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ABSTRACT We investigate the behavior of the Lyapunov spectrum of a linear time-varying discrete system
under the action of small perturbations in order to obtain some verifiable conditions for stability and openness
of the Lyapunov spectrum. To this end we introduce the concepts of broken away solutions and splitted
systems. The main results obtained are a necessary condition for stability and a sufficient condition for the
openness of the Lyapunov spectrum, which is given in terms of the system itself. Finally, examples of using
the obtained results are presented.

INDEX TERMS Linear time-varying discrete systems, Lyapunov spectrum, small perturbations, multiplica-
tive perturbations.

I. INTRODUCTION
A. MATHEMATICAL GENESIS OF THE PROBLEM
One of the main questions in the theory of linear systems
(both with continuous and discrete time) is the question about
the behavior of solutions under an unbounded increasing
argument. In the case of linear homogeneous systems with
constant coefficients, the answer to this question depends on
the signs of the real parts of the eigenvalues of the coef-
ficient matrix of the system, and in the case of periodic
linear homogeneous systems on the location of the multi-
pliers of the system with respect to the unit circle on the
complex plane. There are no such specific answers in the
time-varying case, but there are fairly general results based on
the method of characteristic exponents. This method studies
the growth rate of solutions of a linear homogeneous system
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as compared to the exponentiation functions eαt . In the case
of systems with constant coefficients, the Lyapunov indices
coincide with the real parts of the eigenvalues of the system’s
coefficient matrix, and in the case of systems with periodic
coefficients, with the logarithms of the system’s multiplier
modules divided by the period.

The concept of characteristic exponents of linear time-
varying differential equations was introduced by A.M. Lya-
punov in 1892 in his famous work [26]. Subsequently, the
theory of Lyapunov characteristic exponents developed into a
well-established asymptotic theory of linear systems [1], [7],
[10], [22], [23]. The characteristic number λ, or Lyapunov
exponent, as it is called nowadays, of a nonzero function
ϕ : [t0,+∞) → Rs characterizes its growth as t tends to
+∞ in the scale of exponents α of exponential functions eαt ,
where α ∈ R, and it is defined to be

λ[ϕ] = lim sup
t→+∞

t−1 ln ‖ϕ(t)‖.
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A.M. Lyapunov showed that if the original differential system

ẋ = f (t, x), t ≥ t0, x ∈ Rs, (1)

has the trivial solution and Lyapunov exponents of all solu-
tions of the linearized system

ẋ = A(t)x, t ≥ t0, x ∈ Rs, (2)

where A(t) = f ′x (t, 0), are negative, then under certain con-
ditions on function f (t, x), the trivial solution of system (1)
is asymptotically stable. This result was a basis of the so-
called first Lyapunov method of studying the stability of
solutions of differential systems. When studying Lyapunov
exponents of linear systems, some unexpected effects were
discovered, which Lyapunov himself probably did not sus-
pect. In particular, it turned out that small perturbations of
the coefficient matrix A(·) of system (2) may lead to jumps
of the Lyapunov exponents of its solutions. For example, the
original linear system (2)may have all solutions with negative
Lyapunov exponents (and for this reason to be exponentially
stable), but an arbitrarily small additive perturbation Q(·) of
the matrix A(·) may result in positive Lyapunov exponents of
the perturbed system

ẋ =
(
A(t)+ Q(t)

)
x, t ≥ t0, x ∈ Rs. (3)

This instability of Lyapunov exponents was discovered by
O. Perron [32] in 1930.

All of the above also applies to a linear discrete time-
varying system

x(n+ 1) = A(n)x(n), n ∈ N, x ∈ Rs, (4)

with the assumption that A(·) is a Lyapunov sequence (see
below, in the notation section, for the definition). It can be
proved [4] that there are systems of the form (4) for which
small perturbations of the sequence A(·) lead to a significant
change in the Lyapunov spectrum.

The phenomenon of instability of Lyapunov exponents
naturally leads to the question for which systems it can occur
or, alternatively, about the characterization of systems with
stable exponents.

Necessary and sufficient conditions for stability of the Lya-
punov spectrum of a continuous-time system of the form (2)
were obtained by V.M. Millionshchikov [30] and at the same
time by B.F. Bylov and N.A. Izobov [9] using the so-called
Millionschikov rotation method (see [29]). They showed
that in order for the stability of the Lyapunov spectrum of
system (2) to hold, it is necessary and sufficient that this
system can be reduced to a block-triangular form by some
Lyapunov transformation, such that the blocks are integrally
separated [11] and for each block, the upper and lower central
exponents [9], [10], [30] coincide. Similar conditions hold for
linear discrete-time systems [5].

It is important to notice that, in general these conditions
are unverifiable, since for their application we must trans-
form system (2) (or system (4)) into some special form by
Lyapunov transformation, but the algorithms to construct this

transformation are unknown. Therefore, the question arises:
is it possible to obtain any stability conditions for the Lya-
punov spectrum that are, in some sense, verifiable? In this
paper, we will present such conditions.

B. MAJOR CONTRIBUTION
If the Lyapunov spectrum is stable, we are sure that suffi-
ciently small perturbations of the system do not remove its
Lyapunov spectrum from some small neighborhood of the
original spectrum. The following question arises naturally in
this connection: is it possible to move the Lyapunov spectrum
to any prescribed position in a small vicinity of the original
spectrum using appropriate small perturbations? This prop-
erty can be called the openness of the Lyapunov spectrum
of system (2) (or system (4)). Some results on the openness
for continuous-time systems were obtained in [28] and for
discrete-time systems in [5].

The foundations of the asymptotic theory of discrete-time
systems including the issues close to the problems formu-
lated above are presented in [13], [18], [19]. Questions on
integral separateness and stability of Lyapunov spectrum of
system (4) were considered in [4]–[6]. In this context, we also
mention the paper of L. Barreira and C. Valls [8], where the
problem of coincidence of Lyapunov spectra of perturbed and
unperturbed systems is investigated. Note that these results do
not allow us to achieve the goals of our article, which are to
study the behavior of the Lyapunov spectrum of system (4)
under small perturbations of the matrix A(·) in order to obtain
some criteria to detect stability or openness of this spectrum.

The main contribution of this article is to provide a nec-
essary condition for stability of the Lyapunov spectrum of
system (4), which do not require a reduction of this system to
a special form, but is expressed in terms of the system itself.
In addition, we obtain sufficient conditions for the openness
of the spectrum of system (4). To solve these problems, we
introduce and use the concept of splitness of system (4) based
on the angular behavior of solutions of this system.

Note that the notion of splitness of system (2) was intro-
duced in [27] in connection with control problems for the
Lyapunov spectrum of a linear differential system.

C. POTENTIAL FOR ENGINEERING APPLICATIONS
Although the presented work is theoretical in nature, obtained
sufficient condition for the continuity of the Lyapunov spec-
trum have a great potential for applications in engineering
practice for the following reasons.

The Lyapunov exponent technique is widely used in engi-
neering practice for systems with variable coefficients as a
natural counterpart to the pole placement method for sys-
tems with constant coefficients (see [34]). In applications,
we usually know the values of the coefficients only to a
certain approximation, and when numerically calculating the
values of Lyapunov’s exponents, the information about their
continuity is crucial, because it allows to connect the inac-
curacy of the coefficients of the system to the error in esti-
mating the exponents [14]–[17]. Additionally, when using
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some feedback design methods for systems with variable
coefficients, it is required that the Lapunov exponents of
the open system be stable (see Theorem 6.9 and Example
7.4 in [3]). Finally, let us note that the influence of small
parametric disturbances on the dynamics of control systems is
widely discussed in the literature [2], [24], [31], [33] and [12]
and the presented results enable the application of techniques
based on Lyapunov exponents to these problems.

D. STRUCTURE OF THE ARTICLE
This article is organized as follows. In Section II, the neces-
sary notation is introduced. In Section III, the concept of the
Lyapunov spectrum of system (4) is explained. In Section IV,
the concept of the spectral set of this system under various
perturbations of its coefficient matrix is considered. It is
demonstrated that multiplicative perturbations are more ade-
quate to the problem under consideration. A definition of
the stability of the Lyapunov spectrum is also introduced.
In Section V the concept of splitted systems is proposed
and their properties are discussed. In Section VI, the main
theorem on the property of splitted systems are shown.
In Section VII, we prove several results that follow from the
main theorem and demonstrate the importance of the intro-
duced concept of splitted systems for studying the behavior
of the Lyapunov spectrum under the action of small perturba-
tions. Some examples are given in Section VII. The article is
completed by Conclusions.

II. NOTATION
Let Rs be an s-dimensional Euclidean space with a fixed
orthonormal basis e1, . . . , es and the standard norm ‖ · ‖.
By Rs×t we shall denote the space of all real matrices of
size s × t with the spectral norm, i.e., with the operator
norm generated in Rs×t by Euclidean norms in Rs and Rt ,
respectively. By [a1, . . . , at ] ∈ Rs×t we denote the matrix
with the sequential columns a1, . . . , at ∈ Rs; I ∈ Rs×s is
the identity matrix. For any nonsingular matrix H ∈ Rs×s we
denote by ~(H ) the condition number of H with respect to
spectral norm, i. e., ~(H ) = ‖H‖ ‖H−1‖. For any sequence
F(·) =

(
F(n)

)
n∈N, where F(n) ∈ Rs×t , n ∈ N, we define

‖F‖∞ = sup
n∈N
‖F(n)‖. Any bounded sequence L(·) of invert-

ible matrices L(n) ∈ Rs×s, n ∈ N, such that the sequence
L−1(·) is bounded on N, is called a Lyapunov sequence.
By Rs

≤ (resp. Rs
<) we denote the set of all nondecreasing

(resp. increasing) sequences of s real numbers. For a fixed
sequence µ = (µ1, . . . , µs) ∈ Rs

≤ and any δ > 0 let us
denote by Oδ(µ) the set of all sequences ν =

(
ν1, . . . , νs

)
∈

Rs
≤ such that maxj=1,...,s |νj−µj| < δ. In other words,Oδ(µ)

is a δ-neighborhood of the sequence µ ∈ Rs
≤ with respect to

the metric generated by the vector l∞ norm of the space Rs

on its subset Rs
≤.

By [α] we shall denote the integer part of α ∈ R, that is,
[α] is the largest integer not exceeding α.

Let us define the angle between a nonzero vector p ∈ Rs

and some non-trivial linear subspace V ⊂ Rs by the equality

^(p;V ) = inf
06=q∈V

^(p, q),

where

^(p, q) = arccos
〈p, q〉
‖p‖ ‖q‖

is the angle between the nonzero vectors p, q ∈ Rs, 〈p, q〉 is
the scalar product of the vectors p and q.
In our further considerations we shall use the following

lemmas.
Lemma 1 [27]: Let V be a linear subspace ofRs, dimV =

s− 1; and let p ∈ Rs
\V . If X ∈ Rs×s is a nonsingular matrix,

then

^(Xp;XV ) ≥
2
π
^(p;V )(~(X ))1−s.

Lemma 2 [27]: Let V be a linear subspace ofRs, dimV =
s − 1; and let p ∈ Rs

\V be an arbitrary nonzero vector. If a
matrix H ∈ Rs×s satisfies the conditions Hp = p and Hx =
0 for each x ∈ V , then

‖H‖ =
1

sin^(p;V )
.

Lemma 3 [27]: Let a : N→ R and b : N→ R be arbitrary
bounded mappings, and let

ψ(µ) = lim sup
k→∞

(
a(k)+ µb(k)

)
.

Then the following assertions are valid:
(1) The function ψ : R → R is convex and satisfies the

Lipschitz condition on R.
(2) If there exists a strictly increasing sequence (kj)j∈N of

positive integers such that

lim
j→∞

a(kj) = ψ(0), ρ
.
= lim

j→∞
b(kj) > 0,

then the functionψ(·) is (strictly) monotone increasing on the
interval [0,∞) and the estimate

ψ(µ)− ψ(0) ≥ ρµ

is valid for all µ ≥ 0. Moreover for each t ≥ 0, there exists a
µt , 0 ≤ µt ≤ ρ−1t, such that

ψ(µt ) = ψ(0)+ t.

Consider a discrete linear time-varying system (4) with a
Lyapunov sequence A : N→ Rs×s. Put

a .= max
{
‖A‖∞, ‖A−1‖∞

}
<∞.

Note that

‖A‖∞ + ‖A−1‖∞ ≥ ‖A(1)‖ + ‖A−1(1)‖

≥ ‖A(1)‖ + ‖A(1)‖−1 ≥ 2,

hence a ≥ 1.
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We denote the transition matrix of system (4) by XA(n,m),
n,m ∈ N. Then [19, p. 13–14] for each solution x(·) of this
system, we have the equality

x(n) = XA(n,m)x(m) for all n ∈ N, m ∈ N,

and

XA(n,m) =


n−1∏
l=m

A(l) for n > m,

I for n = m,
X−1A (m, n) for n < m.

Then for any n ∈ N, m ∈ N the following inequality

‖XA(n,m)‖ 6 a|n−m| (5)

is true.
Note that here and throughout the paper we put

n−1∏
l=m

A(l) = A(n− 1)A(n− 2) . . .A(m),

i.e., the matrices are multiplied in descending order of the
index.

Let 8(·) be a fundamental system of solutions (FSS) of
system (4), i.e., a set of s linearly independent solutions
x1(·), . . . , xs(·) of system (4). We identify FSS 8(·) with
the matrix

[
x1(·), . . . , xs(·)

]
, which is called a fundamental

matrix (FM) of system (4).

III. LYAPUNOV SPECTRA
For any nontrivial solution x(·) of system (4) the Lyapunov
exponent λ[x] is defined as

λ[x] = lim sup
n→∞

1
n
ln ‖x(n)‖.

It is well known [7] that if A(·) is a Lyapunov sequence,
then the set of Lyapunov exponents of all nontrivial solutions
of system (4) are included in the interval [− ln a, ln a], and
contains at most s elements, say

31(A) < 32(A) < . . . < 3r (A).

The Lyapunov exponent of the trivial solution of system (4)
is set equal to −∞.
Remark 1: The Lyapunov exponent of the trivial solution

of system (4) is set equal to -∞ by definition in order to satisfy
the property of monotonicity of the map x 7→ λ[x]. Indeed,
if 0 < x1(t) ≤ x2(t) for all t ≥ 0 we have λ[x1] ≤ λ[x2].
Since λ[eµt ] = µ for each µ ∈ R and eµt > 0, then we are
to have λ[0] < µ for each µ ∈ R. Thus, the only variant for
λ[0] is λ[0] = −∞.

For each j ∈ {1, . . . , r} let us consider the set Ej of all
solutions of system (4), whose Lyapunov exponents do not
exceed3j. Moreover, by E0 we denote the set that consists of
the trivial solution of system (4).

Then [19, p. 54] each of the sets Ej is a linear subspace,
and the dimension of the subspace Ej is equal to Nj, where
Nj is the maximal number of linearly independent solutions

of system (4), which have Lyapunov exponents 3j. We put
N0 = dim E0

.
= 0. Since Ej ⊂ El for j < l, then N0 < N1 <

. . . < Nr , and Nr = s.
Let 8(·) =

{
x1(·), . . . , xs(·)

}
be an arbitrary FSS of sys-

tem (4). For each j ∈ {1, . . . , r} consider the value sj which is
the number of solutions from the set8(·) with exponent equal
to 3j. It is known [19, p. 54], that the following inequalities
hold:

s1 + . . .+ sj ≤ Nj, j = 1, . . . , r .

Definition 1 [19, p. 53]: FSS 8(·) is called normal, if the
following equalities hold:

s1 + . . .+ sj = Nj, j = 1, . . . , r .

It is known [19, p. 55], that for each system (4) a normal
FSS exists.
Definition 2 [19, p. 55]: We say that the FSS 8(·) =
{x1(·), . . . , xs(·)} is incompressible, if for any nontrivial com-

bination y(·) =
s∑
j=1

cjxj(·) the equality

λ[y] = max
{
λ[xj] : cj 6= 0

}
holds.

It is known (see [19, p. 55]), that a FSS 8(·) is normal if
and only if it is incompressible.

Definition 1 implies an important consequence: for each
normal FSS of system (4), the number sj of its solutions with
the Lyapunov exponent 3j is the same and coincides with
the value Nj − Nj−1, j = 1, . . . , r . Thus, we can associate
with each linear discrete time-varying system (4) a collec-
tion of s numbers λ1, λ2, . . . , λs, which are the Lyapunov
exponents of the solutions included in any normal FSS of our
system. This collection is called the Lyapunov spectrum of
system (4) [19, p. 57]. Further we denote it by

λ(A) =
(
λ1(A), . . . , λs(A)

)
,

assuming that the inequalities λ1(A) ≤ . . . ≤ λs(A) are
satisfied, and therefore λ(A) ∈ Rs

6.

IV. PRELIMINARIES
Let us consider an additively perturbed system

x(n+ 1) =
(
A(n)+ Q(n)

)
x(n), n ∈ N, x ∈ Rs, (6)

with A(·) being the Lyapunov sequence and Q(·) being the
additive perturbation.
Definition 3 [5]: A sequence Q(·) is said to be an admis-

sible additive perturbation for system (4) if A(·) + Q(·) is a
Lyapunov sequence.

Since A(·) is a Lyapunov sequence, it is easy to see that the
following lemma holds.
Lemma 4 [5]: SequenceQ(·) is an admissible additive per-

turbation for system (4) if and only if there exists a Lyapunov
sequence R : N→ Rs×s such that

Q(n) = A(n)R(n)− A(n), n ∈ N. (7)
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Equality (7) enables us to rewrite the perturbed system (6)
in the following form

x(n+ 1) = A(n)R(n)x(n), n ∈ N, x ∈ Rs. (8)

Here the sequence R(·) is called a multiplicative perturbation
whereas system (8) is called a multiplicatively perturbed sys-
tem . Since, according to our assumptions A(·) is a Lyapunov
sequence then we arrive at the following definition.
Definition 4 [5]: Amultiplicative perturbation R(·) is said

to be an admissible multiplicative perturbation if R(·) is a
Lyapunov sequence.
Remark 2: Let us notice that for all systems (4) the set of

admissible multiplicative perturbations is the same, whereas
the set of admissible additive perturbations depends on the
coefficient matrix A(·) of system (4).
For a fixed sequence A(·), let Q denote the set of all sys-

tems (6) corresponding to admissible additive perturbations
Q(·) for system (4) and similarly, let R denote the set of
all systems (8) corresponding to admissible multiplicative
perturbations R(·). We write Q(·) ∈ Q identifying system (6)
and the additive perturbation Q(·) that defines this system.
Similarly, we use the notation R(·) ∈ R for system (8)
and the corresponding multiplicative perturbation R(·). From
Lemma 4 and definitions of admissible perturbations we have

Q = R. (9)

We also use some subsets of the sets Q and R. For any
δ > 0 let us denote by Qδ the subset of Q corresponding
to sequences Q(·) satisfying

‖Q‖∞ < δ,

and by Rδ the subset of R corresponding to sequences R(·)
satisfying

‖R− I‖∞ < δ.

Lemma 5 [5]: For any δ > 0 we have Qδ ⊂ Raδ and
Rδ ⊂ Qaδ , where a = max

{
‖A‖∞ ,

∥∥A−1∥∥
∞

}
.

Proof: Take any Q(·) ∈ Qδ . Put

R(n) = I + A−1(n)Q(n), n ∈ N.

From Lemma 4 it follows that R(·) is an admissible multi-
plicative perturbation for system (4). Since

R(n) = I + A−1(n)Q(n), n ∈ N,

we have R(·) ∈ Raδ . Hence Qδ ⊂ Raδ .
Now take any R(·) ∈ Rδ . Put

Q(n) = A(n)R(n)− A(n), n ∈ N.

By Lemma 4 we see that Q(·) is an admissible additive
perturbation for system (4) and

‖Q‖∞ ≤ ‖A‖∞‖R− I‖∞ < aδ.

Hence Q(·) ∈ Qaδ and, therefore,Rδ ⊂ Qaδ .
If Q(·) ∈ Q, then we can define the Lyapunov spectrum

λ(A + Q) ∈ Rs
≤ of system (6). In a similar way we can

define the Lyapunov spectrum λ(AR) ∈ Rs
≤ of system (8) for

R(·) ∈ R.
The spectral set of system (4) corresponding to the classQ

is defined by the equality λ(Q) .
=
{
λ(A + Q) : Q(·) ∈ Q

}
.

Similarly, we define the sets λ(Qδ), λ(R) and λ(Rδ).
From (9) and Lemma 5 we get the following statement.
Corollary 1: The equality λ(Q) = λ(R) holds. Moreover,

for any δ > 0 the inclusions

λ
(
Qδ

)
⊂ λ

(
Raδ

)
, λ

(
Rδ

)
⊂ λ

(
Qaδ

)
hold.
Definition 5 ([5], [13]): The Lyapunov spectrum of sys-

tem (4) is called stable if for any ε > 0 there exists δ > 0 such
that the inclusion λ

(
Qδ

)
⊂ Oε

(
λ(A)

)
is satisfied.

By Lemma 5 we obtain the following result.
Theorem 1 [5]: The Lyapunov spectrum of system (4) is

stable if and only if for any ε > 0 there exists δ > 0 such that
the inclusion λ

(
Rδ

)
⊂ Oε

(
λ(A)

)
is satisfied.

V. SPLITTED SYSTEMS
Let

{
x1(·), . . . , xs(·)

}
be some FSS of system (4). For any

i ∈ {1, . . . , s} and n ∈ N, by Vi(n) we denote the linear
span of the vectors xj(n), j ∈ {1, . . . , s} \ {i} and by ϕi(n)

.
=

^
(
xi(n);Vi(n)

)
we denote the angle between the vector xi(n)

and the subspace Vi(n). We take an arbitrary σ ∈ N. For any
γ ∈ (0, π2 ], k ∈ N, and i ∈ {1, . . . , s}, we set

0
γ
i (σ )

.
= {j ∈ N : ϕi(jσ ) ≥ γ } ,

0
γ
i (k; σ )

.
= 0

γ
i (σ ) ∩ {1, . . . , k} .

Let N γi (k; σ ) be the number of elements of the set 0γi (k; σ ).
Let us also introduce the following notation

gγi (k; σ )
.
=
N γi (k; σ )

k
, fi(k; σ )

.
=

ln ‖xi(kσ )‖
kσ

.

If the numbers γ and σ are given in advance, then the cor-
responding symbols in the notation introduced above will be
omitted.

A sequence
(
nk
)
k∈N of natural numbers strictly increasing

to+∞ is referred to as a realizing sequence of a solution x(·)
of system (4) if

λ[x] = lim
k→∞

ln ‖x(nk )‖
nk

.

Definition 6: We say that the solution xj(·) occurring in
the FSS 8(·) =

{
x1(·), . . . , xs(·)

}
is σ -broken away (from

the remaining solutions of 8(·)) if for a given σ ∈ N, there
exists a γ ∈

(
0, π2

]
and a realizing sequence

(
knσ

)
n∈N of the

solution xj(·), where kn ∈ N, such that

lim
n→∞

gγj (kn; σ ) > 0.

A FSS 8(·) is said to be σ -splitted if each of the solutions of
this FSS is σ -broken away.

Let us consider some basic properties of the notions intro-
duced above.
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Theorem 2: If the solution xi(·) occurring in the FSS
8(·) =

{
x1(·), . . . , xs(·)

}
is σ0 -broken away for some σ0 ∈

N, then it is σ -broken away for any σ ∈ N.
Proof: Let γ ∈

(
0, π2

]
, and let a strictly increasing

sequence (kn)n∈N be chosen so as to satisfy the conditions

lim
n→∞

fi(kn; σ0) = λ[xi]

and

lim
n→∞

gγi (kn; σ0) > 0.

To each n ∈ N we assign the nonnegative integer ln such that

knσ0 ∈ [lnσ, (ln + 1)σ ), (10)

i.e.,

kn
σ0

σ
− 1 < ln ≤ kn

σ0

σ
.

Since (kn)n∈N is a strictly increasing sequence, it follows that
(ln)n∈N is nondecreasing. Moreover,

lim
n→∞

ln = ∞.

Since

0 ≤ knσ0 − lnσ < σ,

we have

lim
n→∞

knσ0
lnσ
= 1 (11)

and by (5) we get

‖XA(lnσ, knσ0)‖ ≤ aσ , ‖XA(knσ0, lnσ )‖ ≤ aσ . (12)

This implies that

fi(ln; σ ) =
ln ‖XA(lnσ, knσ0)xi(knσ0)‖

lnσ

≤
ln(‖XA(lnσ, knσ0)‖ ‖xi(knσ0)‖)

lnσ

≤
1
lnσ

(σ ln a+ ln ‖xi(knσ0)‖)

and, on the other hand,

fi(ln; σ ) ≥
1
lnσ

ln
(
‖XA(knσ0, lnσ )‖−1 ‖xi(knσ0)‖

)
≥

1
lnσ

(−σ ln a+ ln ‖xi(knσ0)‖).

Now, by taking into account the above equalities and (11) we
get

lim
n→∞

1
lnσ

(±σ ln a+ ln ‖xi(knσ0)‖)

= lim
n→∞

1
lnσ

ln ‖xi(knσ0)‖ = lim
n→∞

1
knσ0

ln ‖xi(knσ0)‖

= λ[xi]

and we obtain

lim
n→∞

fi(ln; σ ) = λ[xi].

For any n,m ∈ N the linear subspace Vi(n) of vectors xj(n),
j 6= i can be represented in the form Vi(n) = XA(n,m)Vi(m).
Let us denote σ1 = max {σ0, σ } and consider n,m ∈ N such
that |n− m| ≤ σ1. Then by Lemma 1 we have

ϕi(n)
.
= ^(xi(n);Vi(n))

= ^(XA(n,m)xi(m);XA(n,m)Vi(m))

≥ 2^(xi(m);Vi(m))(~(XA(n,m)))1−s
1
π

= 2ϕi(m)(~(XA(n,m)))1−s
1
π
≥ cϕi(m),

where

c =
2a2σ1(1−s)

π

by (12).
Two cases are possible.
Case 1 (σ < σ0): Let p =

[
σ0
σ

]
. We take a j ∈ N such that

kj > 2. It follows from (10) that

lj ≤ kj
σ0

σ
< kj

([σ0
σ

]
+ 1

)
= kj(p+ 1),

i.e.,

kj
lj
>

1
p+ 1

.

Let m range over the set 0γi (kj − 2; σ0). The interval[(
m− 1

2

)
σ0,

(
m+ 1

2

)
σ0

)
for each m contains at least p

multiples of σ . At all of these points the angle ϕi is not less
than cγ . In addition, all these points lie on the real line on the
left of(

kj − 2+
1
2

)
σ0 < kjσ0 − σ0 < ljσ + σ − σ0 < ljσ,

i.e., to the left of ljσ . Therefore all of them belong to the set
0
cγ
i (lj; σ ). Then for the total number of elements of the set
0
cγ
i (lj; σ ) we have the estimate

N cγ
i (lj; σ ) ≥ pN

γ
i (kj − 2; σ0) ≥ p(N

γ
i (kj; σ0)− 2)

and

gcγi (lj; σ ) =
N cγ
i (lj; σ )

lj
≥
p(N γi (kj; σ0)− 2)

lj

=
pN γi (kj; σ0)

kj

kj
lj
−

2p
lj
>
pgγi (kj; σ0)

p+ 1
−

2p
lj
.

Consequently

lim sup
j→∞

gcγi (lj; σ ) ≥ lim
j→∞

(
pgγi (kj; σ0)

p+ 1
−

2p
lj

)
=

p
p+ 1

lim
j→∞

gγi (kj; σ0) > 0.

Case 2 (σ ≥ σ0): Denote q =
[
σ
σ0

]
. Let j ∈ N satisfy the

condition lj > 1. It follows from (10) that

kj
lj
≥
σ

σ0
≥

[
σ

σ0

]
= q.
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We choose some positive integer l < lj. Then(
l +

1
2

)
σ < (l + 1)σ ≤ ljσ ≤ kjσ0.

The interval [(l − 1
2 )σ, (l +

1
2 )σ ) contains at most q+ 1 mul-

tiples of σ0. If at least one of them belongs to 0γi (kj; σ0), then
l ∈ 0cγi (lj; σ ). Consequently

N γi (kj; σ0) ≤ (q+ 1)N cγ
i (lj; σ )

and

gcγi (lj; σ ) =
N cγ
i (lj; σ )

lj
≥
N γi (kj; σ0)

(q+ 1)lj

=
N γi (kj; σ0)

kj

kj
(q+ 1)lj

≥
gγi (kj; σ0)q

q+ 1
.

Therefore

lim sup
j→∞

gcγi (lj; σ ) ≥
q

q+ 1
lim
j→∞

gγi (kj; σ0) > 0.

Now from the sequence (lj)j∈N we extract a strictly increas-
ing subsequence (ljm )m∈N on which the limit

lim sup
j→∞

gcγi (lj; σ )

is realized. The subsequence satisfies the relations

lim
m→∞

fi(ljm; σ ) = λ[xi], lim
m→∞

gcγi (ljm; σ ) > 0,

it means that the solution xi(·) is σ -broken away. The proof is
completed.
Corollary 2: If a FSS is σ0-splitted for certain σ0 ∈ N,

then it is σ -splitted for any σ ∈ N.
Having in mind Theorem 2 and Corollary 2 we say that the

solution xi(·) occurring in the FSS
{
x1(·), . . . , xs(·)

}
is broken

away if it is σ -broken away for some σ ∈ N. Accordingly,
a FSS is called splitted if it is σ -splitted for some σ ∈ N.
Definition 7: System (4) that has a splitted normal FSS is

called a splitted system.
The next example shows that there are systems which are

not splitted, in particular such that they have no splitted FSS.
Example 1: Consider system (4) with

A(n) =
(
1 1
0 1

)
, n ∈ N.

Obviously,

XA(n,m) =
(
1 n− m
0 1

)
.

Let x(·) be any nontrivial solution of system (4) with given
A(·) and let x(1) = col (α, β). Then x(n) = XA(n, 1)x(1) =
col (α + βn, β). If β 6= 0, then ^

(
x(n), e1

) .
= ϑ → 0 or

ϑ → π as n→∞, since

cosϑ =
〈x(n), e1〉
‖e1‖ ‖x(n)‖

=
α + βn√

β2 + (α + βn)2
→

β

|β|

as n → ∞. On the other hand, if β = 0, then ϑ = 0 for all
n ∈ N. Hence the angle between any two solutions from any

FSS tends to 0 or π . By Definition 6 it means that any FSS of
this system is not splitted.
Definition 8 (see [20, p. 15], [19, p. 100]): Let L(·) be a

Lyapunov sequence. A linear transformation

y = L(n)x, n ∈ N, (13)

where x, y ∈ Rs, is called a Lyapunov transformation.
Theorem 3: A Lyapunov transformation preserves the

property of a solution being broken away.
Proof: Suppose the solution xi(·) occurring in the FSS{

x1(·), . . . , xs(·)
}
is broken away. Let us apply a Lyapunov

transformation (13) to (4). We shall show that the solutions
yi(·) from the FSS

{
y1(·), . . . , ys(·)

}
, where yj(·)

.
= L(·)xj(·),

j = 1, . . . , s, of the transformed system, is broken away.
We take an arbitrary σ ∈ N, and by ψi(n) we denote

the angle between yi(n) and the linear span L(n)Vi(n) of the
vectors yk (n), k 6= i, n ∈ N. It follows from Lemma 1 that

ψi(n) ≥
2
π
ϕi(n)~1−s(L(n))

=
2
π
ϕi(n) ‖L(n)‖1−s

∥∥∥L−1(n)∥∥∥1−s .
Since L(·) is a Lyapunov sequence, it follows that there exists
c > 0 such that

2
π
‖L(n)‖1−s

∥∥∥L−1(n)∥∥∥1−s > c

for all n ∈ N. Consequently,

ψi(n) ≥ cϕi(n)

for all n ∈ N. For α ∈
(
0, π2

]
, we set

L0αi
.
= {j ∈ N : ψi(jσ ) ≥ α} ,

L0αi (k)
.
= L0αi ∩ {1, . . . , k} ,

Lgαi (n) =
1
k

∑
j∈L0αi (k)

1.

If j ∈ 0αi , then

ψi(jσ ) ≥ cϕi(jσ ) ≥ cα,

i.e., j ∈ L0cαi . Consequently,

0αi (k) ⊂ L0cαi (k)

and

gαi (k) ≤ Lg
cα
i (k)

for all k ∈ N.
Let γ ∈

(
0, π2

]
and assume the sequence (kj)j∈N satisfies

the relations

lim
j→∞

ln ‖xi(kjσ )‖
kjσ

= λ[xi]

and

lim
j→∞

gγi (kj) > 0.
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Then

lim
j→∞

ln
∥∥yi(kjσ )∥∥
kjσ

= λ[yi],

lim sup
j→∞

Lgcγi (kj) ≥ lim
j→∞

gγi (kj) > 0.

We extract a subsequence (kjm )m∈N of the sequence (kj)j∈N on
which the upper limit lim sup

j→∞
Lgcγi (kj) is realized. Then

lim
m→∞

ln
∥∥yi(kjmσ )∥∥
kjmσ

= λ[yi]

and

lim
m→∞

Lgcγi (kjm ) > 0.

It means that the solution yi(·) is σ -broken away. The proof
of the theorem is complete.
Corollary 3: A Lyapunov transformation preserves the

splitting property of a system. Moreover, a splitted FSS is
transformed into a splitted FSS.
Remark 3: Each system (4) that can be reduced by a Lya-

punov transformation to a diagonal form is splitted, since the
solutions x1(·), . . . , xs(·) of a diagonal system with the initial
conditions xi(1) = ei, i = 1, . . . , s, form a normal FSS of
this system and preserve constant angles between themselves
(equal to π

2 ).

VI. BASIC RESULT
In this section, we prove the main property of splitted sys-
tems.
Theorem 4: Suppose that system (4) has a splitted FSS

x1(·), . . . , xs(·). Then there exist β > 0 and δ > 0 such that
for any ξi ∈ [−δ, δ], i = 1, . . . , s, there exists an admissible
multiplicative perturbation R(·), satisfying the estimate

‖R− I‖∞ ≤ β max
{
|ξi| : i = 1, . . . , s

}
(14)

and such that the solutions x i(·), i = 1, . . . , s, of system (8)
with the initial conditions x i(1) = xi(1), i = 1, . . . , s, satisfy
the relations

λ[x i] = λ[xi]+ ξi, i = 1, . . . , s.

Proof: Fix σ = 1. Since the solutions xi(·), i = 1, . . . , s,
are broken away, it follows that there exist a number γ ∈(
0, π2

]
and realizing sequences

(
kj(i)

)
j∈N ⊂ N for solutions

xi(·), i = 1, . . . , s, such that

ρi = lim
j→∞

gγi (kj(i)) > 0

for any i = 1, . . . , s. Note that the inequality ρi ≤ 1 is always
valid, since

sup
{
gγi (k) : k ∈ N, i = 1, . . . , s

}
≤ 1.

This, together with Lemma 3, implies that each function

3
γ
i (µ)

.
= lim sup

k→∞
(fi(k)+ µg

γ
i (k))

satisfies the estimate

λ[xi]+ µ ≥ 3
γ
i (µ) ≥ λ[xi]+ ρµ, (15)

where

ρ = min {ρi : i = 1, . . . , s} ,

and for each t ≥ 0, there exists a µit ∈ [0, ρ−1t] such that

3
γ
i (µ

i
t ) = λ[xi]+ t. (16)

Since γ is a fixed number throughout the proof, from now on
we omit the superscript γ .

Let us fix r ∈ (0, 1) and δ1 ∈ (0, ln(L1 + 1)), where

L1 =
r sin γ
s

and denote

L =
L1
δ1
.

It is easy to verify that

|exp(δ1)− 1| < L1, |exp(−δ1)− 1| < L1

and

|exp(τ )− 1| ≤ L |τ |

for all τ ∈ (−∞, δ1]. We set

δ =
δ1ρ

3

and take an arbitrary ξi ∈ [−δ, δ], i = 1, . . . , s. Let η .
=

min
{
ξi : i = 1, . . . , s

}
and ζi

.
= ξi − η. Then |η| ≤ δ and

0 = ξi − ξi ≤ ξi − η = ζi ≤ ξi + |η| ≤ 2δ, that is,

0 ≤ ζi ≤ 2δ.

Let

ε
.
= max

{
|ξi| : i = 1, . . . , s

}
.

Then

|η| ≤ ε

and

ζi ≤ |ξi| + |η| ≤ 2ε, i = 1, . . . , s.

Let the quantities µi, i = 1, . . . , s, be obtained from the
conditions

3i(µi) = λ[xi]+ ζi.

Since ζi ≥ 0, it follows that the numbers µi are well defined
by (16), and by (15) we have the estimates

µi ≥ 3i(µi)− λ[xi] = ζi ≥ ρµi ≥ 0

for all i = 1, . . . , s.
For each n ∈ N, we introduce a matrix R(n) ∈ Rs×s by the

formulas

R(n)xi(n) = xi(n) exp
(
si(n)

)
, i = 1, . . . , s, (17)
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where

si(n) =

{
η + µi for n ∈ 0i,
η for n 6∈ 0i.

Then we have the estimates

|si(n)| ≤ |η| + µi ≤ |η| +
ζi

ρ

≤ δ +
2δ
ρ
=
δ

ρ
(ρ + 2) ≤

3δ
ρ
= δ1

for i = 1, . . . , s and n ∈ N. This, together with the definition
of δ1, implies that ∣∣exp(si(n))− 1

∣∣ ≤ L1
and ∣∣exp(si(n))− 1

∣∣ ≤ L
∣∣si(n)∣∣ ≤ L (|η| + ζi

ρ

)
≤ L

(
|η| +

2ε
ρ

)
≤

(
1+

2
ρ

)
Lε.

By the definition of a FSS, the vectors x1(n), . . . , xs(n) are
linearly independent for each n ∈ N and, by (17), they are
eigenvectors of the matrix R(n). This implies that R(n) is
a matrix of simple structure [25, p. 239, Proposition 2] and
therefore it can be represented by the sum

R(n) =
s∑
i=1

Pin exp
(
si(n)

)
,

where the root projections Pin are given by the conditions

Pinxi(n) = xi(n)

and

Pinxj(n) = 0

for j 6= i. Moreover
s∑
i=1

Pin = I

for all n ∈ N. By Lemma 2, we have the estimate∥∥∥Pin∥∥∥ ≤ 1
sin γ

and hence the inequalities

‖R(n)− I‖ =
∥∥∥ s∑
i=1

Pin
(
exp

(
si(n)

)
− 1

)∥∥∥
≤

s∑
i=1

∥∥∥Pin∥∥∥ ∣∣exp(si(n))− 1
∣∣ < s

L1
sin γ

= r .

(18)

Moreover,

‖R(n)− I‖ ≤ s
|exp(si(n))− 1|

sin γ
≤

s
sin γ

(
1+

2
ρ

)
Lε.

Hence, for the sequence R(·) =
(
R(n)

)
n∈N we have

‖R− I‖∞ = sup
n∈N
‖R(n)− I‖ ≤ βε,

where

β =
Ls
(
1+ 2

ρ

)
sin γ

.

This proves (14).
Moreover, we have

XAR(n+ 1, n) = XA(n+ 1, n)R(n)

for all n ∈ N. Since r ∈ (0, 1), then the condition ‖H − I‖ <
r implies that H is invertible and

‖H‖ ≤ r + 1,∥∥∥H−1∥∥∥ ≤ 1
1− r

whatever H ∈ Rs×s is given [21, p. 301]. By (18) this in turn
implies that the sequence R(·) is an admissible multiplicative
perturbation.

Consider the FSS x i(·), i = 1, . . . , s, of (8) with such a
perturbation with the initial conditions

x i(1) = xi(1), i = 1, . . . , s.

For every natural i ≤ s and k ≥ 2 we have the equalities

x i(k) = XAR(k, 1)x i(1) = XAR(k, 1)xi(1)

=

k−1∏
j=1

XAR(j+ 1, j)xi(1)

=

k−1∏
j=1

XA(j+ 1, j)R(j)xi(1)

=

k−1∏
j=1

XA(j+ 1, j) exp
(
si(j)

)
xi(1)

= exp
(
si(1)+ . . .+ si(k − 1)

)
XA(k, 1)xi(1)

= exp
(k−1∑
j=1

si(j)
)
xi(k).

It follows that the Lyapunov exponents of these solutions
satisfy the relations

λ[x i] = lim sup
k→∞

1
k
ln ‖x i(k)‖

= lim sup
k→∞

1
k

(
ln ‖xi(k)‖ +

k−1∑
j=1

si(j)
)

= lim sup
k→∞

(
fi(k)+

µiNi(k − 1)
k

+
η(k − 1)

k

)
= lim sup

k→∞

(
fi(k)+

µiNi(k)
k

+
µi(Ni(k − 1)− Ni(k))

k
+ η −

η

k

)
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= lim sup
k→∞

(
fi(k)+ µigi(k)

)
+ η = 3i(µi)+ η

= λ[xi]+ ζi + η = λ[xi]+ ξi

for i = 1, . . . , s.

VII. APPLICATIONS
In this section, we prove several results that follow from
Theorem 4 and demonstrate the importance of the introduced
concept of splitted systems for studying the behavior of the
Lyapunov spectrum under the action of small perturbations.
Theorem 5: If system (4) has a splitted FSS which is not

normal, then the Lyapunov spectrum of system (4) is not
stable.

Proof: Let
{
x1(·), . . . , xs(·)

}
be a splitted FSS of sys-

tem (4) which is not normal. Denote

µi = λ[xi], i = 1, . . . , s.

Without loss of generality, we assume that the sequence
µ =

(
µ1, . . . , µs

)
∈ Rs

6. Note that among the numbers
µ1, . . . , µs, there are equal ones, because otherwise the FSS{
x1(·), . . . , xs(·)

}
would be incompressible, and therefore

normal. If

λ(A) =
(
λ1(A), . . . , λs(A)

)
∈ Rs

6

is the Lyapunov spectrum of (4), then µ 6= λ(A).
Choose a number α > 0 so small that the sets Oα(µ) and

Oα

(
λ(A)

)
do not intersect. Take an arbitrary positive ε <

min{α, δ}, where δ is from Theorem 4. With the selected ε,
in the neighborhood ofOε(µ) there is a sequence of numbers
µ′ =

(
µ′1, . . . , µ

′
s
)
, all of whose elements are different, i.e.,

µ′ ∈ Rs
<. Take ξi

.
= µ′i−µi, i = 1, . . . , s. Then |ξi| < ε < δ,

therefore, by Theorem 4, there exist an admissible multiplica-
tive perturbation R(·) satisfying the estimate ‖R− I‖∞ < βε

and such that the system (8) with such a perturbation has a
FSS

{
x1(·), . . . , xs(·)

}
such that

λ[x i] = λ[xi]+ ξi = µi + ξi = µ′i, i = 1, . . . , s.

Since the numbersµ′i are pairwise distinct, this FSS is incom-
pressible and therefore normal. Hence, the set µ′ is the Lya-
punov spectrum of system (8). Obviously, µ′ 6∈ Oα

(
λ(A)

)
for all such ε, which means that the Lyapunov spectrum of
system (4) is not stable.
Corollary 4: If the Lyapunov spectrum of system (4) is

stable, then each splitted FSS is normal.
It can be easily seen that stability of Lyapunov spectrum is

equivalent to continuity of the map R(·) 7→ λ(AR) at the point
R(n) ≡ I , n ∈ N. Theorem 4 can be also used to study some
other properties of this map.
Definition 9: The Lyapunov spectrum of system (4) is

called open, if the mapping λ(AR) : R → Rs
≤ is open at the

point R(n) ≡ I , n ∈ N, that is, for any ε > 0, there exists
γ = γ (ε) > 0 such that the inclusion

Oγ

(
λ(A)

)
⊂ λ

(
Rε

)
holds.

Remark 4: It was proved in [5, Theorem 3] that if the
Lyapunov spectrum of system (4) is stable, then it is open.
Here we obtain another sufficient condition for the Lyapunov
spectrum to be open, expressed in terms of the splitness of
system (4).
Theorem 6: If system (4) is splitted and has a non-multiple

Lyapunov spectrum, i.e. λ(A) ∈ Rs
<, then the Lyapunov

spectrum of this system is open.
Proof: Let λ(A) =

(
λ1, . . . , λs

)
∈ Rs

< and{
x1(·), . . . , xs(·)

}
be a normal splitted FSS of system (4), such

that λ[xi] = λj, i = 1, . . . , s. Denote

η
.
=

1
3
min

{
λi+1 − λi : i = 1, . . . , s− 1

}
.

For arbitrary ε > 0, we put

γ = γ (ε) = min{η, ε/β, δ/β, δ},

where δ > 0 and β > 0 are the quantities from Theorem 4.
Take any µ =

(
µ1, . . . , µs

)
∈ Oγ

(
λ(A)

)
and prove that µ ∈

λ
(
Rε

)
. Let ξi

.
= µi − λi. Then |ξi| < γ ≤ δ. By theorem 4

there exists an admissible multiplicative perturbationR(·) that
ensures the equality

λ[x i] = λ[xi]+ ξi = λi + ξi = µi

for the solution of system (8) with the initial condition x i(1) =
xi(1), and such that the inequality

‖R− I‖∞ < β max
{
|ξi| : i = 1, . . . , s

}
< βγ ≤ ε

holds, i.e. R(·) ∈ Rε.
Consider the FSS

{
x1(·), . . . , xs(·)

}
of system (8). Let us

note that

λ[x i+1]− λ[x i] = λi+1 − λi + ξi+1 − ξi
≥ 3η − |ξi+1| − |ξi| ≥ 3η − 2δ ≥ 3η − 2η

= η > 0

for i ∈ {1, . . . , s−1}. Hence the numbers λ[x1], . . . , λ[xs] are
pairwise different, so the FSS

{
x1(·), . . . , xs(·)

}
of system (8)

is normal and

λ(AR) =
(
λ[x1], . . . , λ[xs]

)
= µ.

It means that µ ∈ λ
(
Rε

)
.

The property of openness of the Lyapunov spectrum of sys-
tem (4) can be interpreted as the property of local assignabil-
ity of the Lyapunov spectrum of system (8) under the action
of a multiplicative perturbation R(·), which in this context is
considered as a matrix control.
Definition 10: The Lyapunov spectrum of system (8) is

called locally assignable if for any ε > 0 there exists such a
γ = γ (ε) > 0 that for any µ ∈ Oγ

(
λ(A)

)
there is a matrix

control R(·) ∈ Rε such that λ(AR) = µ.
It is clear that the property of openness of the Lyapunov

spectrum of system (4) coincides with the property of local
assignability of the Lyapunov spectrum of system (8); there-
fore, the following corollary holds.
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Corollary 5: If system (4) is splitted and has a
non-multiple Lyapunov spectrum, then the Lyapunov spec-
trum of system (8) is locally assignable.

VIII. EXAMPLES
In this section we shall present examples that show that there
are both systems with broken away normal FSS and systems
having broken away FSS which is not normal. We shall also
show that the assumptions of the proved theorems can be
effectively verified.

In the first example we present a system with splitted FSS
which is not normal and therefore its Lyapunov spectrum is
not stable. In this example we use the following result.
Lemma 6: We have

lim sup
n→∞

sin ln n = 1, (19)

lim inf
n→∞

sin ln n = −1. (20)

Proof: Consider the following sequences

tk = exp
(
2k +

1
2

)
π, nk = [tk ], k ∈ N.

We have

1 ≥ lim sup
n→∞

sin ln n ≥ lim sup
k→∞

sin ln nk

= lim sup
k→∞

sin
(
ln tk + ln(nk/tk )

)
= lim sup

k→∞

(
sin
(
ln tk

)
cos
(
ln(nk/tk )

)
+ cos

(
ln tk

)
sin
(
ln(nk/tk )

))
= lim sup

k→∞
cos
(
ln(nk/tk )

)
= cos ln

(
lim
k→∞

(nk/tk )
)

= cos ln 1 = 1.

Considering sequences

tk = exp
(
2k +

3
2

)
π, nk = [tk ], k ∈ N,

we may prove in a similar way the equality (20).
Example 2: Let us consider system (4) with s = 2 and a

diagonal matrix

A(n) = diag
(
a1(n), a2(n)

)
, n ∈ N,

where

a1(n) = exp
(
n sin ln n− (n+ 1) sin ln(n+ 1)

)
,

a2(n) = exp
(
2
(
(n+ 1) sin ln(n+ 1)− n sin ln n

))
.

The sequence A(·) is a Lyapunov sequence since∣∣(n+ 1) sin ln(n+ 1)− n sin ln n
∣∣ ≤ √2, n ∈ N.

To obtain the last inequality it is enough to apply the Lagrange
mean value theorem to the function f : [n, n+1]→ R, f (t) =
t sin ln t . It is easy to see that the matrix

8(n, 1) =
(
exp

(
−n sin ln n

)
0

0 exp
(
2n sin ln n

) ) , n ∈ N,

is a fundamental matrix of this system. By Remark 3 the
corresponding FSS is normal. By (19), (20) we have

λ(A) = (1, 2).

Consider now the FSS
{
x1(·), x2(·)

}
, where

x1(n) =
(
exp

(
−n sin ln n

)
exp

(
2n sin ln n

) ) ,
x2(n) =

(
0

exp
(
2n sin ln n

) ) , n ∈ N.

From (19) and (20) it follows that λ[x1] = λ[x2] = 2 and that

nk = [tk ]+ 1, k ∈ N,

is a realizing sequence for x1(·) and x2(·), where tk =
exp

(
2k + 1

2

)
π. Therefore FSS

{
x1(·), x2(·)

}
is not normal.

We shall show that it is splitted.
Denote by ϕ1(n) the angle between x1(n) and x2(n). After

some simple calculations we have

cosϕ1(n) =
(
1+ exp(−6n sin ln n)

)−1/2
.

Let us fix a

c ∈ (
√
2/2, 1). (21)

Let γ .
= arccos c, then γ ∈ (0, π/4). Notice that n ∈

0
γ

1 (M; 1) for some M ∈ N if and only if n ∈ N, n ≤ M
and

cos2 ϕ1(n) ≤ c2,

i.e.,

1+ exp
(
−6n sin ln n

)
≥ 1/c2.

The last inequality is equivalent to the inequality

6n sin ln n ≤ ln
(

c2

1− c2

)
. (22)

By the choice of c we know that c2

1−c2
> 1 and therefore

ln
(

c2

1− c2

)
> 0.

The last inequality means that each n ∈ N satisfying
sin ln n ≤ 0 also satisfies inequality (22) and therefore

{n ∈ N : n ≤ M , sin ln n ≤ 0} ⊂ 0γ1 (M; 1)

and

card {n ∈ N : n ≤ M , sin ln n ≤ 0} ≤ N γ1 (M; 1),

where cardB denotes the number of elements of the set B. Let
us fix k ∈ N, k > 1. Then for each

n ∈
[
exp

(
(2k − 1)π

)
, exp

(
2kπ

)]
∩ N

we have sin ln n ≤ 0 and 1 < n < nk , therefore[
exp

(
(2k − 1)π

)
, exp

(
2kπ

)]
∩ N ⊂ 0γ1 (nk ; 1)
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and

N γ1 (nk ; 1) ≥ exp(2kπ )− exp((2k − 1)π )− 1.

Since nk ≤ exp
((

2k + 1
2

)
π
)
+ 1, we have

lim sup
k→∞

N γ1 (nk ; 1)

nk
≥

1− exp(−π)
exp(π/2)

> 0,

which completes the proof.
In the next example we present a system with a stable

Lyapunov spectrum such that each of its FSS, which is not
normal, is not splitted.
Example 3: Let us consider the system

x(n+ 1) = diag
(
1, 2

)
x(n), n ∈ N, x ∈ R2. (23)

Since the system is time-invariant, it follows from [5] that
its Lyapunov spectrum is stable. Note that the normal FM of
system (23) has the form

8(n) =
(
1 0
0 2n

)
,

and therefore the corresponding normal FSS of system (23)
is splitted. Let us prove that every FSS of system (23), which
is not normal, is not splitted. Let us divide the set of all non-
trivial solutions of system (23) into two groups. We include
in the first group all the solutions x(·) of this system with
the initial conditions x(1) = αe1, where α 6= 0 . Such
solutions are constant and their Lyapunov exponents are equal
to 0. In the second group we include all the solutions x(·)
of system (23) with initial conditions x(1) = αe1 + βe2,
where β 6= 0. They have the form x(n) = col

(
α, 2n−1β

)
and

their Lyapunov exponents are equal to ln 2. Each normal FSS
contains solutions from both of these groups. If FSS is not
normal, then it should contain two solutions only from the
second group. We cannot construct a normal FSS from the
solutions from the first group, since any two solutions from
the first group are obtained one from the other by multiplying
by some constant, i.e., they are linearly dependent.

Take any solution x(·) from the second group and calculate
the angle between x(·) and the vector e2. We have

cos^
(
e2, x(n)

)
=
〈e2, x(n)〉
‖e2‖ ‖x(n)‖

=
2n−1β√

α2 + 4n−1β2
→

β

|β|

for n→∞,

i.e., ^
(
e2, x(n)

)
tends to 0 or π when n → ∞. It follows

that the angle between any two vectors x1(n) and x2(n) cor-
responding to some solutions from the second group tends
to 0 or π when n → ∞. By Definition 6 it means that FSS{
x1(·), x2(·)

}
which is not normal is also not splitted.

IX. CONCLUSION
In this paper we study the stability and openness problems
of Lyapunov spectra of discrete time-varying linear systems.
To investigate this problems we introduce the concept of
broken away solutions and the concept of splitted systems.
We demonstrate some properties of these concepts and then

applied these properties to the stability and openness prob-
lems of Lyapunov spectra. One of the main results states that
if the Lyapunov spectrum is stable then each splitted funda-
mental system of solutions is normal. It is worth mentioning
that this condition does not require a reduction of the given
system to any special form, but is rather expressed in terms
of the system itself. Another important result is that if a given
system is splitted and has a non-multiple Lyapunov spectrum,
then it has an open Lyapunov spectrum. We expect that the
proposed concepts of broken away solutions and splitted
systems may be useful in the investigation of other problems
in the theory of discrete time-varying linear systems, such as
the problem of assignability of the Lyapunov spectrum. This
will be a subject of our further research.
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