
Rep_veh_Trlv(1+ 2+ 3 . . . n)

n
(8)

Equation 9 is applied to obtain the average trust Trslv2 from
the carrier nodes that participated in beaconing.

Trlv2 =
Carr_veh__bec_Trlv(1+ 2+ 3 . . . n)

n
(9)

73690 VOLUME 10, 2022



A. Rehman et al.: CTMF: Context-Aware Trust Management Framework for Internet of Vehicles

Trlv3 =
Spcl_veh__Trlv(1+ 2+ 3 . . . n)

n
(10)

In particular, in scenarios in which special nodes participate,
the mean trust Trslv3 of all Spcl_ can be acquired using
Equation 10. Since CTMF is context oriented, it may use a
different module for the next event. The combined trust value
of an event, Eve_ID_Trslv, is acquired using Equation 11.

Eve_ID_Trslv = Trslv1 + Trslv2 + Trslv3 (11)

Equation 11 provides the primary method for modules,
namely experience, role, and opinion trust evaluation, each
with associated conditions. Specifically, Equation 11 implies
that nodes have a greater or equivalent experience than 0.5.
The nodes with less experience than 0.5 trust were filtered
out and used in different modules for context building and
inference.

J. THREAD BASED/HOPPING
The module is utilized in scenarios where hopping is greater
than reports and opinions. The primary concept is to leverage
multiple hop threads. The trust level did not depend on the
thread level (thrd_lev). The thread module requires a min-
imum of two Rep_vehs. The thread rises with the intersec-
tion of the two threads during an event. Carrr_veh, obtains
the identical thread, thrd_lev is 1, and the thread increment
depends on the encounter of a new thread. An increment
in each thread also increased the trust level of the message
by 0.2.

K. UNCERTAINTY BY MULTIPLE EVIDENCE BAYESIAN
INFERENCE
Uncertainty is the lack of information needed to compute trust
results. Some trust models ambiguously discuss uncertainty,
such as those in [20], [32], [55]. One technique for dealing
with uncertainty is to employ a basic probability, which is
unrealistic. The proposed TM framework adopts themultiple-
evidence Bayesian inference (MEBI) method to deal with
uncertainty. The reason for using MEBI is that it allows the
system to combine various pieces of past evidence, which
corresponds to the nature of the problem. The Bayesian rule
measures the chance of a report being legitimate or bogus.
According to Equation 12, the experience parameter should
be less than 0.5. Moreover, Equation 12 is used to determine
the likelihood of a false message. As mentioned previously,
under some conditions, Rep_veh with less experience is
regarded as uncertain. Equation 13 determines the legitimacy
of the message.

P(rep_flase|exp_ < 0.5)

=
P(exp_ < 0.5|rep_flase).P(rep_flase)

P(exp_ < 0.5)
(12)

P(rep_true|exp_ < 0.5)

= 1+ P(rep_flase|exp_ < 0.5)

=
P(exp_ < 0.5|rep_flase).P(rep_flase)

P(exp_ < 0.5)
(13)

The proposed methodology has gone one step further to be
more precise and leverages additional accessible data to infer
a report’s trust level. When more contextual information is
provided, the framework leverages MEBI, which allows the
system to cognitively infer. Equation 14 employsMEBI using
the direction of the node in Equation 13.

P(rep_flase|exp_ < 0.5 ∧ dir_from)

=
P(exp<0.5 ∧ dir from|repflase).P(repflase)

P(dir from ∧ exp<0.5)
(14)

The conjunction of several pieces of evidence is shown in
Equation 14. P (exp_<0.5 ∧ dir_from) can be obtained using
Equation 15, as shown at the bottom of the next page.

Accordingly, Equation 17, as shown at the bottom of the
next page, is obtained by employing Equations 15 and 16,
as shown at the bottom of the next page, in Equation (14).
The distinctiveness of CTMF is that it combines additional
information to compute trust.

Algorithm 1. presents the trust evaluation procedure for
an event when a new critical message is obtained. If the same
report is already available, it is synced with the prior event
list. Otherwise, a different event is generated. In addition, the
algorithm elaborates on the management of the entire event.

L. CONFIDENCE SCORE
The confidence score is a novel element of the proposed
TM framework. Since the suggested framework utilizes all
available data, the confidence score is calculated using a
combination of both the involved and discarded reports.
Discarded reports were only considered if they were not
ambiguous. The weights for the confidence measures are
listed in Table 4. Nodes with less experience are excluded
from the trust evaluation process; if those nodes are not
malicious or ambiguous, they are expected to be true nodes
and can be used as secondary evidence. Equation 18 is used
to calculate the conf_score for a report; the mean of all
involved and discarded nodes is used for the conf_score.
The complete process of conf_score computation is described
in Algorithm 1. The conf_score is an independent quantity
that is not directly related to the trust value. Being indepen-
dent makes the conf_score a key feature of trust evaluation.
Accordingly, there may be a scenario where the trust level of a
report is high; however, the confidence score is low, and vice
versa.

Conf_score

=

∑
Rep_inv+ Sep_inv+Carr_inv+Rep_dis+Carr_dis

n
(18)

IV. PERFORMANCE EVALUATION METRICS
The effectiveness of the proposed trust framework should
be assessed. The following are the specifications for the
performance evaluation of the CTMF. Several indicators are
utilized to assess the performance of the TM framework.
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TABLE 4. Wight for confidence measure.

The key performance evaluator was the trust level. Trust is
determined to be between 0 and 1, where 1 indicates the
maximum level of trust and 0 predicts a non-trustable report.
Most values >= 0.5 are considered trustworthy. The second
critical measure involves the number of events evaluated.
The real test of the TM framework is when low information
makes it difficult to evaluate trust, causing the discarding of a
report. The third measure is critical road events with the least
amount of information available; most trust models exhaust
at this point. The fourth measure set for evaluating the per-
formance of this TM framework was the level of confidence
in the inferred report. The confidence level is an independent
variable that increases the legitimacy of the report. The fifth
performance measure is the ability to accurately detect the
maximum number of malicious nodes. The final measure of
TM framework performance is managed trust under different
traffic scenarios, such as urban and rural/highway traffic pat-
terns. The performance evaluation matrix and its properties
are summarized in Table 5. In addition to these key measures,
a confusion matrix analysis is also performed in the following
section to further investigate the performance of the proposed
TM framework relative to other models.

A. CONFUSION MATRIX
A confusion matrix is a measure to assess the performance
of algorithms, and it seems that the TM is suitable to be
evaluated using a confusion matrix. When discussing TM,
the confusion matrix is, and more importantly, classifies the
reports into two. Legitimate reports and reports by malicious
nodes are represented by Equations 19 and 20.

Legitimate reports = TP+ FN (19)

Malicious reports = FP+ TN (20)

It is important to note that type-I error false negatives (FPs)
are the most alarming for TM; they indicate false reports by

TABLE 5. Performance metrics, indicators, and descriptions.

malicious nodes that the system cannot detect. Therefore, the
framework must have minimum false negatives (FN) and FP
and high true positives (TP) and true negatives (TN). TP:
These are events in which the system predicted a true report
and the events occurred. True TN: The events predicted by
the system as false reports and the events that did not occur
in reality. FP: These are events in which the system predicted
the reported event as true but the event did not occur. FN: The
events predicted by the system were false, but the event did
occur in reality. Also known as a ‘‘Type II error.’’

Accuracy: From all the tests (positive and negative),
Equation 21 shows how many tests the system predicted
accurately. A higher accuracy indicates a better performance.
Error rate (ERR): Equation 22 expresses the error rate, where
the number of incorrect predictions by the system is divided
by the total number. Precision: Precision expresses the pro-
portion of reports the model identifies as relevant and is

P(dir_from ∧ exp_ < 0.5|rep_flase) = P(dir_from|rep_flase)P(exp_ < 0.5|rep_flase) (15)

P
(
exp<0.5 ∧dir from

)
= P(exp_0.5 ∧ |rep_flase)P(dir_from|rep_flase)P(rep_flase)

+P(exp_0.5|rep_true)P(dir_from|rep_true)P(rep_true) (16)

P(rep_flase|exp_ < 0.5 ∧ dir_from) =
P(rep_flase).P(exp_ < 0.5|rep_flase).

P(rep_flase)P(exp_ < 0.5|rep_flase)P(dir_from|rep_flase)

+
P(dir_from|rep_flase)

P(rep_true)P(exp<0.5|reptrue)P(dir_from|rep_true)
(17)
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Algorithm 1: Trust Evaluation Algorithm

The event trust evaluation algorithm

1. Initialization
2. Event report obtained
3. Evn_ID obtained
4. Evn_ID_Trslv = 0
5. Total nRep_veh=0
6. Total nCrr_veh =0
7. Total nSpec_veh =0
8. If (Evn_ID! = found) then
9. Start Evn_ID as new session

10. else
11. Combine Veh_Trslv obtained from

Cent_DB and Locl_DB
12. Combine Cr_veh_Trslv obtained from

Cent_DB and Locl_DB
13. end If
14. If (report obtain form Rep_veh) then
15. nRep_veh ← nRep_veh+1
16. else
17. nCrr_veh ← nCrr_veh+1
18. end If
19. If (nRep_veh>2) && (Rep_veh_exp>0.5) then
20. establish experience module
21. else If (special Rep_veh in system) then
22. establish role-based module
23. else If (nCrr_veh >nRep_veh) &&
24. (Crr_veh_exp>0.5) then
25. establish opinion module
26. else If (ncRep_veh >=1) then
27. establish cluster module
28. else If (nCrr_veh >(nRep_veh >1)) &&
29. (Crr_veh with high hopping) then
30. establish thread-based module
31. else If (uncertain situation) then
32. establish uncertainty module
33. end If Evn_ID_Trslv ← trust value

(opted modules)
34. If (Evn_ID_Trslv > 0.5) then
35. take action,
36. Synch in Cent_DB and Locl_DB
37. Forward Evn_ID is trustworthy with

Evn_ID_Trslv
38. else
39. reject event
40. synch with Cent_DB and Locl_DB
41. broadcast Evn_ID is trusted with

Evn_ID_Trlv
42. end If
43. End

articulated in Equation 23. More specifically, when the sys-
tem predicts yes, how often is it correct? Recall: The number
of relevant reports selected. Recall is defined by Equation 24.
F1 score: in Equation 25, a high F1 score indicates that the
TM system has low false positives and low false negatives;
therefore, the TM system correctly identifies real threats, and
the network is undisturbed by false reports. The F1 score
ranges from 0 to 1, where 1 is considered perfect and 0 indi-
cates the worst performance.

ACC · =
TP+ TN
Total

(21)

Algorithm 2: Confidence Score Algorithm

Pseudocode of confidence score computing algorithm

1. Initialize
2. Event report received
3. Ev_ID retrieved
4. Ev_ID_ conf_score = 0
5. Rep_inv =1, Spe_inv =1, Carr_inv =1,

Rep_dis =1, Carr_dis =1
6. Execute
7. Rep_inv ← Rep_inv x 1
8. Spe_inv ← Spe_inv x 1
9. Carr_inv ← Carr_inv x 0.5
10. n ← count(Rep_inv+ Spe_inv+ Carr_inv+

Rep_dis+ Carr_dis)
11. If (Rep_dis_experience < = 0.5 && Rep_dis !=

malicious) then
12. Rep_dis ← Rep_dis x 0.5
13. else
14. Rep_dis ← 0
15. end If
16. If (Carr _dis_experience <= 0.5 && Carr

dis != malicious) then
17. Carr _dis ← Carr _dis x 0.1
18. else
19. Carr _dis ← 0
20. end If
21. Ev_ID_conf_score =∑

Rep_inv+Sep_inv+Carr_inv+Rep_dis+Carr_dis
n

22. End

ERR· =
FP+ FN
Total

(22)

PRE · =
TP

FP+ TP
(23)

REC · =
TP

FN + TP
(24)

F1 = 2
Precision · Recall
Precision+ Recall

=
TP

TP+ 1
2 (FP+ FN )

(25)

B. SIMULATION SETUP
The simulation setup comprises an area with a radius
of approximately 5 km for urban traffic and 10 km for
rural/highway traffic. While the nodes are moving, acci-
dents or road blockages were generated at random loca-
tions. The primary tool used for the simulation is MATLAB
R2020, a powerful tool used by other related models. Sec-
ondly, the framework employed Protege-5.5.0 0 with the
‘‘HermiT 1.4.3 456’’ reasoner, an open-source environment
was used for ontology design.

Depending on the scenario, the number of nodes in each
random event ranged from 2 to 50. The special vehicles were
limited to 10% of the total vehicles, and the remaining 90%
were general nodes. The trust experience of the starting nodes
is initialized as 0, and the trust experience of the special
nodes is initialized as 0.5. Outcome variation is a signifi-
cant concern with simulations; because of the experiment’s
random design, results may differ from attempt to attempt.
There are considerable differences between the simulation
instances in the wireless topology and network architecture.
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TABLE 6. Experiment parameter description.

Reporting and carrying vehicles are examples of the general
nodes. In the experiment, road events occurred randomly
on the road network, as reported by nodes. Some experi-
mental sets go up to 100 iterations to obtain significantly
accurate results to complete the simulation. In addition to the
above, malicious node detection was performed by including
a maximum of 20% of malicious nodes for comparison and
benchmarking.

A scenario-based simulation was used to test the
framework. The scenarios were categorized into three
groups to obtain maximum performance and exhaust the
simulation: 1. Heavy traffic is common in urban traffic during
busy hours or traffic jams. Up to 50 nodes were considered
for these traffic situations. In certain cases, there were several
reports of an incident, which made it simpler to assess the
trustworthiness of any given event. In these settings, most
trust models perform reasonably well. 2. Moderate traffic is
represented by 11–25 nodes in these scenarios. These circum-
stances are most common on highways or during ‘‘low rush
hours in urban areas.’’ In such instances, a normally limited
set of information is available. Unlike other models that use a
defined set of information, this framework uses all accessible
data. 3. Less traffic: this traffic pattern can be observed on
highways, in cities, and in rural areas. In this scenario, 2–10
nodes were involved. These are the most critical scenarios,
owing to a lack of information. These situations feature the
greatest ambiguity, which is a significant issue in the trust-
assessment process. The remaining simulation specifications
are listed in Table 6.

C. ASSUMPTIONS
The following assumptions were made to ensure the accurate
execution of the presented TM framework:

• OBU is embedded in each vehicle in the network.
• All vehicles use a common communication platform.
• All OBUs use IEEE 802.11p as the standard communi-
cation protocol.

• All OBUs are dedicated short-range communica-
tions (DSRC) channel enabled

• Public key infrastructure (PKI) is controlled by a third-
party centralized authority (CA), which is completely
reliable and provides key management standards.

• All cellular BTS provides support to vehicular network
as RSU.

V. RESULTS AND DISCUSSION
The simulation results are presented in this section. The
experiment was conducted using different competitive mod-
els to measure the performance of the framework compared
to other works. Following the presentation of the results,
a comprehensive discussion is provided on the synthesized
findings.

A. VALIDATION OF THE PROPOSED FRAMEWORK
The proposed TM framework was validated by comparing it
with existing renowned models using a benchmarking tech-
nique. Moreover, validation determines how well the frame-
work performs compared to existing studies. Table 7 enlists
the specification used for validation.

B. BENCHMARKING
The benchmarking aims to verify the performance of the
proposed trust management framework compared to existing
approaches, Table 8 state the selected studies for benchmark-
ing. The following three studies were chosen for benchmark-
ing: trust evaluation and management (TEAM), an enhanced
distributed trust computing protocol (EDTCP), and a novel
trust framework (NTF).

The results are compared with selected studies using the
simulation-based experiment. A simulation of the road event
depicting the maximum possible traffic scenarios was gen-
erated. The trust is evaluated using all four frameworks,
including the proposed framework. The results are compared
to analyze the performance of the proposed framework in
contrast with the other three frameworks in the following
sections.

C. CONTEXT COGNITIVE MODULE ALLOCATION
Table 9 presents the results under different traffic conditions,
and the events are adapted by different modules based on the
availability of information. The opinion is highly adapted up
to 37% in low urban traffic, and the secondmodule is ‘‘experi-
ence’’ with 30%. The remaining modules range from 6 to 8%.
In contrast, low traffic in rural traffic has highly attained
the experience module 39% followed by opinion with 29%.
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TABLE 7. Specification used in the models selected for validation.

TABLE 8. Different modules adapted under different traffic conditions.

TABLE 9. Different modules adapted under different traffic conditions.

The other modules range from 3 to 14%. In Table 9, the
high urban traffic contains a highly utilized opinion module
36% and experience of 27%. The remaining modules range
from 5 to 16%. In contrast, higher traffic in rural has an
opinion of 34%, experience 27%, and a rise in thread module
as 21%. Others range from 4 to 8%.

The results in Table 9 confirm that the selection is a good
choice for a framework to be context-based because of the
clear variation due to changes in traffic conditions. If the
TM and evaluation frameworks are fixed, they will miss
out on the critical aspects. To further develop the argument
in Table 9, low rural traffic has a significant number of
carrier nodes, which is the reason why the opinion module
has 29% usage. In this condition, ignoring neighbor opin-
ions will undoubtedly lead to imperfect and incomplete trust
evaluations. Similarly, other modules have significant unique
information that, if missed, impacts the quality of trust in
a report. Thus, this argument is fairly justified in that the

FIGURE 5. (a) Malicious node detection under SD and using node speed.
(b) Malicious node detection under SD and using node distance to the
event. (c) Malicious node detection under SD and using reporting time.

context-aware cognitive approach allows the TM framework
to take complete advantage of the available information.

D. MALICIOUS NODE DETECTION
The framework adopts a three-layer process based on SD
to separate the expected malicious node from the system.
These three layers are based on three parameters: speed,
time, and distance. Figure 5 (a) illustrates the observations
of the speed layer of the malicious node detection module
with the upper and lower bounds based on the SD. Data-
points 2 and 17 fall out, indicating that these two nodes are
malicious. Figure 5 (b) shows the results from the distance
layer of the malicious node detection module, where data
points 4 and 6 lie outside the upper bond of the distance and
point as specious nodes. Most vehicles report events within a
limited SD and are considered to be legitimate. Figure 5 (c)
illustrates the time base SD from the beginning of an event.
The red nodes are out of the upper bound, and the blue nodes
represent nodes within limits. Data points 8 and 15 were
designated as malicious. The upper and lower bonds were set
to two SD. Moreover, the nodes that are out of the upper and
lower SD bounds are considered malicious. Some models use
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TABLE 10. Malicious nodes detection.

FIGURE 6. (a) Trust and confidence under experience module. (b) Trust
under thread module. (c) Trust and confidence under the opinion module.
(d) Trust and confidence under special vehicle module.

simple means to determine the malicious nodes; this method
is not comprehensive, and using SD makes the system more
reliable.

The findings in Table 10 indicate the performance of the
malicious node detection module, where nodes 7 and 14 were
identified as malicious based on the window between the
upper and lower bounds. Here, it is crucial to note that, as an
example, node 14 is more likely to be malicious because it
falls out of two quantities, whereas node 7 falls out of one
quantity, and both nodes will still be marked as malicious.

E. TRUST EVALUATION
The following results represent the trust evaluation under the
different modules. Figure 6 (a) illustrates trust evaluation
during the experience module. Along with the trust level,
the confidence level is also illustrated in Figure 6 (a), and

FIGURE 7. Impact of node increment on trust evaluation.

the confidence level is plotted between 0 and 1 for this
graph to facilitate easy understanding. The threadmodule that
shows the trust evaluation is shown in Figure 6 (b). The line
graph in Figure 6 (b) corresponds to the thread, trust, and
hop levels. The threads are evaluated against an incremental
number of nodes. The thread module outputs demonstrate a
steady progression over the trust-building phase. The thread
level is directly related to the amount of trust. It is crucial
to remember that a thread’s level is not the same as that of
the hop. The results in Figure 6 (c) show ten random road
events under the opinion module. Confidence level values
were mounted on trust values. The confidence level was
independent of trust value. The performance of the ‘‘confi-
dence score’’ as an independent variable aids the algorithm
in making a better trust evaluation. The presence of a special
node adds legitimacy to an event. The results of evaluating
trust while involving a special vehicle in a road event are
expressed in Figure 6 (d). The number of special vehicles was
evaluated based on the trust level. Figure 6 (d) presents the
impact of the relation of a special node with the trust level.
The more special nodes that are engaged, the better the level
of trust attained. The confidence score is a critical element
of this framework. A low confidence score may occur, even
when there is a high trust level.

Table 11 presents the trust level with a confidence score.
The last two columns are critical, primarily because the
unique feature of the proposed framework is depicted. The
highly trusted and highly non-trusted are based on the con-
fidence score. For instance, the event ‘‘E2’’ has a high trust
level but low confidence, whereas ‘‘E1’’ is vice versa. The
same is the case with non-trusted reports, they might be either
highly untrusted or just untrusted, e.g., ‘‘E6’’ and ‘‘E10’’.

F. BENCHMARKING RESULTS AND DISCUSSION
In trust management, the volume of contextual information
increases with an increase in nodes. Accordingly, the node
density directly affects the design of the TM framework.
Some TM frameworks are designed in monotonous patterns;
these frameworks cannot perform in the fluctuation of infor-
mation, which leads to the miscalculation of trust.

In Figure 7, the comparative results of the trust evaluation
are presented, including the TM framework. The experiment
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TABLE 11. Trust level with confidence scoring.

FIGURE 8. The impact of the involvement of special vehicles on trust.

was based on an increasing number of nodes for an event.
The node increment frequencies are 10, 25, and 50. The data
analysis in Figure 8 aims to assess the impact of an increasing
number of nodes during an event. It is clearly observed that
the trust level can be easily assessed with better accuracy
by most models at a higher number of nodes, including the
proposed method. These frameworks encounter the problem
of low node engagement. At the lower nodes, the performance
of CTMF is still the highest. TEAM also performs well at
mid and high nodes but lacks low, dense traffic handling.
The performance of EDTCP and NTF was significantly low.
The reason behind the relatively better performance of CTMF
under low nodes is contextual information, better handling of
uncertainty, and local data management.

The trust in the special vehicle was simulated, and the
related results are presented in Figure 8. The confidence

FIGURE 9. Trust level evaluation while involving malicious nodes.

level of CTMF was also mounted on top of the trust level.
Special vehicle involvement is in percentage and ranges
from 1 to 10% of all event nodes. The use of special vehicles
was performed only by the proposed CTMF and TEAM
models. Figure 9 depicts the trust evaluation, where special
vehicles are part of the event. The CTMF inflicts a significant
difference when including the confidence scoring of each
trust evaluation, and the confidence score bars are stacked
on the CTMF trust bars in Figure 8. Confidence scoring
increases the authenticity and reliability of trust values.

Table 12 summarizes all models for urban and rural traffic
with low and high densities. The table presents the data on the
discarded and used event reports. The percentage of handled
reports was highest for CTMF which is 95.75%. TEAM,
EDTCP, and NTF correspond to 92.25%, 87.75%, and 90%,
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FIGURE 10. Trust evaluation under very low nodes.

respectively. None of the three models under comparison
had a mechanism related to uncertainty handling. Simultane-
ously, CTMF handles all reports with low available informa-
tion under the uncertainty module. The uncertainty module
enables the minimization of the TM framework information
loss risk. The results clearly depict enhanced performance
with the use of uncertainty handling. Moreover, Table 12 also
presents the traffic patterns and their correlations with avail-
able information and trust evaluation. In short, the density of
traffic has a favorable effect on the trust evaluation process.

G. MALICIOUS NODES PRESENCE
Figure 9 shows the trust evaluation in the presence of mali-
cious vehicles. The malicious vehicles are included in the
ratios of 5%, 10%, and 20% of all network nodes. Malicious
nodes were included to assess the impact of the presence
of malicious nodes on an event. Accordingly, CTMF per-
formed better than TEAM, EDTCP, and NTF. The reason
for better performance is contextual information; the CTMF
completely exploits the available information to single out
malicious nodes, whereas others miss certain critical infor-
mation.

H. CRITICAL EVENT
Under extreme conditions, the trust level accuracy can be
observed in the bar graph in Figure 10, where the nodes vary
from 2 to 10. Low nodes can create information scarcity,
therebymaking it difficult for a TM system to perform. Under
extreme conditions, the performance of CTMF was better
than that of the others. The proposed framework utilizes the
maximum available information, uncertainty handling, and
local data management, which make CTMF perform better
than TEAM, EDTCP, and NTF under extreme conditions.

I. CONFUSION MATRIX
The results of the validation using the confusion matrix are
presented in this section. The experiment was performed
under controlled conditions by marking a 90:10 ratio of legit-
imate to malicious reports. The first result of all four models
is shown in Figure 11 (a). The results contained the identified
reports as TP, FN, FP, and TN. The confusion matrix second

FIGURE 11. (a) Confusion matrix basic indicators. (b) Confusion matrix
indicators.

set of results states the accuracy, precision, recall, and f1
score of all four models in The results in Figure 11 (a) reveal
some interesting facts. For the TM models, the most crucial
figure is the FP, which is the most severe indicator. FP depicts
false reports sent by a malicious node that the system cannot
detect. CTMF has theminimumFP score, followed by TEAM
and the other two models. TN, another vital indicator, must
be high because it is also reported by malicious nodes and
identified by the trust system. CTMF operates better than the
others by detecting the TNs, which may be due to a practical
malicious node detection module. Figure 11 (b) presents the
second set of results for all four models. Accuracy indicates
the correctness of the reports inferred by the models. The pre-
sented model CTMF has reasonably better accuracy than the
others with a score of 0.93, TEAMwith 0.90, NTF with 0.88,
and EDTCP with 0.83. Precision expresses how exact and
accurate the model is out of the inferred trusted reports and
how many of them actually turned out to be true. Vehicles in
the IoV system may lose critical reports if the precision is not
high. Figure 11 (b) displays that the precision of the proposed
framework is ∼0.97, followed by TEAM with ∼0.94. The
CTMF uses context information that allows the framework to
dynamically manage all the information, which is the primary
reason for its higher precision. Recall computes the number
of actual true reports the framework infers. A higher recall
rate is desirable when there is high cost associated with

73698 VOLUME 10, 2022



A. Rehman et al.: CTMF: Context-Aware Trust Management Framework for Internet of Vehicles

TABLE 12. Handled and discarded reports.

FN reports. Although FN is less significant for trust models
than other indicators, it is still an indispensable factor. The
CTFM attained a slightly better recall rate than the other
methods. The final andmost important indicator is the f1score
which shows the overall correct identification by the system.
CTMF had an f1score of 0.96, which is quite promising. The
remaining three models varied from 0.94 0.90. Figure 11 (b).

VI. CONCLUSION AND FUTURE WORK
In IoV communication, trust is a significant solution for
reducing the risk of network attacks. This study proposes
a dynamic trust management framework to fully utilize the
available information by using context awareness, which
was missing in earlier solutions. The proposed models also
detect malicious vehicles in a network by using a unique
outlier technique. A comparison with the top existing models
resulted in a better performance using the proposed frame-
work. This trust framework is expected to provide com-
plete support for IoV security in terms of trust management.
In future work, the proposed trust framework can be tested
for the IoT and other ad hoc networks. Furthermore, machine
learning and big data can be used as supportive tools for
long-term trust management. The comparative study analysis
indicated that the current trust models cannot sufficiently to
satisfy the dynamic trust evaluation criteria. In contrast, given
IoV dynamics, the proposed model was structured to ensure
optimum trust. Moreover, the proposed trust model is equally
useful for other related IoT security solutions.
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