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ABSTRACT Depth estimation using stereo images can be achieved by calculating the disparity values
between the left and the right images captured by two parallel cameras. Reconstructing depth information
from 2D images is crucial in many applications, such as self-driving vehicles and robot navigation.
Furthermore, most of these applications are employed with resource-constrained devices and have real-
time requirements. In this paper, a high-speed, low-cost hardware implementation for disparity estimation
is proposed. We adopted the novel disparity fusion method in our architecture, which can significantly
reduce the number of calculations in the overall process. A refinement method is also designed to reduce
the error rate of the resulting depth map and improve the tolerance to light noise. The proposed algorithm
was implemented with the Kintex-7 field-programmable gate array. Its performance was tested by using
the Middlebury-Version 2 and -Version 3 datasets. The proposed algorithm provides an operating speed
of 118 fps with an error rate of only 6.36%. Compared with other state-of-the-art designs used for similar
applications, the proposed method can achieve a 34.6% reduction in the error rate while providing the highest
speed with competitive hardware cost.

INDEX TERMS Depth estimation, hardware implementation, high-speed, low-cost, stereo matching.

I. INTRODUCTION
Depth information has been widely used in many applica-

fast enough to meet real-time requirements for the above-
mentioned applications. Using multicore CPUs or GPUs may

tions, such as for self-driving vehicles and robot naviga-
tion. Disparity-to-depth conversion is the simplest method
by which to obtain depth information. Given two rectified
images captured by two horizontal parallel cameras, a pixel
at coordinate (x/, y) in the left image can find a corre-
sponding pixel at the same vertical coordinate y in the right
image. Let the corresponding pixel be at coordinate (x2,
y), the disparity value is the absolute distance between x/
and x2. An object with larger disparity values implies that
it is closer to the camera. As a result, the depth precision
is closely related to the accuracy of the estimated disparity
values. Besides, the disparity estimation process must be
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be able to speed up processing, but their high resource costs
and complex computing characteristics will also limit their
range of application, which makes hardware implementation
on field-programmable gate arrays (FPGAs) or application-
specific integrated circuits (ASICs) a better solution. To apply
the disparity estimation circuit in end-user equipment, its
design has to be low complexity and with low power con-
sumption. The disparity estimation algorithm also needs to
deal with light noise problem, since the captured images from
end-user equipment may vary considerably in brightness.

In this paper, a hardware-based disparity estimation algo-
rithm is proposed. Compared with other state-of-the-art hard-
ware designs, our design has the highest operating speed and
lowest bad pixel rate with competitive resource usage. The
main contributions are listed as follows.
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(1) A novel disparity fusion method is proposed. By adopt-
ing the disparity fusion method, the amount of computation
of the disparity estimation algorithm can be significantly
reduced.

(2) Taking benefits from the disparity fusion method, the
resource usage of each part of the hardware implementation
for the disparity estimation algorithm is reduced. The operat-
ing speed of the hardware is also improved, which can reach
real-time requirements.

(3) A novel continuous plane refinement method is pro-
posed to improve the quality of the resulting depth maps and
enhance the tolerance of the proposed algorithm to brightness
change. The proposed algorithm can still have a good effect
on the images with light noise.

The rest of the paper is organized as follows: Section II
describes a few well-known disparity estimation algorithms.
The main ideas of our proposed method are described
in Section III. Section IV introduces the proposed algo-
rithm in detail. The hardware architectures of the proposed
algorithm are presented in Section V. Section VI lists the
experimental results and compares them with the results of
state-of-the-art works. Finally, the conclusion is provided in
Section VII.

Il. RELATED DISPARITY ESTIMATION ALGORITHMS

The disparity estimation algorithms can be divided into two
categories: global matching algorithm and regional matching
algorithm. The following discussion provides an analysis of
the two different algorithms.

A. GLOBAL MATCHING ALGORITHM

The global matching algorithm takes the entire image when
calculating the disparity values and thus achieves better esti-
mation accuracy. The energy function is usually adopted to
find the best disparity, which generates the least energy. The
energy function consists of two items: The first is the similar-
ity item, where a more similar pixel leads to a smaller energy
value. The second is the gradient of smoothing between the
central pixel and the surrounding pixels, where a smoother
gradient leads to a smaller energy value. There are several
common disparity estimation methods that use the concept
of global matching algorithm, such as dynamic programming
[1], belief propagation [2], graph cuts [3]. However, even
though global matching algorithms can lower the error rates,
they are usually time-consuming. Although some of them
use multicore CPUs or GPUs to speed up processing [4]-[6],
their high resource costs and complex computing charac-
teristics make them unsuitable for embedded systems such
as digital signal processors (DSPs), mobile and automotive
electronics.

B. REGIONAL MATCHING ALGORITHM

To reduce costs and improve operating speed, regional match-
ing algorithms [7]-[15], [17]-[20], which use a fixed-sized
sliding window to replace the inspection of the whole image
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during operation, have been proposed. Because they have
low-complexity computing features, regional matching algo-
rithms are especially suitable for implementation in hard-
ware such as DSPs, FPGAs, and ASICs [7], [8]. However,
the error rates are increased in spite of the fact that their
operating speed of hardware implementation can meet real-
time requirements. Therefore, several works have focused
on achieving higher frames per second (fps) with acceptable
precision.

Adaptive support weight (ADSW) methods [9]-[15],
which can effectively improve precision, have become
the mainstream methods for hardware implementations.
In ADSW-based methods, the initial energy and the corre-
sponding weights are calculated first. The previous energy
values and weights are used to calculate the new energy value,
and then the disparity value is determined based on the new
energy value. The difference in color and distance determines
the weight calculation, where a larger difference indicates a
smaller corresponding weight, and vice versa. Although the
operation of ADSW is simple, it is necessary to recalculate
the weight and the sum of multiplications whenever a new
energy value is calculated. Thus, the ADSW methods have
relatively high memory usage requirements and significant
resource consumption, which may cause a bottleneck in hard-
ware implementation.

Some studies have recently adopted the guided image
filter (GIF) method [16] in their architectures to reduce
area costs and improve operating speeds. For example,
Hosni et al. [17] proposed a real-time method that obtained
improved performance by replacing the bilateral filters used
in the ADSW method with GIFs. Ttofis er al. [18], [19]
introduced the parallel stereo matching FPGA architecture
based on GIFs. Vala et al. [20] optimized the architecture by
exploiting discrete wavelet transform (DWT) technology in
order to significantly reduce the required hardware resources
with only a small sacrifice in the error rate. Although GIF-
based algorithms appear to be a suitable solution for the dis-
parity estimation issue, their performance worsens when the
application scenarios become more complex, or the scenarios
are impacted by light noise.

To improve the accuracy of estimation in complex and
light-noise environments, some algorithms [23] involved the
use of encoding methods to calculate the energy or the cost
and then decided the disparity results. However, to the best
of our knowledge, there are still many problems that need
to be overcome when processing these environments. Thus,
designing an algorithm with light noise resistance under
low-cost and high-speed conditions is an important and
urgent issue.

We proposed a GIF-based design which adopts the
novel disparity fusion method. The computation complex-
ity can be significantly reduced and the operating speed
of our design can reach real-time requirements. A refine-
ment method is also proposed, with which our algo-
rithm can enhance its output quality and tolerance to
light noise.
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lll. MAIN IDEAS
A. THE LOCAL MINIMUM
To generate the disparity value for each point in the disparity
map, the pixel in the left image has to locate its most similar
pixel in the right image. Since the lenses are placed in parallel,
the pair of corresponding points in the left and the right
images will be on the same horizontal line. The disparity
estimation algorithm will calculate the difference between the
left and the right images with each disparity value within the
disparity range and obtain the cost value of them. The cost
value represents the similarity between the left and the right
images, where a lower difference corresponds to a lower cost.
It is assumed that if the lowest cost value of the pixel at
coordinate (i, j) occurs when the disparity value is k, then
its cost value will increase as the absolute value between the
given disparity value and k increases. For example, when
the point P,(i — k,j) in the right image is the most similar
point to P;(i, j) in the left image. This thus leads to the lowest
calculated cost. In addition, one of the points P, (i — (k — 1), j)
and P, (i — (k + 1), j) should get the second-lowest-cost value.
In the smooth region of image, the pixel values tend to change
progressively. As a result, the hypothesis holds when the
given disparity value is close to the disparity value with the
lowest cost and no edge occurs around the processing pixel.
Based on the above assumption, the number of cost maps
can be reduced. Even if the disparity value that leads to the
lowest cost is skipped, the found disparity value will still be
close to it. With the cost maps generating from the partial
disparity range, the proposed disparity fusion method can
generate disparity map that covers the entire disparity range.
For example, we can calculate the left cost maps with only
even-order disparity values, and calculate the right cost maps
with only odd-order disparity values. The left cost maps and
the right cost maps each cover half of the disparity range,
and the calculating complexity is halved. And then we can
merge the left cost maps and right cost maps to get consistent
disparity map with the proposed disparity fusion method. The
disparity values in the resulting consistent disparity map are
thus able to cover the entire disparity range.

B. THE CONTINUOUS PLANE

Each contiguous region bounded by enclosing edges is
assumed to have the same depth value in the depth map. Then,
the disparity values of these points should also be the same.
On the other hand, when the points of a contiguous region
in 3D space are mapped to the 2D plane, they will be on a
continuous plane. Based on the above analysis, the disparity
values should be the same in the continuous plane.

IV. PROPOSED DISPARITY ESTIMATION ALGORITHM

To be suitable for hardware implementation, the proposed
algorithm is region based. Fig. 1 shows the overview of the
proposed disparity estimation algorithm. It is depicted on
a hardware basis to describe the parallelism of the circuit
processing flow. As shown in Fig. 1, the input of the proposed
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FIGURE 1. Hardware-based overview of the proposed disparity
estimation algorithm.

algorithm is one pair of RGB images from two horizontal
parallel lenses. Hence, one point in the left image should
be on the same horizontal line of the right image. The only
difference is that there is one disparity value (d) between
them. The disparity range (N) is set as 64, and the disparity
values will be between 1 to 64.

The proposed algorithm consists of six main steps: The
first step is essential information generation and cost calcula-
tion (CC). One disparity value generates one corresponding
cost map. Then, all of the cost maps are filtered by the guided
image filter (GIF) in the second step. In the third step, the
disparity value with the corresponding lowest cost in each
point is set by using the winner takes all (WTA) operation,
and the initial disparity map is constructed. After finishing the
first three steps, the left and the right disparity maps are gen-
erated, respectively. The fourth step is to merge the left and
the right disparity maps into the consistent disparity map with
the proposed disparity fusion (DF) method. The fifth step
is responsible for refining the consistent disparity map. The
continuous plane refinement (CPR) process is designed to
refine the consistent disparity map and improve its tolerance
to light noise. Finally, the refined disparity map is filtered
by the median filter (MF) and output as the final result. It is
worth noting that the calculation complexity and the hardware
resource usage of each disparity map generation step, which
are CC, GIF, and WTA, are all significantly reduced by
adopting the DF method, since it can reduce the number of
requiring cost maps for generating disparity maps. The fol-
lowing subsections give a detailed introduction to each step.

A. ESSENTIAL INFORMATION GENERATION AND COST
CALCULATION

There are four kinds of essential information used for the
cost map generation. Two of them must convert the input
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FIGURE 2. The processing of census transform encoding.
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FIGURE 3. Four different angular kernels, named My, Mg, M¢, and Mp.

RGB image to grayscale before calculation. The following
discussion introduces how to generate the information.

The first kind of information is RGB data, which can be
obtained by directly disassembling the input image into red,
green, and blue channels. The second kind of information,
gradient data, can be generated by doing the convolution
operation with the grayscale image and the Sobel operators.
The third kind of information is the census transform encod-
ing, which is a special coding method. It first compares the
pixel values of the surrounding points with the measured
point. If the pixel value of the surrounding point is greater
than the pixel value of the measured point, the comparison
result is set as 1. Otherwise, it is set as 0. After all the
comparison results are generated, they are encoded into one
string of characters. Take Fig. 2 as an example. The value of
the measured pixel is 68, and the values of the surrounding
points are 72, 123, 12, and 77. After the census transform
encoding operation, the encoded string of characters is 1101.

The last kind of information is edge information. Four
3 x 3 kernels with different angles are taken to find the edge
information. As shown in Fig. 3, the angle of each kernel
is 0° (Mp), 45° (M), 90° (Mc), and 135° (Mp), respec-
tively. The proposed algorithm selects the maximum absolute
value among four convolution results for the edge judgment.
As shown in (1), assume that the I(i,j) is the processed
point in the RGB image. Then |Ma *x I(i, j)|, |Mp * I(i, j)|,
|Mc *1(i,j)|, and |[Mp = I(i, j)| are the absolute values of the
convolution results based on the angular kernels. And T}, is
the maximum value among them.

Tnax = max (|Ma * 1, )l [Mp * 10, j)I ,
IMc s« I, I, IMp = 1G, ). (1)

Then, the edge is determined according to the conditions
in (2). The first condition is that when T, is greater than or
equal to the threshold Tegge, then I(i, j) is regarded as located
at the edge. The second condition is that I (i, j) is at the border
of the RGB image, then it is regarded as located directly at
the edge. After all of the points are checked, the edge map
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(EdgeMap) is produced.
1, lf Tmax > Tedge
. )1, ifi=0orwidth—1
EdgeMap o)) =1 1" i i = 0or height —1 @

0, otherwise.

After all four kinds of essential information have been
generated, the cost map can be generated with cost calcula-
tion (CC) process, where one disparity value corresponds to
one cost map. Hence, the total number of cost maps depends
on how many disparity values the left and the right images
check. The operation of CC consists of three parts: color cost
(COLQ), gradient cost (GRDC), and Hamming distance cost
(HDC). These three costs are calculated by using six items of
information: the RGB data of the left and the right images,
the gradient data of the left and the right images, and the
census transform encoding of the left and the right images.
The following discussion describes a detailed analysis of how
these three cost parts are calculated.

The first part of the cost is the color cost (COLC), which
represents the truncated absolute difference between the RGB
data in the left image and the right image. Assume that /; and
I, represent the left image and the right image. [ IR, 1 ZG, and
1 IB are the pixel values of the red, green, and blue channels in
the left image, and IrR, IrG , and IrB are the same values in the
right image. The point p is the pixel being processed; d; and
d, are the disparity values, and M; and M, are, respectively,
the COLCs of the left image and the right image.

1 X .
Mip.dy = 3% o W @) =L —dpl. (D)

1 : .
My pdr) =3 %3 oo M 0+d) = TPl (32)

Formulas (3.1) and (3.2) are used to calculate the COLCs of
the left and the right images. It can be seen that the COLC can
be obtained after the results of the three channels are added
and averaged.

The second part of the cost is the gradient cost (GRDC),
which represents the truncated absolute difference in the
gradient. Assume that ¥; and Y, are the grey images of /; and
1. Vx and Vy are, respectively, the Sobel kernels of the x and
y axes, and Gy and G, are, respectively, the GRDCs of the left
and the right images.

G (p.di) = |Vx (Y1 (p)) = Va (Y; (p — d))]
+IVy i) =VyXr(p—d))|, 4D
Gr(p.dy) = |Vx (Y1 (p +dr)) — Va (Y; ()]
+IVy(p+d) —Vy Y- (p) . (42)

Formulas (4.1) and (4.2) are used to calculate the GRDCs
for the left and the right images. It can be seen that the GRDC
can be obtained after the absolute difference in the gradient
for the x and y axes are added together.

The last part of the cost is the Hamming distance cost
(HDC), which represents the difference in the census trans-
form encoding. To calculate the HDC, the census transform
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FIGURE 4. Operation of HDC.

encoding string generated from the left and the right images
are checked, where the HDC is the number of differences in
the character. Assume that H; and H, are, respectively, the
HDC:s of the left and right images, where the HammingDis-
tance (HD) represents the process that calculates the distance
between two strings of census transform encoding. The HDC
formula can be represented as:

H; (p,d;) = HD (Census (Y, p) , Census (Y;, p — d1)) ,
(GR))

H, (p,d,) = HD (Census (Y}, p + d;) , Census (Y, p)) .
5.2)

The HD processing is shown in Fig. 4. Take the process on
the left image as an example. Assume the census transform
encoding result for point p in the left image, (Census(Y7, p)),
is 1101, and the census transform encoding result for point
p-d; in the right image (Census(Y,, p—d;)) is 0101. These two
strings are compared. If the comparison result in any position
is different, the value of that position is set as 1. Otherwise,
the value of that position is set as 0. After the comparison, the
value of each position is set as 1, 0, 0, and 0. Then, the result
for the HD of point p in the left image is the sum of these
values, which is equal to 1.

After the COLCs, GRDCs, and HDCs are all generated,
each of them is first compared with the threshold values T,
T,, and Tj. When the generated value is greater than the
threshold value, it is replaced with the threshold value. This
step is to avoid the overflow situation in hardware implemen-
tation with limited storage space when the calculated value
is too large. Assume that «, B8, and y are the ratio of the
COLC, GRDC, and HDC to the total cost. On the basis of
experimental tests, {c, B, ¥, T, Ty, Ty} are set as {0.1, 0.7,
0.2, 11,2, 4}. C; and C, are, respectively, the produced cost
of the left and the right images. The formula of the total cost
can be represented as:

Ci(p,d)) = o -min(T¢, M (p, dp))

+ B - min (Ty, G; (p, dp))

+y - min (T, H; (p, dp)) , 6.1
C, (p,d,) = a - min(T., M, (p,d,))

+ B - min (Tg, G, (p, dy))

+y -min (T}, H, (p, d,)). (6.2)
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After cost calculation process, the cost maps whose num-
ber is equal to the number of given disparity values to the left
and the right images can be successfully generated. It is worth
noting that the number of given disparity values to the left
and the right images should be equal to the disparity range in
general. When the disparity range is set as 64, 128 cost maps
will be generated. However, the number of given disparity
values can be reduced with the proposed disparity fusion
method, which is able to utilize information from the left cost
maps and the right cost maps to cover the entire disparity
range.

B. GUIDED IMAGE FILTER

Since the cost values are calculated separately for each point
during the cost map generation process, each value in the cost
map is independent. Without referring to the characteristics
of the surrounding points, the generated value is prone to
noise, especially when the calculation blocks are at the edges
of objects. The resulting noise may raise the error rate of
the estimation results. Thus, the guided image filter (GIF) is
responsible for filtering the noise in the cost map. The GIF,
which can smooth the image while keeping its edge clear, was
first proposed in [16]. It uses input image / as the guidance
image to filter the cost map c. Assume that the wy is a square
processing window centered at pixel k. Its radius is r, and its
side length is 2r + 1. The relationship among each point in
the filtered cost map ¢;, an initial cost map c;, and noise n; is
represented as:

qgi=ci—n; Vi€ w. (7)

On the other hand, in the GIF method proposed in [16],
it is assumed that the point in the filtered cost map (g;) is
generated by a linear transform model of the point in the
guidance image (/;). Assume that a; and by are both the linear
coefficients. The relationship among g; and /; is represented
as:

gi=agxI;+ by Vi€ wy. (8)

Since the desired number (g;) in (7) and (8) are equal,
the noise can be minimized by using these two formulas.
Assuming that ¢ is the legalization parameter to prevent aj
from becoming too large, the noise can be minimized as:

argmin(Xicqy, ((ak * I + by — C,‘)2 + e % a2>). O]

This function can be solved by using the linear ridge
regression model proposed in [16]. Here, we directly quote
the result derived in [16]. The solution for a; and by are given
in (10) and (11), respectively.

4 = 2l o Yieapdi ¥ i — ik * Ck _ cov(l, c) . (10)
of +e |k | var (I) + ¢
by = ¢k — ag * i = mean (c) — ay * mean(l). (11

uy and crk2 respectively represent the mean and variance of
the guidance image [ in wy. |wy| represents the total number
of pixels in wy. ¢ is the mean of the cost map c¢ in wg.
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We can substitute these two linear coefficients a; and by
into (8) to obtain the filtered cost value. However, since
one pixel may be covered by several overlapping windows,
this causes it to lead to different g; values. This problem
can be solved through averaging the overlapping windows.
Therefore, Formula (8) can be rewritten as:

1
%= > (sl + by)

k,icwy

= mean (ay) * I; + mean (by) , (12)

where @ represents the number of windows that contain
point i.

Algorithm 1 shows the example of the GIF operation based
on (7)-(12). The input consists of one guidance image (/), and
one guided cost map (c¢). The output is the filtered cost map
(@) fimean 18 the mean filter with a window of radius r. corr,
var, and cov represent the correlation, variance, and covari-
ance operations, respectively. From (10), we know that to get
the value of ay, it is necessary to calculate both the covariance
and variance, which can be generated from the correlation.
Likewise, from (11), we know that to get the value of by,
it is necessary to further calculate mean (I) and mean(c),
representing the mean filtering to the guidance image and the
guided cost map. After the GIF operation, filtered cost maps
for the left and the right images can be obtained.

Algorithm 1 Algorithm of GIF

01: INPUT: guidance image /, guided cost map ¢
02: OUTPUT: filtered cost map g
03: Parameters: &
04: mean (I < finean (I), mean (¢) < fmean (¢);
05: corr (I) < fimean (L. x 1), corr (I, ¢) < finean (I. % C);
06: var (I) < corr (I) — mean (I) . * mean (I) ; // variance of 1
07: cov (I, c) < corr (I,c) —mean (I) . * mean (c) ;
/I covariance (I, c)
08: ay < cov(,c) /(var (I) +e€);// computing ag
09: by < mean (c) — ay. * mean (I) ; // computing by
10: mean (ar) < fmean (ak), mean (by) < fimean (bi) ;
11: g < mean (ay) * I + mean (by) ;

C. WINNER TAKES ALL

After the filtered cost maps are generated, the operation must
select the suitable disparity values by referencing these cost
maps. The winner takes all (WTA) processing method is
adopted to find the suitable disparity value for each point in
order to construct the left and the right disparity maps.

The pseudo code of the WTA is given in Algorithm 2.
Considering the hardware cost and the accuracy of resulting
depth map, we only use even disparity values to calculate
the left cost maps, and only odd disparity values are used to
calculate the right cost maps. As a result, there are 32 cost
maps generated from the left image and 32 cost maps gener-
ated from the right image. The WTA first compares all of the
cost maps and then selects one disparity value corresponding
to the lowest cost for each point. It is worth noting that the
comparison method in the WTA uses the serial comparison
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method; that is, the preliminary results from the pairwise
comparisons are compared with each other again until the
final result is obtained. Finally, the disparity values of each
point are determined. After the WTA has been applied, the
left disparity map (D;) and the right disparity map (D,) are
produced.

Algorithm 2 Algorithm of Winner Takes All

01: INPUT: filtered cost maps q;,4=2.4.6..64 9r.d=1.3,5..63
02: OUTPUT: disparity maps D;, D,

03: Parameters: width, height, tmp;, tmp,.

04: for j = 0 to height — 1 do

05: fori = 0towidth—1do

06: tmp; <— 00, tmp,. <— 00;

07: for k =1to32do

08: d; < 2xk,d, < 2xk —1;

09: if tmp; > q;(i, j, d;) then

10: Dy(i, ) < dj, tmp; < q;(i, j, d;); //WTA operation
11: if tmp, > q,(i, j, dy) then

12: D,(i,j) < dr,tmp, < q,(i, ], d,); // WTA operation
13: end do

14: end do

15: end do

D. DISPARITY FUSION

To reduce the calculation complexity, the number of disparity
values used in CC operation is reduced. The values in D; are
all even and those in D, are all odd. Then the novel disparity
fusion method has to be adopted to recover the required
disparity information.

According to the hypothesis depicted in Section III-A,
we know that although we may not obtain the lowest cost
with the selected even/odd disparity values, the second lowest
cost can still be obtained. Thus, if one disparity value of
D(i, j) is k, an even value, then the possible disparity values
that are consistent with the corresponding point in the right
disparity map are k — 1, k, and k + 1. By mutual confirming
these three possible disparity values between the left and the
right disparity maps, the consistent disparity value can be
confirmed.

The operation of the proposed disparity fusion method is
shown in Algorithm 3. Under the condition that the inter-
val between given disparity values is one, there are three
judgment conditions. All judgments are based on the left
image, and consistency is confirmed with the right image.
Assume that k is the disparity value of D;(i, j). The first
condition confirms that if the point (7, j) has the disparity
value k — 1, where the criterion is that the disparity value
of D,(i — (k — 1), j) is equal to k — 1. The second condition
checks the consistency with the disparity value k. Because k
is an even value, if k is the disparity value with the lowest cost,
then the disparity value of the corresponding point D, (i —k, j)
must be k — 1 or k + 1. Thus, if the absolute difference in
the disparity value between D;(i, j) and D, (i — k, ) is 1, the
consistent disparity value of point (7, ) is k. The last condition
confirms that if the point (i, j) has the disparity value k + 1.
The criterion is that the disparity value of D, (i — (k + 1), )
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is equal to k + 1. If the point (i, j) does not satisfy any of
the above-mentioned judgment conditions, it is considered an
inconsistent point. The disparity values of inconsistent points
will be refined in the subsequent steps. After the operation of
the disparity fusion, the confirmed disparity map (D¢onf) can
be obtained. The position map (S), which records whether the
points in the confirmed disparity map are consistent, is also
generated.

Algorithm 3 Algorithm of the Disparity Fusion Method

01: INPUT: left and right disparity maps D;, D,

02: OUTPUT: confirmed disparity map D oyf, recorded position
map S

03: Parameters: width, height

04: forj =0 to height — 1 do

05: for i =0 to width— 1 do

06: k < D; (i,));

07: if k — 1 =D, (i — (k — 1), j) then //fit first condition

08: Deonf (i, j) <k — 1,83, j) < 1;

09: else if abs(k- D, (i — k, j)) < 1 then //fit second condition
10: Deonf iy j) < k, S, j) < 1;

11: elseif k + 1 = D, (i — (k + 1), ) then //fit third condition
12: Deonf (i, ) < k+1,5(, j) < 1;

13: else then

14: Decong (i, j) < 0,5(, j) <= 0; //inconsistence

15: enddo

16: end do

E. CONTINUOUS PLANE REFINEMENT

Continuous plane refinement (CPR) is responsible for refin-
ing Doy . It is based on the idea mentioned in Section I1I-B,
which indicates that the disparity values should be the same
in the continuous plane. The CPR operation can be divided
into Statistics, Refinement, and Filling.

Statistics: Since the continuous plane can be regarded as
the region between two edges, the Statistics operation first
counts the total number of consistent points (S,) between two
edges and then finds the largest proportion disparity value
(drer)- The number of points with disparity value d,y is also
recorded as Sy.r. The edge information is from the left edge
map, which has been generated in the essential information
generation step. dy is qualified according to (13). If the
value of S, is greater than the threshold 7, and the value of
(Srefr/Sp) is greater than the threshold 7, dy.r is regarded as
the disparity value for refinement in the current plane.

conditionl: S, > 1,

s 13
Sy (13)
14

condition2:

Refinement: After d, is found, the disparity values of the
inconsistent points in the current plane are replaced with d,r.

Filling: After the entire disparity map has been processed
with the Statistics and Refinement steps, several points may be
still inconsistent. The Filling operation will assign the nearest
consistent disparity value to these points.

The accuracy of the estimation result can be effectively
enhanced by adopting continuous plane refinement. Using
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edge information in the refinement process can also make up
for the deficiencies of the hypothesis in Section III-A. After
the CPR operation, the final disparity map (Dfiuqa) can be
obtained. Algorithm 4 shows each step in the CPR operation.

Algorithm 4 Algorithm of the Continuous Plane Refinement

01: INPUT: confirmed disparity map Dconf, recorded position
map S, edge information

02: OUTPUT: final disparity map Dfina

03: Parameters: width, height

04: foreach row in the image do

05: foreach pair of edges (Edgesiars, Edgecng) do [* Statistics */

06: S, < total consistent points between the edges
07: dref < the largest proportion disparity value
08: Syef < total points with disparity value dyf
09: If S, > 7, and Sy /Sp > T, then /* Refinement */
10: for i € Edgesiars to Edgeenq do

11: If S (i, row)== 0 then

12: Drfinai (i, row) <= dyef, S(i, row) < 1
13: else then

14: Diinai (i, row) <= Deops (i, row)

15: enddo

16: end do

17: forj = 0 to height — 1 do /* Filling */

18:  for i =0 to width — 1 do

19: If S(i, j) == 0 then

20: Dfinai(i, j) < nearest consistent disparity value

F. MEDIAN FILTER

Before the Dy is output, the proposed algorithm will let the
Dfing; perform vertical median filtering again. Here, we use
the serial comparison method, which was mentioned in [21].

V. HARDWARE ARCHITECTURE

This section describes the hardware implementation of the
proposed algorithm. Fig. 5 shows an overview of the proposed
architecture. The architecture can be divided into seven units.
The gradient, census transform encoding, and edge informa-
tion calculation unit (GCEU) is used to produce the essential
information. The cost map generation is implemented with
the cost calculation unit (CCU). The guided image filter
in the second step of the proposed algorithm is achieved with
the guided image filter unit (GIFU). The winner takes all
unit (WTAU), and disparity fusion unit (DFU) are respec-
tively used to fulfill the WTA and DF operations. Finally,
the continuous plane refinement unit (CPRU) and median
filter unit (MFU) are used to refine the disparity map. The
digital data format of the proposed hardware architecture is
fixed-point binary number. The arithmetic units used in the
proposed architecture include adders, subtractors, shifters,
and multipliers. Notably, most of the multiplication and divi-
sion operations are implemented with shifters and adders to
save hardware resource usage. The fractional part will be
discarded directly, and the experimental results show that the
resulted error is acceptable. The multipliers are only used in
the GIFU for square calculation. With the proposed disparity
fusion method, the number of cost maps can be significantly
reduced, which can further reduce the use of multipliers in the
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FIGURE 5. The hardware architecture of the proposed algorithm.

GIFU. The following subsections introduce the seven main
units in detail.

A. THE GRADIENT, CENSUS TRANSFORM ENCODING,
AND EDGE INFORMATION CALCULATION UNIT

As mentioned in Section IV-A, there are four types of essen-
tial information for the proposed algorithm. The first kind of
information, the RGB data, is concatenated into 24 bits, that
is, {R(8 bits), G(8 bits), B(8 bits) }. The RGB data is input into
the system and saved in delay buffer. Each piece of image data
is input from left to right and from top to bottom. Then, the
remaining three types of information are generated.

Fig. 6 shows the details of the GCEU. The gradient data and
edge information are calculated with a 3 x 3 kernel size. The
RGB data are first transformed into grey-level data (8 bits) for
generating the gradient data and census transform encoding
string. The 3 x 3 kernel takes three rows, each with three
pixels, to process the calculation. The hardware implementa-
tion takes two lines of block RAM (BRAM) for storing the
image data and nine processing registers for performing the
convolution. Among the nine processing registers, the first
two rows are given by the BRAM, and the last row are directly
obtained from the input image or transformed grey-level data.
Then, the processing registers will perform convolution with
the Sobel kernels or the angular kernels, and the x- and y-axis
gradient data and edge information are produced. The census
transform encoding result is generated with the transformed
grey-level data. The gradient data and the census transform
encoding result will then also be saved in delay buffer. The
data in delay buffer is required for the operation of the mean
filters in the GIFU. With regard to the size of delay buffer, it is
determined according to the window size of the mean filter
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FIGURE 6. The detailed architecture of gradient, census transform
encoding, and edge information calculation unit (GCEU).

(r) and the width of the image (L), which will be detailed in
Section V-C.

B. THE COST CALCULATION UNIT

The CCU calculates the cost of every point in each cycle and
outputs the entire cost map at the same time. The behavior
of the CCU is similar for the left and the right images,
with the only difference being the selected points. Therefore,
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FIGURE 7. The detailed architecture of the CCU (left image calculation is
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we only took the operation for the left image as an exam-
ple. Fig. 7 shows the detailed architecture of the CCU. The
cost was calculated by using the disparity value d;. Part A
realizes the COLC operation, that is, (3.1) and (3.2). The
difference in the RGB data between the left image and the
right image are calculated individually and added together.
Notably, the initial formula then divides the result of this
addition by “3”’. However, to reduce hardware costs, we use
the shift right 2 bits operation, in which the total is divided by
“4” | to obtain the approximate result. The difference can be
overlooked since the COLC only accounts for a small part of
the overall cost. The shift right operation before comparison
can also reduce the bit width of the comparator. Since the shift
operation can be easily implemented by wiring, the hardware
resource usage is further reduced.

Part B realizes the GRDC operation, that s, (4.1) and (4.2).
The gradient cost is the sum of the x- and y-axis gradient
costs. Finally, Part C is responsible for calculating the HDC
according to (5.1) and (5.2). Since the Hamming distance cost
records the difference between two strings generated by the
census transform encoding, the XOR gate is used to detect
the difference and an accumulator is adopted to total the
results.

After all partial cost items are generated, part D calculates
the total cost, that is, (6.1) and (6.2). The color cost (COLC)
is compared with the threshold T, and the smaller value of
the two is selected. Similarly, the gradient cost (GRDC) and
Hamming distance cost (HDC) are compared with T and T},
respectively, and the smaller value of the two is selected. The
values of T,, Ty, and T}, are set as 11, 2, and 4, respectively.
These three results are added in a certain proportion to pro-
duce the total cost. The COLC ratio is 0.1; the GRDC ratio,
0.7, and the HDC ratio, 0.2. For the hardware implementation,
we let the COLC value shift left by 3; the GRDC value, by 6,
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and the HDC value, by 4. It implies that the COLC, GRDC,
and HDC are multiplied by 8, 64, and 16, respectively. The
ratios of COLC, GRDC, and HDC are roughly 0.09, 0.73, and
0.18, respectively, which are approximately the same as the
parameters used in (6.1) and (6.2).

C. THE GUIDED IMAGE FILTER UNIT

After the CCU generates the cost maps, the GIFU is used
to perform the cost map filtering. The input of each GIFU
consists of one guidance image I, a guided cost map ¢, where
the output of the GIFU is one filtered cost map g. Here,
we only take one GIFU from the operation on the left image
as an example to show the design process. Before introducing
the GIFU architecture, we first introduce the architecture of
the mean filter since the GIFU is constructed of several mean
filters.

To perform the mean filtering with a sliding window in
GIFU, the newest data must be input for the purpose of
renewal, and the oldest data must be discarded. As shown in
Fig. 8, the newest data are included in the window, and the
oldest data are discarded in each cycle. However, to simplify
the architecture, the operation can be replaced by dropping
out the most senior column sum and including the newest
column sum. The operation is shown in the right part of
Fig. 8 with a window of radius of 1. Fig. 9 shows the archi-
tecture of the mean filter. The radius of the sliding window
adopted in our design was 4, that is, r = 4. The column sum
memory (CSM) subunit is used to save the sum of the data
in a single column; its size is equal to the width of the image
(L). col_sum_valid is not enabled until the first L data are
input, and oldest_valid is not enabled until (2r + 1) x L data
are input. The first L data are saved into CSM directly, and
the L + 1 to (2r + 1) x L data are added together with the
initial result saved in the CSM, and then saved back. After
oldest_valid is enabled, the new data are totalled with the
result stored in CSM; the oldest data are removed, and the
result is saved back. Queue is a bidirectional BRAM that
is used to save the latest result from CSM and remove the
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FIGURE 10. The hardware architecture of one GIFU.

oldest result. The size of Queue is 2r + 1. The sum of window
(SoW) is a register used to save the mean filter’s sum of
data. The last step is to take the average of the value saved in
SoW. The hardware implementation involves letting the value
saved in SoW shift right by 7, 8, and 11 bits, respectively.
These three results are totalled to approximate the result of
the value in SoW divided by 81. Then the final mean value is
obtained.

The GIFU input consists of one guidance image I and
several guided cost maps c. Since we only use even order
disparity values for the generation of the left cost maps, there
are 32 cost maps to be filtered by the GIFU for the left image.
I is the original grey image, and the information from the
guidance image [/ is shared by every guided cost map c(n),
where ncanbe 2,4, 6, ..., 64.

As shown in Fig. 10, the top unit shows the architecture of
GIFU [. The input of GIFU [ is the newest and oldest grey
data, i.e., the guidance image. The delay buffer is used to save
the guidance image, which will be processed later. The mean
filter] obtains mean(l). The square of the guidance image is
then filtered by using the mean filter; to obtain the correlation
of the guidance image, i.e., corr(I). Subsequently, the square
of mean(I) is subtracted from corr(I) to obtain the variance of
the guidance image, i.e., var(l). Then, guidance image I and
the computation results mean(l) and var(l) are shared with
every GIFU c. The architecture of GIFU [ also contains a part
for nearest power of two operation, which will be detailed in
the following.

The bottom units in Fig. 10 are GIFU ¢, whose number is
equal to the number of cost maps to be filtered. The newest
and oldest values of the guidance image are multiplied with
the newest and oldest values of the guided cost map, respec-
tively. Next, the multiplied result is input to mean filters
to obtain the correlation result of guided cost map c, i.e.,
corr (I, ¢). The newest and oldest values of the guided cost
map are also input into the mean filters to obtain mean (c).
Subsequently, the product of mean(c) and mean(l) is sub-
tracted from corr (I, ¢) to obtain the covariance of guided
cost map ¢, i.e., cov (I, c). cov (I, ¢) is then divided by var(I)
to obtain ay. Here, the nearest power of two operation is
adopted, which uses right shifting to replace the complex

VOLUME 10, 2022

—{cm

Di(i.)) =d,
7 515:59 DFU
Left Disp. Ixx: ol Dcanf
Map 01x: k)
—
—>|‘I‘I_|'| it - onfiemed disparity map
My

DG, jy=k

\:7 ...... \:7 i-(k-1)

i
[ i)
Multiplexer
Trec

ey
brere: DAy jy==Di-lk 1),n|~

[ DDk =t

D,k )

Diliy jy==Dii-(k+1), j)

D(i-(k+1), j)

FIGURE 12. The hardware architecture of DFU.

division calculation. If var(I) is 9, then 8 (= 23) is the nearest
power of two, and cov (I, ¢) will be shifted right by 3 bits to
obtain ay. After ay is obtained, the product of a; and mean(I)
is subtracted from mean(c) to obtain by. a; and by are both
passed through the mean filter again. Finally, mean(ay) is
multiplied with guidance image I, and mean(by) is added to
obtain the filtered cost maps q.

D. THE WINNER TAKES ALL UNIT

The WTAU is used to select the disparity value of every
point with the smallest cost. Fig. 11 shows the hardware
architecture of the WTAU for the left image. Its inputs are
the 32 filtered cost maps with even disparity values, and its
output is the left disparity map. The smallest cost is found
through a pairwise comparison. After all of the points are
given disparity values with the smallest cost, the left disparity
map is generated. The right disparity map is also generated by
using the same operation. After the WTAU operation, the left
and the right disparity maps are generated at the same time.

E. THE DISPARITY FUSION UNIT

Fig. 12 shows the DFU hardware architecture. The DFU con-
firms the disparity by using the left-right consistency check.
Its inputs are two disparity maps, i.e., a left disparity map and
a right disparity map. Its output is one confirmed disparity
map. It is worth noting that the parity of every point in the
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inputs, i.e., the left disparity map and the right disparity map,
is only even or odd, respectively. After the disparity fusion
operation, the output, i.e., the confirmed disparity map, can
be both. In the proposed DFU architecture, the process of
checking consistency is based on the left disparity map, which
finds the corresponding point in the right disparity map. Thus,
the input mode of the left disparity map is serial-in-serial-
out (SISO), and that of the right disparity map is serial-in-
parallel-out (SIPO).

Assume that the disparity value at point (i, j) of the left
disparity map is k. According to the proposed algorithm,
the point (i, j) has to check the consistency with disparity
values kK — 1, k, and k + 1. The first case checks whether
the disparity of D,.(i — (k — 1),j) is equal to k — 1. The
second case checks the absolute difference between D;(i, j)
and D, (i — k, j). The third case checks whether the disparity
of D,(i — (k + 1),)) is equal to k + 1. If one of the cases is
satisfied, the corresponding valid signal (S, S», or S3) is set
as 1. According to these three valid signals, the confirmed
disparity value, Dcous (i, j), can be determined. The earlier
confirmed case has a higher priority in the design; that is, the
output will be output based on the results obtained for this
case. The record position map, S, which represents whether
the disparity value at this position is consistent, can also be
generated. If one of the cases is fit, which means that the
current processing point is consistent, then the value of this
point in the position map is set as 1. Otherwise, the value of
this point in the position map is set as 0.

F. THE CONTINUOUS PLANE REFINEMENT UNIT

The CPRU is responsible for the refinement of the confirmed
disparity map (Dcons). As shown in Fig. 13, there are three
CPRU inputs: Dy, the left edge map Degge ;, and the
position map S. D¢y, and S are generated by the DFU, and
D,gge_; is generated from the GCEU.

The CPRU architecture realizes the novel continuous plane
refinement method. It comprises three parts: the first is
the Statistics, which counts the confirmed disparity values
between two edges, where the disparity value with highest
proportion is found for the purpose of refinement. The second
is the Refinement, where the highest proportion disparity
value is adopted to replace the inconsistent points in the
continuous plane. The last is the Filling, which assigns the
nearest consistent disparity value to those points which are
still inconsistent. Since the Statistics part of the architecture
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needs to count the number of points with each disparity
value, three buffers (the disparity buffer, the edge buffer, and
the status buffer) are adopted to save the input values. The
architecture of each part is detailed in the following.

The Statistics architecture is shown in Fig. 14. It contains
several counting elements. Each element is used to count
the number of consistent points between two edges with one
specific disparity value. For example, if the disparity value
of the processing point is i, and the value of the processing
point in the position map is equal to 1, then the count result
of i-th counting element will add 1. After the statistical mea-
surements for all of the count elements are completed, the
highest proportion disparity value (dy.r) is obtained. If the
total number of consistent points between two edges (Sp) is
greater than the threshold t,, and the ratio of the number of
points with the highest proportion disparity value to the total
number of consistent points (S,ef/S)) is also greater than the
threshold 7, the d.r is regarded as the disparity value that
can be used to refine the inconsistent points in the continuous
plane.

The Refinement architecture is shown in Fig. 15. It is
responsible for replacing the disparity values of the incon-
sistent points with d,.r. For the refinement operation, the
consistency of the current input point is checked based on the
position map, i.e., S. If the current point is inconsistent, and
dyer is valid, the disparity value of the current point is replaced
with dyr and its value in the position map is set as 1. By using
the refinement process, most of the inconsistent points in the
disparity map can be refined effectively. However, in certain
cases, the d,,s cannot be found; thus, there are still some
inconsistent points. These points will be refined with the
Filling architecture.
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Fig. 16 shows the Filling architecture, which produces the
disparity values for points that are still inconsistent after the
refinement step. First, the values of the position map are
saved in the serial-in/parallel-out (SIPO) shift registers. Sub-
sequently, the Priority Encoder uses this information to judge
which point is inconsistent. When one inconsistent point is
checked, its disparity value is replaced by the disparity value
of the nearest consistent point. The remaining inconsistent
points are assigned with more reasonable disparity values to
improve the overall accuracy with the Filling architecture.

G. THE MEDIAN FILTER UNIT

Before outputting, a median filter is applied to the disparity
map again. Because the left and the right images are generated
by using parallel lenses, there is much less noise in the
horizontal direction than in the vertical direction. Therefore,
we only perform vertical filtering. The median value is found
among 2r + 1 disparity values, where r (=4) is the radius
of the mean filter adopted as discussed in Section V-C. With
regard to hardware implementation, 8 BRAMs whose size
are equal to the width of the disparity map are adopted to
save the disparity values of the previous eight rows. When
the disparity value of the ninth row is input, filtering begins.
The median finding processing is finished by 19 compare-
and-swap circuits [21]. After all disparity values are filtered,
the final disparity map is generated.

VI. EXPERIMENTAL RESULTS

This section analyzes the performance of the proposed dispar-
ity estimation algorithm, and the algorithm is also compared
with state-of-the-art designs in terms of the disparity map
error rate, hardware cost, and operating speeds. To validate
the performance of the proposed algorithm, it was imple-
mented on Kintex-7 FPGA. Notably, to make a fair com-
parison of performance with other state-of-the-art works, the
Middlebury Version 2 and Version 3 datasets [24] are used as
the ground truth in this evaluation. The Version 2 dataset is
adopted in [7], [8], [13]-[15], and [19], [20], which contains
four sets of ground truths of disparity maps without noise.
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The Version 3 dataset is adopted in [22], [23], and it provides
more complicated scenes with a light-noise environment. The
following section provides detailed comparisons made by
using these two datasets, and the comparing results between
different system configurations are also provided.

A. COMPARISON WITH MIDDLEBURY

VERSION 2 DATASET

In addition to our architecture, several state-of-the-art designs
[71, [8], [13]-[15], [19], [20], were also included. The earlier
designs [7], [8] first implemented disparity estimation meth-
ods on FPGA platforms. The later designs [13]-[15] used
ADSW-based algorithms. Finally, the latest designs [19],
[20], as well as the architecture proposed here used GIF-based
disparity estimation algorithms.

Table 1 lists the evaluation results obtained with the Ver-
sion 2 dataset. Three evaluation items were adopted to ana-
lyze with the dataset. The three evaluation items used to
evaluate the percentage of bad points were non-occlusion
regions (nonocc), all regions (all), and discontinuous regions
(disc). The criterion for the percentage of bad points (ER) is
calculated as:

1

Eg = o (|De (x, ) = Dpinar (x, p)| > ta),  (14)

(x.y)eR
where R represents the evaluated regions; N is the total num-
ber of points associated with the evaluated regions; D, (x, y)
and Dying (x,y) are, respectively, the disparity values of the
ground truth and our experimental results, and 74 is a con-
stant threshold. An absolute difference between D, (x, y) and
Dfinal (x,y) of greater than 74, (x, y) represents a bad point.
In the evaluation of Table 1, t; is set as 1. A disparity
value that differs from the ground truth will be considered
a bad point. The hardware resource requirements and oper-
ating speeds are listed in Table 2. The resource requirement
includes the LUT, Slice Register, BRAM, and DSP. The
items related to the processing speed are fps (frames per
second), MDE/s (million disparity estimations per second)
and the operating frequency. The power consumption of the
hardware implementation is also listed in Table 2 to examine
the efficiency of different designs.

Based on the content of Table 1 and Table 2, the error
rates of the ADSW-based designs ([13]-[15]) and GIF-based
designs ([19], [20], and the proposed design), were mostly
lower than those of the earlier designs ([7], [8]). Furthermore,
a comparison of the ADSW- and GIF-based designs indicated
that ADSW-based designs have a slightly lower error rate
but much higher hardware resource requirements than GIF-
based designs. Therefore, in a trade-off between a design’s
performance and corresponding hardware resource require-
ments, GIF-based design may be a better solution because
they usually provide acceptable performance at a low cost.
GIF-based designs are analyzed in detail in the following.

The design proposed in [19] was the first to include a GIF
in the disparity estimation algorithm to reduce the area cost
under a low error rate; however, its area cost and operating
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TABLE 1. Testing performance (error rate) of related studies and proposed architecture with version 2 dataset.

Work Platform Tsukuba Venus Teddy Cones Average Bad
° O™ Monocc | all disc |nonocc| all disc |nonocc| all disc |nonocc| all disc | Pixel Rate
Jin et. al. 2010 [8]] FPGA 9.79 11.60f 20.30] 3.59 527 36.80 12.50| 21.50, 30.60f 7.34 17.6 21.00| 17.24
Zhang et. al. 2011 [7]| FPGA 3.84 434 1420 1200 1.68 562 7.17 12,60 174 541 11.000 13.90 8.20
Wang et. al. 2015 [13]] FPGA 239 327 887 038  0.89 1920  6.08 12.100 1540 2.12 7.74 6.9 5.61
Jin et. al. 2014 [14]| FPGA 166 2.17 7.64 040  0.60 195 679 1240 17.100 334 897 9.62] 6.05
Shan et. al. 2014 [15]| FPGA 3.620  4.15 14.000 048 087 2.79 7.54 147 19.4 3.5 11.100  9.64  7.65
Ttofis et. al. 2016 [19]| FPGA 238  3.01] 938 040 070 3.62) 7.23 12700 17.200 2.87] 859 827 636
Vala et. al. 2018 [20]] FPGA 4.5 6.72) 1134 2300 3.88 9.80| 8.6l 142 18.04 728 14.67] 15.07 9.73
Proposed FPGA 2300 335 10.18 0.57  1.000 5.800 541 10.62) 1437 4.06 941 930 6.36
TABLE 2. Hardware resources required in related studies and proposed architecture (N.M. = not mentioned) with Kintex-7 FPGA.
Image MDE/s Freq. Slice Power
Work Resolution Range fps (10 (MHz) LUTs Registers BRAMs DSPs (W)
2010 [8] 640x480 64 230 4522 93 60598 53616 322 12 N.M.
2011 [7] 1024%768 64 60 3019 65 53095 74109 N.M. 252 N.M.
2015 [13] 1024x768 96 68 5120 NM 125255 81092 N.M. N.M. NM
2014 [14] 1024x768 60 199 9404 318 122900 N.M. 165 N.M. 10.6
2014 [15] 1024x768 128 129 13076 103 60160 33291 N.M. 512 NM
2016 [19] 1280%720 64 60 3538 103 57492 71192 302 458 2.8
2018 [20] 1280%720 64 103 6075 107 34181 47368 247 273 2.1
Proposed 1280720 64 118 6960 110 51752 35807 227 258 2.6
speed left room for improvement. The design introduced 0, if |De(x.¥) — Dfinat (¢, )] < 74
in [20] was an improvement of that in [19], with the incor- derr (x,y) = |DC (x,¥) — Dfinat (x,y )| ’ (16)

poration of a discrete wavelet transform method, where both
the left and the right images are zoomed out by a factor
of two during the processing stage and finally zoomed in
back to the original magnification. This method significantly
reduces the area cost but also increases the error rate. By con-
trast, the design proposed here adopts the novel disparity
fusion method, thereby requiring that only half of the dispar-
ity values are checked, and the refinement operation CPR is
included to enhance the performance.

The average error rate (bad pixel rate) of the proposed
algorithm is 6.36%, which is the same as that in [19] and
34.6% lower than that in [20]. With regard to the process-
ing speed, the proposed algorithm can operate at 110 MHz
clock frequency and achieve the 118 fps and 6960 MDE/s.
These three indicators are better than those in [19] and [20].
In terms of hardware resources, the proposed design requires
the fewest Slice Registers, BRAMs, and DSPs. Only the
LUT requirement is higher than that in [20]. It is shown that
the proposed design can meet the high-speed and low-cost
requirements.

B. COMPARISON WITH MIDDLEBURY

VERSION 3 DATASET

Similarly, the criterion for the percentage of bad points with
the Version 3 dataset (AEg) was calculated as:

1
AEp = 5 Z(W)eR derr(x, ) (15)
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otherwise

The value of the constant threshold t; can be defined by
users here. As for the d,-(x,y), if the absolute difference
between D, (x, y) and Dyqr (x, y) is greater than 74, depr(x, y)
is equal to their absolute difference; otherwise, de(x, y) is 0.

Table 3 lists the evaluation results with the Version
3 dataset. Here, for the purpose of validation, we adopted
the designs from [22], [23]. The average error rate of the
proposed algorithm was 30.30% when the t; was equal to
1.0. Compared to the design from [22], the proposed design
led to a 15.11% error rate reduction on average. When the
T4 was equal to 4.0, the error rate of the proposed design
is 19.64%. Compared to the design from [23], the proposed
algorithm can lead to a 27.98% reduction in the error rate
on average. To summarize, the used of the proposed design
leads to the lowest error rate when compared with the designs
also adopting the Version 3 dataset. As shown in Table 4,
in regard to the operating speed and the required hardware
resources, the proposed design has the highest MDE/s and
operating frequency with competitive hardware resources
usage as compared with the designs from [22], [23].

C. COMPARISON BETWEEN DIFFERENT SYSTEM
CONFIGURATIONS

In Table 5, the performance of the designs based on the
proposed novel disparity fusion method are compared. Mid-
dlebury Version 2 dataset is used and the criterion for the per-
centage of bad pixel points is calculated in the same manner
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TABLE 3. Testing performance (error rate) of related studies and proposed architecture with version 3 dataset. (N.M. = not mentioned).

Dataset Adir | ArtL Jad Mot MotE Pia Pial | Pipe Plr Plt PItP Rec She Ted Vin
[22] (t4=1.0) [23.57%]19.58% | N.M. [17.89%| NM. |26.12%| N.M. |17.68%| N.M. |45.19%| N.M. [21.62%| N.M. |10.30%| N.M.
Ours (74,=1.0) [23.74%)|28.29% [67.61%| 9.56% | 19.12% |24.53%49.26%13.29%39.06%|32.64%]19.54%(15.92%43.01%) 6.21% |62.67%
[23] (14=4.0) [[18.60%]22.90% |36.90%]20.60% | 18.90% [23.60%]34.00%|23.10% |33.80%[45.80%[22.90% |15.50%(37.30%|12.80%|42.30%
Ours (7,=4.0) [10.98%)]19.32% [61.03%| 3.82% | 9.63% |14.38%|31.04%| 7.55% [22.14%(19.88%] 9.28% | 5.67% [28.66%)| 2.39% |48.76%
TABLE 4. Hardware resources required in related studies and proposed architecture (N.M. = not mentioned) with Kintex-7 FPGA.
Image 6 Freq. . .
Work Resolution Range fps MDE/s (10°) (MH?) LUTs | Slice Registers | BRAMs DSPs
2017[22] 640x480 64 324 6370 100 52254 33549 N.M. NM.
2018[23] 1280x720 64 60 3538 78 31135 40187 215 258
Proposed 1280x720 64 118 6960 110 51752 35807 227 258
TABLE 5. Testing performance of the designs based on the proposed RGB Image Ground Truth Proposed Algorithm

disparity fusion method.

Design Number of Av‘erage Bad
Cost Maps Pixel Rate
DF21 42 33.00
DF32 64 22.55
DF64 128 21.82

TABLE 6. Hardware resources usage of related studies and proposed
architecture with different system configurations.

Disp. Slice Power

Work Range LUTS | povisters | BRAMs | DSPs | (00
2016 16 | 21920 | 21223 134 122 | 114
[19] 32 | 33570 | 27490 190 234 | 1.64

64 | 57492 | 71192 302 458 | 2.80

2018 16 87090 | 12561 56 68 | NM.
[20] 32 | 18256 | 24157 120 129 | NM

64 | 34181 | 47368 247 273 | 2.10

16 | 14945 | 11012 107 66 0.78

Ours 32 | 27806 | 19779 147 130 | 1.41
64 | 51752 | 35807 227 258 | 2.62

as that in Section VI-A. For a fair comparison, no refinement
is adopted on the results of Table 5. The design DF21 uses
21 disparity value for the left cost map generation and another
21 disparity values for the right. The design DF32 uses even
disparity values for calculating the left cost maps and uses
odd disparity values for calculating the right cost maps. The
design DF64 uses each disparity value in the disparity range
for the left and the right cost maps generation. In the DF21
and DF32, the disparity fusion method has to recover the lost
disparity information to generate the disparity map which
can cover full disparity range. In the DF64, the disparity
fusion method acts just like the general left-right consistency
checking method. In the DF21, the left cost maps are calcu-
lated with disparity values 3, 6, 9,...... , 60, and 63, and
the right cost maps are calculated with disparity values 1,
4,7,...... , 58, and 61, respectively. If one disparity value
from the left disparity map is k, then the disparity fusion
method has to check the consistency with disparity values
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FIGURE 17. The visual testing results for Middlebury Version 2 dataset:
(a)-(d) RGB images, (e)-(h) ground truth, (i)—(l) testing results obtained
using the proposed algorithm.

RGB Image Ground Truth ~ Proposed Algorithm

Motorcycle

FIGURE 18. The visual testing results for Middlebury Version 3 dataset:
(a)-(b) RGB images, (c)-(d) ground truth, (e)-(f) testing results obtained
using the proposed algorithm.

k—2,k—1,k,and k + 1. Since the DF21 is not the design
adopted for hardware implementation, its checking rules are
omitted here for the brevity of the paper. Table 5 shows that
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the performance of the DF32 is very close to that of DF64,
which implies that the proposed disparity fusion method can
effectively recover the lost disparity information. However,
the performance of the DF21 is much worse, which resulted
from the loss of cost information. As a result, the design
DF32 is adopted for hardware implementation for the balance
between the performance and calculation complexity.

Table 6 shows the comparison of hardware resources usage
between related studies and the proposed architecture under
different disparity ranges. It can be observed that the amount
of LUTs, slice registers and DSPs of the proposed architec-
ture scales almost linearly. The amount of BRAMs used in the
proposed architecture exhibits a quadratic increase, which is
proportional to the number of the cost maps.

D. TESTING RESULTS

Fig. 17 and Fig. 18 show the visual testing results.
Fig. 17(a)-(d) are the testing images in the Version 2 dataset.
Fig. 17(e)-(h) provide the ground truth of the disparity maps,
and Fig. 17(i)-(1) show the disparity maps generated by the
proposed design. It can be seen that the proposed algorithm
could accurately predict most of the disparity values. The
bad pixels mostly occurred at the edge of the disparity maps.
The visual effects were acceptable. Fig. 18(a)-(b) are the
testing images in the Version 3 dataset. Fig. 18(c)-(d) are the
ground truth of the disparity maps, and the disparity maps
generated by the proposed design are shown in Fig. 18(e)-(f).
Fig. 18 shows that the proposed algorithm can still generate
high-quality disparity maps even in an environment with light
noise.

VII. CONCLUSION

In this study, a high-speed low-cost disparity estimation algo-
rithm was developed and implemented on FPGA platforms.
With the proposed disparity fusion method, the number of
disparity values to be checked can be reduced. The lost
disparity information is recovered by the disparity fusion
method. Therefore, the total area cost is reduced significantly
and the operating speed is also enhanced. Furthermore, the
refinement operation CPR is also included, where the perfor-
mance of the proposed algorithm was shown to be the same
as that obtained by using the disparity algorithms with full
disparity range. The experimental results have shown that the
proposed architecture can achieved the lowest error rate when
compared to other GIF-based designs on Middlebury Version
2 dataset. The tolerance of the proposed architecture to light
noise is also verified with Middlebury Version 3 dataset.
Moreover, the operating frequency of the proposed architec-
ture is also improved, which allows the frame rate and MDE/s
can meet real-time requirements. The experimental results
indicated that the design proposed in this work is suitable
for applications in resource-constrained end-user equipment
because of its high-speed, low-cost property and high-quality
results.
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