
Received 3 June 2022, accepted 29 June 2022, date of publication 7 July 2022, date of current version 18 July 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3189002

An Efficient LoRa-Enabled Smart Fault Detection
and Monitoring Platform for the
Power Distribution System Using
Self-Powered IoT Devices
GEORGE Y. ODONGO 1,2, (Graduate Student Member, IEEE), RICHARD MUSABE1,
DAMIEN HANYURWIMFURA 1, AND ABUBAKAR DIWANI BAKARI 3
1African Centre of Excellence in the Internet of Things (ACE-IoT), College of Science and Technology, University of Rwanda, Kigali, Rwanda
2Department of Computer Science, Egerton University, Nakuru 20115, Kenya
3Department of Computer Science and Information Technology, State University of Zanzibar (SUZA), Tunguu, Zanzibar 31308, Tanzania

Corresponding author: George Y. Odongo (godongo@egerton.ac.ke)

This work was supported in part by the University of Rwanda through the African Centre of Excellence in Internet of Things (ACE-IoT).

ABSTRACT Transient stability and supply disturbances are common yet unwelcome phenomena in power
distribution systems, particularly in sub-Saharan Africa. The growing demand for greater reliability and
dependability in power delivery has aroused the interest of researchers and renewed the pursuit of advanced
technological solutions for fault detection and location determination at medium and low-voltage levels.
The length of the distribution network typically ranges from hundreds to thousands of kilometers. In this
regard, the management of distribution networks, including the identification of faulty segments, is a
significant recurrent challenge facing power-system operators. With the ever-expanding distribution network
and regulatory demands for service reliability, the challenge for network operators is daunting. However, the
deployment of IoT technologies in the energy distribution infrastructure would significantly accelerate the
detection and location of faults, thus transforming the electricity delivery service into one that is responsive,
communicative, attractive, and robust. This study proposes, designs, and implements a reasonably priced
LoRaWAN-based IoT platform for monitoring distribution networks. The study was conducted in Nakuru
County, Kenya on an actual and active distribution network owned and managed by Kenya Power Company.
Experimental results showed that a trigger is generated at the network-monitoring center in about 100 ms
of the occurrence of a fault on the distribution network, thus enabling quick, prompt, and immediate
commencement of reparative action. Furthermore, practical evaluation has shown that this platform is well
adapted for the context of developing countries where budgetary constraints and cost prohibitions hinder the
upgrade of the legacy grid into fully-fledged smart entities.

INDEX TERMS Distribution transformer, fault-monitoring, IoT, LoRaWAN, power distribution system.

I. INTRODUCTION
The legacy power distribution grid that is still widely
in use was never built to enable two-way communica-
tion, and neither was it made with the ability to facilitate
real-timemonitoring by the service provider [1], [2].Whereas
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electricity generation and transmission are meticulously
monitored by highly advanced and computerized technolo-
gies, the distribution segment lacks a comparable level of
sophistication [3]–[6]. Because there is no automated means
of monitoring power delivery to consumers, this lack of feed-
back impedes efficient management of the power distribution
grid [7]. In the event of a power failure, the service provider
remains completely oblivious to the fact, resulting in a hue
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and cry from the affected consumers. This lack of feedback
also delays the initiation of reparative and restorative activi-
ties and interrupts the revenue stream for the power system
operator (PSO) [8], [9]. In response to this issue, service
providers have had to employ strategies that attempt to keep
them informed about problems on the distribution side of
the network. In Kenya, for instance, Kenya Power Company
Plc., the lone purveyor of electricity, encourages its clients
to communicate with the company through telephone calls
whenever they experience an interruption in power delivery.
The power system operator provider has set up call centers
and publicized its telephone and email contacts to be used
for this purpose [10]. In order to ascertain the loss of power,
Kenya Power clusters the telephone calls according to the
areas they originate from, makes a guess at the probable
location of the problem, and then sends out a service crew
team to find and repair the fault [11]. This arrangement,
however, ambitiously assumes that the client is constantly
monitoring the power supply in the affected premises and
that the customer is very conversant with troubleshooting the
power network. However, even with this arrangement, the
time it takes the service provider to learn about an active fault
is inordinately long, resulting in prolonged episodes of power
blackouts. Every year, Kenya Power customers experience up
to 25,000minutes of power outages [12]. For a growing econ-
omy with ambitious goals for the future, this is untenable.

As of June 2021, Kenya had an installed capacity of about
2,813 megawatts generated from various sources as follows:
about 29.4%was hydro power, 29.4%was geothermal, 26.6%
was thermal, and 11.8% was wind, with solar and biomass
closing the list at 1.8% and 1%, respectively [13], [14].
Fig. 1 is a graphical representation of Kenya’s energy gen-
eration mix. This energy is distributed to about 7.5 million
customers through a distribution and transmission network
consisting of about 74,608 kilometers of electric lines.

FIGURE 1. Kenya’s energy generation mix.

Disturbances in the power system are not entirely avoid-
able. In such a vast and expansive system with so many
variables and factors at play, one thing or the other will at any

one time gowrong, and when this happens, it is important that
the incident be immediately brought to the attention of the
service provider [15]. The greater the time it takes to become
aware of and mitigate a fault, the greater the ensuing damage
to adjacent equipment and infrastructure, resulting in even
more catastrophic failures and costly reparation.

In developed economies, this problem is being addressed
by the gradual rollout of the Smart Grid (SG). Due to its abil-
ity to integrate power, data, and message exchange to fashion
an efficient energy system, the smart grid is seen as a potential
solution to the lack of feedback from the electricity grid [3],
[16], [17]. This solution, however, is unappealing in develop-
ing countries due to the prohibitive costs involved [16]–[19].

A. RELATED LITERATURE
The goal of this section is to conduct a critical review of
related works for fault monitoring on power distribution sys-
tems, as well as techniques for powering IoT devices in such
deployments. An extensive review of published scholarly
works reveals that a variety of approaches have been proposed
in the literature to address the fault detection and location dis-
covery problem, including Petri nets [20]–[23], fuzzy-based
methods [24]–[28], artificial neural networks [29]–[31],
expert systems [32]–[35], and analytic models [36]–[38].
Although the aforementioned approaches have some very
strong points in some respects, they also display certainweak-
nesses. For example, it is difficult to establish and maintain
a knowledge base in expert systems; artificial neural net-
works are lacking in terms of interpreting reasoning results;
fuzzy theory employs membership functions and fuzzy rules
that are susceptible to subjective tendencies; and petri-based
methods have poor adaptability and difficulties in online
modeling.

In [39], a study that focused on fault diagnosis in power
transformers and the role of IoT in power maintenance is
reported. Thirty faulty transformers were selected, with 20 of
these being used for training while the other 10 were used
for testing. For communication, the General Packet Radio
Service (GPRS) was used. The researchers studied the rate
of accurate detection of the proposed IoT-based power trans-
former fault analysis method. It was reported that a training
error of less than 0.01% was observed, with the model accu-
rately identifying 95.6% of the faults, including those not
used in training. In [40], a model that exploits the Ohms law
to detect the fault location is proposed. The model enabled
technicians to find the precise fault location and assisted
service personnel in removing persistent faults, thus reducing
the occurrence of faults and minimizing the time of power
outages. The system used an Arduino to analyze the dis-
tances of the fault incidents with the help of software devel-
oped for the purpose. The fault location was relayed using
a Wi-Fi module. In [15], a remote IoT surveillance and fault
prediction arrangement grounded on custom-made software-
defined networking (SDN) is proposed. The methodology,
described as an evolution into a smart grid deploy-
ment, was based on a tailored software-defined network.
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The proposed architecture showcased an efficient method
of handling imminent interruptions and faults in the power
system via reasonably priced and dependable frameworks
that predict and deliver live condition monitoring indicators.
A prediction accuracy of about 96.1% was attained.

A novel method for precisely locating faults that exploits
the various measurements obtainable is proposed in [41].
To determine the closest position to the culpable site, the
devised method iteratively estimates the fault site. The lines
connecting to the chosen site are then scanned in order to
pinpoint the problem. A simulation test was conducted on
an actual distribution grid, and various failure situations were
considered to appraise the performance of the suggested tech-
nique. The upshot of this appraisal was that the method is
accurate and robust even when the measured data is question-
able and it reliably manages measurement mistakes. A novel
smart current and voltage observation method is suggested
in [41]. The system monitored a 3-phase power grid using an
open-source microcontroller, which read currents and volt-
ages from sensors. The readings were then sent wirelessly to
an Android application for analysis. The system enabled the
monitoring of some basic voltage and power quality aspects.
In [42], an algorithm that uses zoning in the Power Dis-
tribution System (PDS) is proposed. It communicated with
a cloud server through an edge node and delivered time-
harmonized current quantities. A database was used to record
all fault incidences that occurred in the power distribution
system. Results showed that the procedure was successful at
localizing the faults in all the test cases conducted.

A mature system that has been extensively used for fault
detection for several decades is Supervisory Control and Data
Acquisition (SCADA) [2], [43], [44]. It is not only used in the
power industry but also in several other industrial settings,
such as manufacturing, water management and treatment
systems, and oil and gas facilities. SCADA is basically a
centralized system that monitors and controls a given pro-
duction environment by gathering relevant data and sending
back commands to control certain aspects of the process [45].
Fig. 2 displays the fundamental components of the SCADA
system. Due to the length and breadth of the distribution
network, it is often not practically possible to run SCADA
over it because of the exorbitant installation costs. Such an
installation would cost hundreds of thousands of dollars,
canceling out any potential gains achievable from such action.
It is for this reason that many service providers have shied
away from a SCADA-monitored distribution grid [46].

In [47], phasor measurement units (PMUs) have been
described as being an integral part of a sophisticated tech-
nology for advanced measurement and monitoring of energy
transmission and distribution. In contrast to other existing
grid measurement methods, PMUs can provide highly accu-
rate and synchronized real-time measurements via Global
Positioning System (GPS) signals [47]–[49]. PMUs are typ-
ically installed at power substations and work by measuring
the amplitude of the voltage and the current at preselected
points using current transformers (CTs) and potential

FIGURE 2. Main components of a SCADA system.

transformers (PTs). The phase of the measured quanti-
ties along with their time-synchronized signals are also
taken and sent to a phasor data concentrator (PDC) for
onward transmission to the control center for further analysis.
PMUs are widely used and have been extensively integrated
into the transmission and distribution grids. This technology
is, however, very expensive and is seldom used on the distri-
bution network.

A suggestion was made in [11] to use smart meter mea-
surements to detect the location of distribution grid faults
using a state-approximation-based technique. The suggested
technique uses the variable weighting matrix identification
method to discover the faulted section. The approach is sim-
ple to implement algorithmically and does not require the use
of a fault type [11]. An assumption is made that the currents
and voltages measured as the fault develops are accessible by
the main substation.

Numerous research has also been conducted on the adop-
tion of intelligent algorithms and machine learning methods
for power fault detection and analysis. In [50], a proposal is
made to detect faults using a Fuzzy Logic Controller (FLC)
and to identify the fault location, an Adaptive Neuro Fuzzy
Inference System (ANFIS) is suggested. The study focused
on how the distribution grid incidences can be detected, iden-
tified, and located. A fuzzy controller was incorporated into
the system to recognize the different kinds of faults upon their
occurrence. The model was developed in MATLAB and the
results showed that ANFIS attained an accuracy of 51% for
identification and 93% for location.

Other researchers have also extensively reported on
LPWANs[51] compares the two main technologies in the
LPWAN space against GPRS. The study found that, as com-
pared to the coverage area of ZigBee and Wi-Fi, LPWANs
enable considerable connections covering long distances at
low cost and are devoid of the requisite maintenance. In [52],
a study seeking to understand the abilities and shortcomings
of LoRa technology in terms of its throughput, coverage,
and scalability is reported. The study used a combination of
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measurements from a real-world citywide LoRa deployment
and high-fidelity simulations to obtain and analyze the mea-
surement data collected. The results showed that within a
radius of about 15 kilometers, three gateways were able to
sufficiently cover the area and provide connectivity to about
1,000,000 end devices. The study illustrated the resilience
of LoRa, especially in a dense urban environment. In [53],
a study on the performance of an IoT application based
on LoRaWAN is reported. The experiment sought to obtain
insight into the packet loss, RSSI, and SNR values between
the transmitting device and the receiving one. Experimenta-
tion results showed that when the spreading factor is high,
LoRa end devices tend to provide greater immunity against
signal fading and multi-path fading.

IoT has today made it possible for miniature, alternatively-
powered devices to be embedded in the environment, mon-
itoring a diverse range of quantities in various fields such
as agriculture, security, manufacturing, environmental mon-
itoring, healthcare, transportation, just to name a few. This
embedding has concomitantly created a need for innova-
tive ways to power these embedded devices. Consequently,
the term ‘‘energy scavenging’’ has become relevant in this
context. Energy exists in the environment in many different
forms and can be harvested for use in low-power-demanding
applications [54]. In [55], various latent energy sources in
the environment are identified, such as chemical, mechanical,
acoustic, solar, and radio frequency (RF). The harvesting
of ambient energy coupled with the usage of rechargeable
batteries for energy storage is beneficial for Wireless Sensor
Network (WSN) operations, opines Dhananjaya [56]. His
work further observes that WSNs require energy harvesting
to avoid frequent battery replacement and associated costs.
Energy harvesting enables on-site charging of rechargeable
batteries, which may be cycled hundreds of times before
losing their capacity. The battery’s life may be prolonged
practically forever with the right technology and energy man-
agement. As observed in [57]–[59], long-term deployment
of IoT devices necessitates some form of energy harvesting.
In particular, photovoltaic (PV) cells have been identified
as a feasible, low-cost, and long-term energy source for
IoT sensors.

B. IoT, LPWAN, LoRa R©, AND LoRaWAN R©

‘‘IoT,’’ which is an abbreviation for ‘‘Internet of Things,’’ is
a notion that promulgates the idea that millions of indepen-
dent, ubiquitous, internet-enabled devices can spontaneously
and autonomously initiate connectivity with other similarly
connected devices and share information at any time, any
place, and anywhere [60], [61]. With the widespread adop-
tion of IoT solutions across a wide range of domains [62],
the focus has shifted to how these IoT devices can connect
from remote and distant locations given that they are battery-
powered and severely resource constrained [63], [64]. It is
from this perspective that LPWAN, short for low-power wide-
area network, comes into play. The term LPWAN refers
to communication protocols and technologies that embrace

two unique properties: one, they have an enviably small
energy demand; and two, they possess the ability to com-
municate over distances tens of kilometers apart. Due to
their low energy demands, LPWAN-compliant devices have
an uncanny ability to run for several weeks, maybe even
years, on nothing but low-capacity battery cells. As opposed
to wireless WANs, which are designed to carry more data
using more power, LPWANs have a low data rate that is
typically less than 50 kbit/s per channel [65]. The reach
of LPWANs varies but can be greater than 15000 meters
depending on the specific technology, with payloads of up
to 1000 bytes [52], [66]. As such, the term LPWAN does
not refer to a specific technology but is a generic term used
for various long-reach but low-power-consuming network-
ing technologies that come in various shapes, sizes, and
flavors [67]. LPWANs can be proprietary or open-standard,
and they can use licensed or unlicensed frequency bands [68].
Some examples of LPWAN compliant technologies include
ZigBee, SigFox, Nwave, RPMA, Ingenu, LoRa, NB-IoT,
LTE-M, and NB-Fi.

LoRa R© is an abbreviation for ‘‘Long Range’’ and is the
name of a physical layer proprietary LPWAN technology
founded on the spread spectrum modulation technique that
is plagiaristic of the Chirp Spread Spectrum (CSS). Because
of its low power, low bandwidth, and long range capabil-
ity, LoRa has emerged as a boon for the IoT, particularly
for wide-area data haulage [69]–[73]. LoRa devices offer
fascinating characteristics for IoT use cases that include
long-range communication, low power demand, and secure
data transfer. It was developed by Cycleo SAS about a
decade ago, and later it (Cycleo SAS) was acquired by
Semtech [74], [75]. Since then, Semtech has successfully
leveraged the wide area connectivity capabilities of LoRa,
so much so that today more than 65 million devices across
more than 120 countries are using LoRa [76], [77]. LoRa
technology, whose physical layer was patented in July 2014,
is favored for many reasons. Not only is it long range and low
cost, but it makes judicious use of scarcely available power,
giving it the ability to operate for manyweeks, possibly years,
powered by nothing but tiny energy reservoirs [62], [64], [70].

From an architectural point of view, a typical LoRa deploy-
ment can be divided into four distinct sections [70], as shown
in Fig. 3. A LoRa network can allow an assorted array
of embedded sensors to transmit information to a central
gateway, which then forwards the same to an application
server via a network server. The end devices, otherwise
known as motes or nodes, are ordinary objects equipped
with low-power communication devices. The gateways are
the devices that receive and transmit data from and to
the motes. The gateways themselves must be connected to
the network servers via some kind of backhaul network
connection [66], [78]. The network server is the workhorse
of the network. The network server manages the gateways
and allows the end devices to securely communicate with the
cloud. It has all the intelligence to perform security checks,
remove duplicate packets, acknowledge packets received
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FIGURE 3. Architectural layout of a LoRaWAN deployment.

from the gateways and channel packets received to the rele-
vant application server. The application is just some software
executed on an Internet server.

LoRaWAN is an implementation of the adaptive data
rate (ADR) algorithm that regulates the communication speed
for each node individually. The terminal nodes are permitted
to transmit data using any ADR speed over any available
channel at any time. Specific rules, however, must be fol-
lowed, one of which being that the end devices are required
to change the channel haphazardly for every broadcast. This
ensures the availability of a variety of frequencies for data
transmission. The end nodes are further obligated to observe
restrictions on transmission duty cycles defined by the range
specification.

The architectural framework of LoRaWAN comprises four
major components, as shown in Fig 3. These four components
are the end nodes; the gateway; the network server; and the
application servers. This framework shows how LoRa and
LoRaWAN allow dense but widely spread-out networks of
edge devices to be connected, thus enabling data collection
and monitoring from thousands of nodes in a manageable
way. The end nodes are the devices situated at the net-
work boundaries and will usually be equipped with sensory

capabilities, the type, design, and function depending on the
specific use case.

Customarily, a low-powered microcontroller is used to
build end nodes. This gives the nodes the ability to linger
on in the environment for many months or years without
requiring regular servicing. They will usually be fitted with
a means of communication that requires minimal power. The
gateways receive and forward data from the end nodes and
can therefore be thought of as bridges between the nodes and
the network. Because of its primary role in the network, the
gateway can also be considered a packet forwarder [70]. The
network server amalgamates all the data they receive from
the various gateways and uploads it to the application server.
Finally, the data collected from the field by the different end
nodes must be interpreted either visually or analytically. This
role is played by the application server. In addition, specific
actions or triggers may be initiated as a consequence, such as
a notification service to inform the resident engineer when a
potential issue has arisen, or the mere opening of a window
or turning on rainwater pumps for agricultural use cases.

LoRa functions in the unregulated and free-to-use unli-
censed Industrial, Scientific, and Medical (ISM) radio bands
that are sections of the radio frequency spectrum retained
internationally for ISM purposes [69]. The ISM radio bands
assigned for use in specific countries differ from one to
another but are either 433MHz, 868MHz, or 915MHz. In the
US, for instance, the frequency sub-band used is 915 MHz,
while in the EU, 433 MHz or 868 MHz sub-bands are used.
Other regions of the world will also have specific frequency
allocations as set by regional regulatory agencies [79]. Even
though LoRa functions in the free and unlicensed ISM radio
bands, there are regulations on how much power it can
transmit, its duty cycle, and sometimes the bandwidth. For
instance, in the EU, a duty cycle limit of 1% per sub-band per
hour is specified.

LoRa modulation characteristics are premised on three
configurable properties that remarkably alter its perfor-
mance: the coding rate (CDR), the spreading factor (SF),
and the bandwidth (BW). The bandwidth is the breadth of
the spectrum that a chirp occupies. LoRa provides for a
tripartite bandwidth setting of either 125 kHz, 250 kHz,
or 500 kHz [80]. The chosen setting will determine the
rate at which the transmitter sends data to the receiver. The
spreading factor is a significant parameter that determines
how many chirps are encoded per symbol and hence the
modulation rate. The spreading factor (SF) is chosen such
that SFε {7, 8, 9, 10, 11, 12}. The chirp rate (CPR) is the first
derivative of the chirp frequency. Equation (1) shows how the
three parameters are related.

CDR = BW
/
2SF (1)

where CDR stands for coding rate, SF stands for spread-
ing factor, and BW stands for modulation bandwidth.
Equation (2) shows how the SF, BW , and CDR influence

VOLUME 10, 2022 73407



G. Y. Odongo et al.: Efficient LoRa-Enabled Smart Fault Detection and Monitoring Platform

the bitrate (BR).

BR = SF ·
BW
2SF
· DR (2)

where SF stands for spreading factor, BW stands for modula-
tion bandwidth, and CDR stands for coding rate. The coding
rate (CDR), expressed as a fraction, denotes the quantity
of transmitted bits that carry the essential information. The
higher the coding rate value, the lower the effective data rate
since a data payload is of a prescribed size. LoRa can be
configured for four different coding rates as shown in (3).

CDR =
4

(4+ EC)
(3)

where EC is a value in the set {1, 2, 3, 4}, and describes
how sensitive a receiver should be in detecting and cor-
recting amending mistakes in the sent message. Using (3),
it is found that the coding rate can be one of the
following{4/5, 4/6, 4/7, 4/8} [81].

There are three classes of end devices defined in the
LoRaWAN specification, viz., classes A, B, and C. A class
A device has extreme savings on the available power since
every transmit session is initiated by the end-node rather than
by the gateway. As such, the end nodes can create and observe
a transmit schedule with the least duty cycle. After an end
node initiates an uplink, an optional downlink opportunity is
made available to the gateway to transmit its own frame in
case there is a need for such [82]. With a class B device, how-
ever, the end node must first synchronize its internal clock
with that of the gateway using beacons received from the
gateway. During this process of synchronization, the gateway
can create a data transmission and synchronization schedule
with the nodes. Each class B device will therefore utilize
the allotted time to transmit uplink frames. Class C devices
are perpetually paired with the gateway. This arrangement
assumes that power is continuously available and is, in fact,
unlimited. Fig. 4 compares the various classes of devices in
terms of their communication latency and how efficiently
they utilize energy.

FIGURE 4. A comparison of Class A, Class B and Class C devices.

Most off-the-rack LoRa end nodes are built to comply with
the Class A specification. Because LoRa Class A devices use
a channel access method similar to ALOHA, there is a small
probability that two frames sent by two end nodes using the
same spreading factor will collide [70], [83]. However, since

a LoRa broadcast has an infinitesimal duty cycle, the proba-
bility of frame contention is considerably low. But in Classes
B and C, the synchronization that precedes a transmission
renders the communication channel collision-free [84].

Whereas LoRa is a description of the lowest physical layer,
the higher layers were initially not defined. This void necessi-
tated the creation of LoRaWAN, which is one of a number of
protocols that have been created to define the higher layers of
the protocol. It can obtain real-time data from various objects
in the environment and is an open, secure, and interopera-
ble worldwide standard for wireless communication. It acts
principally as a network layer routing protocol that manages
the manner in which end-nodes and gateways communicate,
but it is actually a MAC layer protocol based on the cloud.
The LoRaWAN standard was proposed by the LoRaAlliance,
which is a global association whose members’ ecosystem
developed and maintains the LoRaWAN protocol. The LoRa
Alliance, created in 2015, is an open, not-for-profit associa-
tion with over 500 members who actively support and main-
tain the LoRaWAN protocol, thus ensuring interoperability
of all LoRaWAN products and technologies. Fig. 5 shows
the LoRa protocol stack. At its lowest level, the physical
layer (PHY) is found, which is where LoRa is domiciled.
Then, above it, we have the media access control (MAC)
layer, whose function is to eliminate duplicate receptions,
assign frequencies, spreading factors, and data rates to the
devices, among other things. The application layer handles
the data encryption and decryption as well as encoding and
decoding.

FIGURE 5. The LoRaWAN protocol stack.

C. TYPES OF FAULTS
A fault on the electric grid is the sudden and possibly cata-
clysmic departure of voltages and currents from their rated
values that affect usual operations. The equipment of the
power network, including the conductor cables, ordinarily
carries voltages and currents that guarantee the safe opera-
tion of the system. However, when faults ensue, they cause
extraordinary current flow streams that may result in the
impairment of adjacent equipment [42].

Faults in the electrical power system can be either sym-
metrical or non-symmetrical. Symmetrical faults, also known
as balanced faults, are very severe. Nevertheless, their occur-
rence is quite rare. A balanced fault can appear as a line to line
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to ground (L-L-L-G) or a line to line to line (L-L-L), as illus-
trated in Figs. 6 (a) and 6 (b). Symmetrical faults are estimated
to have an occurrence frequency of between 3 and 6%. Since
symmetrical faults leave the system in a balanced state, such
faults usually result in colossal destruction of the power
equipment [85].

FIGURE 6. Symmetric faults (a) Line-to-Line-to-Line-to-Ground
(b) Line-to-Line-to-Line.

On the other hand, non-symmetrical faults, also known
as unbalanced faults, are less severe yet extremely common.
When the impedance values of each phase differ, the current
flows in those phases are dissimilar. This state is what is
referred to as an imbalance in the system. There are three
main manifestations of non-symmetrical faults, namely dou-
ble line to ground (LL-G), line to line (L-L) and line to ground
(L-G) faults [86]. Line to ground fault (L-G) is by far the most
frequent type of fault in this category and accounts for 65 to
70% of fault manifestations [85]. Fig. 7 is a diagrammatic
representation of non-symmetric faults.

FIGURE 7. Non-symmetric faults (a) Line-to-Line (b) Line-to-Ground
(c) Line-to-Line-to-Ground.

D. ORGANIZATION
The remainder of this paper is organized as follows: In Seg-
ment II, we will discuss the materials and methods that have
been used in this study. Segment III presents the experimental
results. In Segment IV, a discourse on the significance of the
finding is undertaken, and in Segment V, the study is con-
cluded. All the abbreviations used in this work are explicated
in Table 8.

II. MATERIALS AND METHODS
A. ABOUT THE STUDY LOCATION
This study was conducted in Nakuru County in the East
African country of Kenya. Nakuru is located 189 km north of
the city of Nairobi and has an altitude of 2217 meters above
sea level. Kenya Power (KP) Company Limited has created
eight administrative regions, namely: Central Rift, North Rift,
Mt. Kenya, North Eastern, Coast, South Nyanza, Nairobi, and
Western regions. Njoro Sub-county falls under the Central
Rift Region, which has about 1.6 million subscribers.

Nakuru is host to several factories and industries that
give the area significant economic importance. The oper-
ations of all of these factories rely on a stable supply of
electrical energy. As a popular tourist destination, Nakuru
is host to several hotels and resorts that receive its many
visitors. All these places need to be powered reliably and
continuously.

B. SYSTEM DESIGN AND CONSTRUCTION
The proliferation of miniature sensors that survive on limited
energy sources has given impetus to this study’s goal of
actualizing a LoRaWAN sensor network tomonitor the power
distribution grid [87]. When constructing IoT devices, the
overall goal is to construct devices that will conserve as much
power as possible. The designed system comprises the cloud
application server, network server, LoRa gateway, and field
deplorable sensors. Table 1 outlines the various components
that were used to build the platform.

The Arduino microcontroller was preferred for this work
due to its low power consumption and its versatility in terms
of the projects that can be undertaken through it. Along with
the little power-consuming hardware, the algorithm that it
was developed to run is also power-conserving. Fig. 8 shows
a flowchart of the algorithm executed by the microcontroller.
The algorithm departs from the conventional ‘‘polling’’ tech-
nique. The polling technique uses sensors that are configured
to continuously take readings at a regular set interval and,
as such, is energy-hungry. In contrast, ourmethod uses ‘‘inter-
rupts’’ instead to alert the microcontroller unit of an abnormal
situation in the quantity being observed. This means the
Arduino microcontroller can be in a state of ‘‘deep sleep’’
most of the time. In a deep sleep state, the microcontroller
uses minimal power as opposed to an always-on operation,
which is power-consuming. The device is configured such
that when an interrupt is detected, the microcontroller wakes
up from its state of ‘‘deep sleep’’ and sends an alert to the
monitoring and control center, informing them of an anomaly.
This mode of operation is highly energy efficient, especially
since we desire the IoT device to conserve as much power
as is practically possible without compromising its ability to
operate.

1) GATEWAY SETUP AND CONFIGURATION
The RAK7258 Micro Gateway was selected for this work.
The gateway with Power-over-Ethernet (PoE) capability
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TABLE 1. Bill of materials for the fault detection platform.

FIGURE 8. A flowchart of the fault-monitoring algorithm.

is managed and configured through the open wireless
router (OpenWRT) user interface. Data destined for the local
server is relayed by means of the MQTT protocol. Given
the size and format of the messages, MQTT is appropriate
for use in relaying the messages to the server [88]. The
data from the sensing devices is aggregated and forwarded
to the network server. The RAK7258 Micro Gateway is a
full-featured, eight-channel gateway that uses IP to connect
to the wireless LoRa network. It is powered by a 12V-1A
DC power supply and operates at a frequency of 868MHz
with a listed minimum receiver sensitivity of −142dBm.
Packets are relayed to the local server via an Ethernet
backhaul.

The gateway message protocol (GMP) is used to send
LoRaWAN messages over the wireless interface.

2) EMBEDDED ELECTRONIC MONITORING DEVICE
The Embedded Electronic Monitoring Device (EMMD)
was constructed using the open source hardware Arduino
MEGA 2650 Rev3 microcontroller (MC). Fig. 9 shows the
layout of the selected Arduino microcontroller along with its
various parts. The microcontroller board was programmed
to read from the current transformers (CT) attached to the
outbound supply lines of the distribution transformer. The
sensors enabled us to determine whether the equipment was
energized or not. Since the signal obtained from the sensor
was very small, it was first amplified before it was fed to the
Arduino microcontroller. Fig. 10 shows the circuit that was
used to amplify the signal from the current sensor. As it can
be seen, the output pin is pulled HIGH when no current is
detected. The sensor readings are thereafter forwarded to the
LoRa gateway after a time-stamp and the GPS coordinates
expressed as a combination of latitude and longitude are
appended. The time stamp is obtained from the Real Time
Clock (RTC), and the GPS receiver supplies the GPS coordi-
nates, both of which are attached to the ArduinoMEGA2560.
Fig. 11 presents the schematic diagram of the embedded
electronic monitoring device (EEMD). Fig. 12 illustrates the
block diagram of the EEMD, and Fig. 13 is a photo of the
assembled EEMD. In order to protect the EEMD from exter-
nal elements, it was placed inside a protective waterproof
casing as shown in Fig. 14.

FIGURE 9. Arduino MEGA 2560 microcontroller.

3) SOLAR ENERGY HARVESTING
The battery lifetime of an embedded device has been cited as
being its most significant criterion [89]. Considering that the
IoT device will be deployed in the field in a remote location
to continuously monitor the electrical system, there is a need
to eliminate the need for regular maintenance, particularly
the necessity for energy replenishment. We therefore built
the monitoring device to harvest its own energy from the
environment and store it in a rechargeable battery. With the
generous insolation available of about 5-7 peak sunshine
hours daily, resulting in about 4-6 kWh/m2, the choice of
solar is reasonable [90], [91]. A monocrystalline solar panel,
the charge controller TP 4026, and a Nickel Metal Hydride
(NiMH) battery were selected as shown in Fig. 15. The solar
panel is a 6V/3.5W and the battery chosen is a 4.8V with a
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FIGURE 10. Current transformer connection and interfacing circuitry.

FIGURE 11. Schematic diagram of the embedded electronic monitoring
device.

FIGURE 12. Assembly of the EEMD using Arduino MEGA 2560.

current-ampere hour rating of 2500mAh. These components
were assembled as shown in Fig. 16. The TP 4026 charge
controller boosts the voltage to 5V through an inbuilt
DC-to-DC voltage booster.

The data sheet of the Arduino MEGA 2560 recommends a
supply voltage of between 7V and 12V [92]. However, when

FIGURE 13. The electronic monitoring device with an Arduino board and
LoRa transmitter module.

FIGURE 14. An EEMD encapsulated in a waterproof protective casing.

this voltage is supplied through the barrel connector, it goes
through a linear voltage regulator that reduces it to the 5V that
is used by the microcontroller unit. This linear voltage reduc-
tion by the regulator is wasteful because voltages in excess
of 5V are not put to any good use but are merely dissipated in
the form of heat [93]. With the objective of maximizing the
available power in mind, we decided to supply the MCUwith
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FIGURE 15. Solar energy recharge Kit (a) The charger controller (b) The
battery (c) The solar panel.

FIGURE 16. A block diagram of the solar recharging circuit.

a constant 5V input. Hence, the regulated 5V from the charge
controller (TP 4026) was fed directly to the MCU through
the 5V pin. This arrangement eliminated the need for the
linear voltage regulator and saved the energy that would
otherwise have been lost through it.

The charge controller TP4026 uses the Power Point Track-
ing (PPT) technique and therefore attains high efficiency.
Furthermore, the DC-to-DC voltage boost converter not only
maintains the voltage constant at 5V but also eliminates
the need to tap energy directly from the battery terminals.
PPT charge controllers exhibit critical advantages over Pulse
Width Modulation (PWM) charge controllers. They not only
keep the battery from overcharging, but they also boost per-
formance by more than 30% [56], [94], [95].

4) CHARGING TIME OF THE BATTERY
In order to determine if the selected solar panel will main-
tain the battery in a charged condition, we calculate how
much time it would take to fully recharge the battery. First,
we obtain the maximum charge current using the formula
shown in (4). The maximum charge current is found to
be 729 mA. To cater for system losses estimated to be about
(20%) and charge controller efficiency of 75%, the effec-
tive charging current, Ceff , is determined to be 437.5 mA
using (5).

Ci = W/
V (4)

Ceff = W/
V × (1− 80%)× 75% (5)

where W is the total wattage of the solar panels (3.5W) and
V is the battery voltage (4.8V). To cater for inefficiencies
in the charging system, a higher battery capacity is assumed
and calculated using (8). A battery charge efficiency of 85%
is taken, and a new value for the battery charge is obtained
using (6).

Bc = Cc × (85%)−1 (6)

where Bc is the battery charge capacity and Cc the rated
capacity. With Cc being 2500mAh, Bc is determined to
be 2941mAh. To determine how much time it would take to
charge the battery, (7) was used.

tτ = Bc
/
Ceff (7)

where tτ is the time it takes to fully charge the battery,
Bc is the battery charge capacity, and Ceff is the effective
charging current. Using (9), the total time to fully charge
(tτ ) is calculated to be 6 hours and 43 minutes. This figure
assumes that the battery is fully discharged and that there
are no cloudy episodes during the day. However, in reality,
the battery is never used until it is completely discharged.
Moreover, many batteries have built-in safety limits that,
when reached, will automatically trigger a shutdown in order
to protect the battery.

5) THE CLOUD SERVER AND DATA VISUALIZATION
The loss of power on a network segment is an emergency
that must be promptly addressed. The platform was there-
fore set to trigger an alarm at the monitoring and control
center. In addition, email and text messages were sent to a
preselected email. The power system operator would then
be able to send personnel to correct the existing anomaly.
The monitoring dashboard showed the GPS location of the
transformer, the status of each of the monitored phases of
the transformer, and the time the fault was detected. The
dashboard is shown in Fig. 17. Fig. 18 shows how the fleet of
monitoring devices was deployed on the distribution network.

III. EXPERIMENTAL EVALUATION AND TEST RESULTS
The experimental findings of the deployment of the EEMDs
are reported in this section. The end nodes were assembled;
the sketch was compiled and uploaded into the microcon-
troller through the IDE. The Things Network (TTN) Stack
LoRaWAN server stack was set up to receive data from the
end-nodes. For visualization, the data was sent to Cayenne,
which is an online dashboard for IoT applications. A data
format conversion was necessary for Cayenne to receive data
received from TTN. Cayenne enabled the creation of a trigger
so that whenever a power outage occurred, an alarm condition
was created at the monitoring and control center.

A. PLATFORM DEPLOYMENT
The LoRa-based distribution transformer-monitoring plat-
form was piloted between August 7 and September 24, 2021.
Six distribution transformers owned and operated by the
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FIGURE 17. Visualization dashboard of distribution transformer
monitoring.

FIGURE 18. Sensor monitoring on the distribution transformers.

Kenya Power Company were used for piloting. The trans-
formers themselves were the outdoor pole-mounted types that
were suspended approximately 10 feet above the ground.
Fig. 19 is a picture of the current sensors and the EEMD
attached to a distribution transformer, while Fig. 20 is a
satellite map showing the various locations where the spe-
cific transformers were located in the area of study. Six
EEMDs were installed, one on each distribution transformer,
and were set up to communicate with a centralized LoRa
gateway. The gateway was placed on the fifth floor of a
storied building and was positioned close to a window. It was

FIGURE 19. A picture showing the attachment of current sensors clamped
to a distribution transformer.

FIGURE 20. A diagram showing the location of transformers and
displacement of the EEMDs from the LoRa gateway.

TABLE 2. Dispersion of the sensors from the gateway.

connected to the local Ethernet and powered by electricity via
a 12V AC-DC adaptor.

The embedded electronic monitoring devices were dis-
patched to the various preselected transformers within the
study area, with varying intervening distances between the
nodes and the gateway as shown in Table 2.

B. DATA COLLECTION AND MESSAGE PAYLOAD
The data collected by the embedded electronic monitoring
devices comprised the GPS location information expressed as
longitude and latitude, a time-stamp, and the current reading
of each phase of the transformer. In order to keep the payload
small, the timestamp was trimmed to exclude the seconds.
This also enabled the LoRa packets generated to conform
to the LoRaWAN specifications. This information was then
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TABLE 3. LoRaWAN parameter settings.

packaged into a single data structure that enabled us to send
different pieces of information as one solitary payload. The
total size of the LoRaWAN packet payload was calculated
to be 22 bytes, including a 13-byte LoRa packet overhead.
Fig. 21 shows the various parts of a LoRaWAN packet.

Table 3 shows the parameters and their settings as they have
been used in this study, and Table 4 is a subset of the data
collected during experimentation.

C. LoRaWAN CONFIGURATION AND PERFORMANCE
According to the LoRaWAN documentation, there are sev-
eral parameters whose values can be set to ensure optimum
performance. These parameters are the bandwidth, the coding
rate, and the spreading factor. Since the EEMDs are fixed to
a stationary point, ADR, or adaptive data rate, was enabled.
ADR is an algorithm that accesses the link quality and, based
on this assessment, determines the optimal SF. Thus, ADR
dynamically and autonomously increases or decreases the
data rate to ensure the data rate is optimal. For Forward Error
Correction (FEC), a coding rate of 4/6 was chosen because it
results in maximum data transfer per packet. The bandwidth
was set at 125 kHz because it affords the media the highest
sensitivity. Receiver sensitivity, expressed in dB, is a measure
of the minimum signal strength detectable by a receiver. For
best results, this quantity should ideally be of very low value.
The receiver sensitivity (S) is obtained using (8).

S = TN + 10 · log10 (BW )+ NF − SNRlimit (8)

where TN stands for thermal noise (in decibels), BW stands
for bandwidth,NF stands for noise factor, and SNRlimit stands
for the signal-to-noise ratio in decibels.

In order to assess how LoRaWAN performs, a series of
packets were sent from each of the nodes (1 to 6) and the
average values of the Received Signal Strength Indicator
(RSSI), the Packet Reception Rate (PRR), and the Time of the
Air (ToA) were recorded. For Node 1, however, no reception
was possible at the gateway. These observations are summa-
rized in Table 5.

D. BATTERY DEPLETION TIME
Energy self-sustenance is a critical aspect to the success of
this work. The EEMD described in this work must, of neces-
sity, be able to operate for many years and not be incapaci-
tated by the depletion of power from the battery. In an effort

TABLE 4. Experiment sample data from test sites.
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TABLE 4. (Continued.) Experiment sample data from test sites.

TABLE 5. Performance of the LoRa transmissions from test sites.

to guarantee longevity, the systemwas built with the ability to
replenish its own power by harvesting solar energy from the
environment. This is a critical factor for IoT systems because
many of these devices are deployed in far-flung areas that are
also hard to reach.

It is also imperative to determine how long the battery will
last while continuously powering the EEMD, assuming that
there is no replenishment energy to the battery. This will give
us an indication as to whether the capacity of the chosen
battery is sufficient. The time it would take to completely
deplete the battery power source largely depends on the
rate at which current is drawn from the battery. In addition,
as described earlier, the EEMD spends most of its operational
life in the deep sleep mode. Due to the low duty cycle of a
LoRa send operation, the EEMD is 99.9% of the time in deep
sleep. For this reason, the researchers decided to estimate the
life of the battery from only the power consumed during the
sleep mode. This does not refute the fact that some power is
consumed during the awake state, but rather is an appreciation
of the fact that the power consumption when the device is
‘‘awake’’ is infinitesimal in comparison to the deep-sleep
power consumption.

The life of a rechargeable battery is estimated from its rated
capacity in Ampere Hours (Ah). Using a Fluke 117 digital
multimeter, it was determined that the Arduino ATMEGA
2560 used about 29.13 mAwhen in ‘‘Deep Sleep’’ mode. The
interface circuit for the current sensor draws about 5.618 mA.
The current consumption during the deep sleep mode for the
rest of the components of the EEMD has been extracted from
their data sheets and summarized in Table 6.

Table 6 shows that the total current drawn by the EEMD
in deep sleep mode is 36.4 mA. Using (9), and with a battery
with a charge capacity of 2500 mAH, the battery can sus-
tain the EEMD for about 68.65 hours, or 2 days, 20 hours,

TABLE 6. Current consumption in the deep sleep state.

TABLE 7. Comparison of the currently used fault notification system to
the proposed IoT-based platform.

and 38 minutes. Since the battery can be fully recharged in
6 hours, we conclude that the battery capacity is sufficient
for the proposed application.

Blife = Bcap
/
Icur (9)

whereBlife is the battery life,Bcap is the rated battery capacity,
and Icur is the load current.

IV. DISCUSSION
The LPWAN is the principal component of the wide area-
monitoring platform espoused in this work. Six nodes were
deployed in the study area to monitor actual transformers
owned and operated by Kenya Power Company Plc. Since
the percentage of time the system is available is far greater
than the periods of non-availability, a lot of time would have
been taken to gather the necessary data for analysis. Hence,
we recreated a fault at each site being monitored by isolating
the current sensor using a switch so that no input is received
by the microcontroller. When the current transformer is iso-
lated, there is no input current to the op-amp CA3140 shown
in Fig. 10, and this will automatically trigger a LoRa uplink
transmission. This is the usual behavior of the circuit when
a de-energization of the transformer occurs. In addition, the
Arduino was programmed to read from the current sensors
every 30 minutes for testing purposes. Cumulatively, by this
arrangement, we sent about 400 LoRa packets from every
node, each packet representing a fault manifestation. Data
was received from all the nodes (2, 3, 4, 5, and 6) except
node 1, where the PRR was zero in spite of the best efforts
of the researchers to establish communication. In order to
demystify this failed attempt, the researchers took the trou-
ble of calculating the Fresnel zone between node 1 and the
gateway. The Fresnel zone is an invisible, three-dimensional
oval volume of the atmosphere surrounding the straight path
connecting the gateway and the end node. Anything lying
within this invisible volume, be it a hilltop, a building, a tree,
or even the earth’s surface, creates an obstacle that can atten-
uate the transferred signal, even if there exists a direct line of
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FIGURE 21. LoRaWAN packet format.

FIGURE 22. The fresnel zone with several obstacles along the
transmission path.

sight between two communicating devices. To determine how
big this Fresnel zone is, we used (10). R is calculated at half
the distance between node 1 and the gateway. From Table 2,
it is seen that the distance between the LoRa gateway and the
transmitting node is 16.1 kilometers. Hence, the mid-distance
is about 8.05 kilometers.

R = 8.657×
√
D/f (10)

where R is the radius of the Fresnel zone, D is the distance,
and f is the frequency. From Table 2, the distance D is seen
to be 16.1 kilometers. The radius of the Fresnel zone, R,
is therefore calculated to be 37.3 meters. This implies that
a viable radio link between node 1 and the gateway must
have a Fresnel zone with a radius of 37.3 meters midway
between the devices. However, because the transmitter is
located on distribution transformers that are very close to the
ground, it was impossible to achieve such a Fresnel zone.
The researchers therefore arrived at the conclusion that the
reason the packet reception rate between Node 1 and the
gateway is zero is because signal transmission is severely
obstructed. As calculated above, it is expected that R should
be 37.3 meters for this radio link, but given the height of the
transmitter (about 10 feet), this is not possible to achieve.
It was therefore concluded that the radio communication path
was irreparably compromised by a combination of proxim-
ity to the ground, vegetation, and buildings, thus terminally
impeding communication. As a result of this, it is observed
that for objects close to the ground, and especially when it is
not possible to elevate the transmitter any further, the distance
between the gateway and the transmitting node should be
kept at no greater than five kilometers. This is consistent with
observations made in [83].

TABLE 8. Abbreviations and explications.

The earth’s surface was itself within this zone, yet it was
not physically possible to raise the antenna any further than
ten feet because the distribution transformers are usually
placed at that height, suspended on poles. Fig. 22 shows a
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Fresnel zone with several obstacles in its path. This is the
probable situation that was experienced with node 1. Even
though the gateway was positioned on the fifth floor of a
building complex within the study location, this was not
sufficient for a transmitter placed very close to the ground
and located 16 kilometers away. Despite the fact that LoRa
can communicate with transmitters 1000 kilometers away,
Fresnel zone clearance remains a challenge. As the distance
increases, the Fresnel zone gets fatter, particularly at its mid-
distance. For these long distances, it is inevitable that one uses
antennas hoisted high above the ground to achieve meaning-
ful communication. Furthermore, the formulae for computing
the Fresnel zone do not take into account the curvature of
the earth’s surface. Therefore, for long-range radio commu-
nication technologies, the Fresnel zone clearance remains a
significant factor to be considered in the establishment of a
viable radio link. For the rest of the nodes, a large proportion
of the packets sent arrived at the gateway without error and
with a packet reception rate greater than 88%. These findings
agreewith those of other researchers [68], [96], [97]. This was
achieved with a spreading factor of 7, a coding rate of 4/6, and
a bandwidth of 125 KHz. This tells us that for the other nodes,
the Fresnel zone was clear or not encroached upon to the
extent of impeding all communication. The height at which
the gateway was placed also contributed to the establish-
ment of a feasible line-of-sight between the communicating
devices.

Unlike in the current setup where faults are located by
physically patrolling the length of the distribution cable in
the area where a fault is suspected, the proposedmethod is not
only efficient but drastically reduces the duration between the
fault occurrence and the receipt of information on the incident
at the monitoring and control centre. The prompt receipt of
notification of a fault by the monitoring and control centre
enables immediate commencement of reparative activities,
resulting in shortened durations of power outages witnessed
on the distribution network. This not only has the tangible
effect of encouraging economic activity but also enables the
power system operator to comply with regulatory demands
on quality of service provision. The proposed system will
also result in consumer contentment and satisfaction. Table 6
compares the existing method to the proposed platform in
terms of the time taken to notify the Monitoring and Control
Centre of the occurrence of a failure. The table shows that
the proposed IoT-based platform reduces the time to notify
the Monitoring and Control Centre by a factor of 100,000.
In addition, it minimizes the time taken by the service crew
to locate the faulty site since the GPS location of the EEMD
is transmitted as well.

V. CONCLUSION AND FUTURE WORK
As a proof-of-concept, a LoRa-based smart fault detection
and monitoring platform for the power distribution system
is proposed in this work. The system with energy self-
reliance capability consisted of three parts: the sensor net-
work, the power harnessing, and data analysis. The batteries

are recharged by a monocrystalline solar panel that powers
the platform. The platform successfully reduces the time
it takes the power system operator to become aware of a
de-energization in the distribution network from several hours
to only about 100 ms. This drastic reduction in the time-to-
notification will play a major role in the reduction of blackout
durations since it enables the PSO to immediately commence
power restoration activities.

We advocate the adoption of LoRaWANs for monitoring,
detecting, and finding faulted segments in the power dis-
tribution grid. Specifically, we recommend the adoption of
the LoRa R© technology. In the LPWAN space, LoRaWAN
has projected itself as having the ability to transmit data
to far-flung and remote places using low bandwidth, little
energy, and high accuracy. Due to its superior resistance to
noise, LoRaWAN technology is a game changer as far as
long-range data transmission is concerned. This successful
deployment of a LoRaWAN for the monitoring and discovery
of faulted network segments in the existing legacy distribu-
tion grid demonstrates that the monitoring can be done in
a cost-effective manner using low-priced hardware. Further-
more, this technique imbues the grid with feedback mech-
anisms and enables the power system operator to address
promptly and quickly the incidences that arise on the network.
This route circumvents the other, more costly alternatives that
would, for instance, demand a complete overhaul of the exist-
ing system. This is a viable option for countries in the sub-
SaharanAfrica (SSA) regionwhere budgetary constraints and
cost prohibitions limit further enhancements to the existing
electricity network.

In the future, the study may be extended to determine
new and innovative ways of extending the life of the battery
by reducing the current consumed by the EEMD. This may
also involve fiddling with the LoRa parameters, viz., the
coding rate, spreading factor, and bandwidth, to determine
their effect in achieving reduced power consumption.
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