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ABSTRACT Glaucoma is a type of visual impairment that is caused due to damage in the optic nerve. The
vision loss increases from the peripheral vision towards the central vision, leading to blindness if untreated.
The proposed approach is a Computer-Aided Detection (CADe) system using deep learning to screen visual
field loss in glaucoma patients while performing different day-to-day activities such as searching objects,
viewing photographs, etc. Incorporating an eye-tracking device helps to identify eyemovements of glaucoma
patients while performing different activities. Different day-to-day activities are depicted in the form of
visual exploration tasks. CADe system fuses performance parameters and eye gaze parameters during visual
exploration tasks onto images, to guide health care professionals of primary eye care centers in glaucoma
screening. The pertinent eye gaze and performance parameters are visualized in the form of three fusion
maps: Gaze FusionMap (GFM), Gaze Fusion Reaction Time (GFRT)map, Gaze ConvexHullMap (GCHM),
which are the outcomes of different visual exploration tasks. In addition, the explainability techniques applied
in CADe generated Gaze Exploration - index (GE-i) that discriminates glaucoma and normal.

INDEX TERMS Glaucoma, eye gaze, visual attention, explainable computer aided detection, visual
field loss.

I. INTRODUCTION
Visual impairment or vision loss is the decreased ability to
see, which is not correctable using glasses or lenses and leads
to difficulties with day-to-day activities [1]. The causes of
visual impairment are refractive errors, cataract, glaucoma,
age-related macular degeneration, etc. Glaucoma is the sec-
ond leading cause of blindness after cataract. One-fifth of
the glaucoma burden is in India, and the sad part is that
more than 90 percent of glaucoma cases remain undiagnosed,
in contrast to 40-60 % in developed countries [2]. Different
structural and functional tests are used to assess optic nerve
head, thickness of cornea, eye pressure and field of vision.
Visual field perimetry is a machine that detects the loss in the
central and peripheral field of vision.

In a real-world scene, the peripheral vision prompts sac-
cade (eye movement) or head movement and guides the fovea
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to the center for more information. The peripheral vision
helps to select information or features, and subsequently,
the central vision orients to the region of interest. Visual
impairment alters visual attention, because it is the effect of
the association of central and peripheral visual function in the
interaction of real-world scenes [8], [9].

Visual attention of drivers is measured using Useful Field
of View (UFoV). This measure checks whether a par-
ticipant can focus on the central target, divide attention
between objects in the central field of view and periph-
eral field of view, select a target among distractors in
the peripheral field of view, and make a mobility control
while driving [3]. Mild glaucoma patients with less visual
field loss (loss of part of the visual field) get good UFoV
scores [4]. They compensate for the defect in the posi-
tion of the visual field by performing more exploration in
the eye gaze patterns, such as more fixation and higher
saccade/sec while driving [5]–[7]. It should also be noted
that all glaucoma patients may not show exploratory search
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to compensate visual field loss while performing different
activities.

The patients who notice difficulty in their day-to-day tasks
undergo diagnosis, treatment, and social rehabilitative pro-
grams to overcome their challenges [1]. However, eye care
services are not well utilized due to accessibility, afford-
ability, and availability of services [9], [10]. Different tests
are available in tertiary hospitals to diagnose glaucoma, but
there is an under utilization of such services in rural areas.
A feasible solution is needed to perform glaucoma tests in
the primary eye centers.

Researchers investigate the influence of eye movement
patterns of glaucoma people during the performance of day-
to-day activities. This knowledge helps to create a screening
test that checks people’s visual attention in primary eye care
centers and then refers to diagnosing the disease in the higher
tier of hospitals. The screening test is incorporated with a
computer-aided detection model that discriminates between
glaucoma and normal. The explainability techniques applied
in the CADemodel helped to understand the relevant features
that contributed to the prediction of glaucoma.

The outline of the paper is as follows. Section 2 includes
eye gaze measures and their use in the diagnosis of glaucoma.
Section 3 explains methodology of the proposed system.
Section 4 shows results and section 5 explains the discussion
of various results. The paper concludes in Section 6.

II. LITERATURE SURVEY
Plenty of studies have reported that severe glaucoma patients
show a decline in visual function ability tasks such as reading
newspapers, climbing stairs, searching objects, interacting
with people, performing leisure activities, dark adaptation,
and other outdoor tasks, etc. [11]. They face loss of employ-
ment, less productivity, and treatment costs [1]. Researchers
worldwide have found variations in eye movement patterns
of glaucoma participants while performing visual exploration
tasks such as reading, visual search, face recognition, watch-
ing TV and video, viewing images, driving, walking, and
shopping to understand visual functional deficits of glaucoma
patients and how it impacts the quality of life [45], [46]. The
research works investigated different tasks in their experi-
ment using low-end, medium-end, and high-end eye trackers.

A visual search experiment reported that the number of
saccades per trial, saccade amplitude, saccade size, and fix-
ation duration do not correlate with peripheral visual field
loss [15]. Glaucoma patients compensated visual field loss
by changing the direction of saccades during visual search.
Research works also investigated the visual search behavior
of individuals in driving scenes. Glaucoma patients show a
low number of fixation and smaller saccades, which show
that visual search behavior is diminished in them [16]. Stud-
ies show that only a few old glaucoma patients and young
glaucoma patients do compensatory patterns by making more
saccades or head movements.

The signature of vision loss is generated using sac-
cades landing in the region of the visual field, and it can

discriminate between glaucomatous and normal visual field.
However, the characteristics of the saccadic map with the
field loss are not linked [17]. Since there are confounding
factors such as personality and engagement towards screen-
based tasks, experiments are also conducted to compare eye
movement patterns between each participant’s worse and less
glaucoma-affected eye. Less glaucoma-affected eye made
many revisits towards the region of interest and created less
fixation distribution than worse glaucoma-affected eye [18].
There is a limitation in CADe system which incorporates
low-cost eye tracker. Restriction in the visual field is implied
in glaucoma patients during free-viewing images and videos,
which can be identified as signatures to discriminate between
glaucoma and normal [17]. More research works are needed
to find the correlation between clinical measures and eye gaze
parameters to screen the disease in the early stages.

Clinical tests are always performed in laboratory-based
conditions, where glaucoma patients do not show much dif-
ference from normal people. But glaucoma patients report
difficulty in performing day-to-day activities even with mild
impairment [12]. Several eye movement studies investigated
to understand the functional deficits of the clinical popula-
tion. In dynamic scenes such as driving, more saccadic eye
movements and head movements are used to overcome the
challenges of visual field defect [19], [20], [21]. Despite the
compensatory behavior, they showed a slower response to
hazards [22], [23], [24]. Eye movement scanning of young
participants is different from the older adults with glaucoma
in the driving scenes [26].

In screen-based static scenes such as watching TV and
visual search, the compensatory behavior of glaucoma
patients is different or absent concerning the challenge of the
restricted field of vision [19]. In some studies, compensatory
behavior such as more significant number of saccades per
sec and saccade amplitude to show good performance while
shopping [26]. The group showed the same eye movement
behavior for good performance in image viewing [27]. Con-
versely, in another computer-based task, the group ignores the
region where visual field loss is present and they do not focus
on all parts of the scene [15], [19], [26], [28], [30].

Glaucoma patients show altered eye movement behavior
compared to the normal population while watching TV [17].
Apart from clinical testing, knowledge about quality-of-life
(QoL) of glaucoma patients helps to understand the pro-
gression of the disease [31]. Thus awareness of the dis-
ease improves the QoL utilizing compensatory head and eye
movements towards the visual field loss.Different studies
have shown a correlation between clinical measures and eye
gaze parameters in glaucoma patients than normal partici-
pants. However, more research is required to understand the
influence of severity in the visual field loss in eye movement
behavior. Different studies have shown a correlation between
clinical measures and eye gaze parameters in glaucoma
patients than normal participants. However, more research is
required to understand the influence of severity in the visual
field loss in eye movement behavior.
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The advancement of artificial intelligence in eye care
delivery is quite promising [42]–[44]. But the barrier of the
black-box approach of many machine learning models are
excised by the introduction of Explainable Computer Aided
Diagnosis (CADx) and Detection System (CADe). Several
research works have designed trustworthy detection system
based on the amalgamation of clinical measures using func-
tional and structural modalities and deep learning model [33],
[47], [48]. Cup-disk-ratio (CDR) and morphological features
from fundus images are fed to the convolution neural net-
work to create CADe and CADx systems, which can assist
clinicians [32], [34]. The explainability techniques are uti-
lized to analyze the performance of the different machine
learning models. The same concept is also applied to under-
stand the influence of different clinical parameters in cre-
ating glaucoma diagnosis and detection systems [33]. The
interpretability of feature extraction and explainability of
different machine learning models make CADe and CADx
more sophisticated and reliable.

The proposed system urged the interpretability of different
eye gaze features to understand how different subgroups of
glaucoma utilized them in the performance of day-to-day
activities. The present work also investigated the influence
of age and severity on performance during different tasks.
This was demonstrated by comparing the performance of
glaucoma participants during the visual exploration tasks and
understand whether compensatory eye movement patterns
reflect in such different tasks. The proposed Computer Aided
Detection (CADe) helps to screen glaucoma patients in pri-
mary eye care centers.

III. METHODOLOGY
A. RATIONALE OF THE STUDY
The proposed system is an explainable Computer-Aided
Detection (CADe) system that highlights what-if questions
of glaucoma screening. The present work addresses the fol-
lowing questions.
• Are exploratory gaze patterns of the same participant
reflect in all tasks?

• What are the relevant eye gaze measures and per-
formance measures that contribute the prediction of
glaucoma?

• Can we formulate a screening index that discriminates
glaucoma and normal?

B. STUDY DESIGN
The overview of the architecture of Gaze Exploration-index
(GE-i) Explainable Detection Model is shown in the figure 1.
The proposed system is designed with data acquisition, fea-
ture analysis and clinical validation, model creation, explain-
ability, visualization and finally outputs the screening index.
The system comprised of 4 main modules:

1) Visual Exploration Tasks - The module is based on
three day-to-day tasks: simple dot (T1) task, visual
search (T2) task and free-viewing (T3) task. The system
first presented a task which analyzed the performance

of each eye, and identified the more defected eye and
less defected eye. This subsequently checked the con-
tribution of binocular vision in the performance during
day-to-day tasks such as visual search and image view-
ing and how they compensate for their visual field loss.

2) Estimation of eXtensive Gaze and Performance
(EXGP) module - The module constituted open-source
software and customized software. The open-source
software evaluated basic eye gaze measures and cus-
tomized evaluated derived parameters. Based on these
eye gaze measures, EXGP module estimated task
performance measures. Thus the module estimated
28 parameters, which included eye gaze parameters
and performance parameters of different participants
after viewing visual exploration tasks. The output of
the module is the EXGP feature set.

3) EXGP Feature Analysis - The EXGP feature set was
analyzed based on severity grade and age. The analysis
of feature set was validated based on certain clinical
measures. The feature analysis was based on statistical
measures.

4) Explainable – Detection Model - EXGP feature set
is fed to Deep Neural Network (DNN), which is
included in the Explainable – Detection Model or
Computer-Aided Detection model (CADe). DNN pre-
dicted any unseen data as glaucoma or not. The accu-
racy of the model is based on the feature relevance.
The explainability of the model was performed in a
dashboard in the form of various plots such as water-
fall plots, contribution plots etc. The dashboard is
also designed to generate screening index called Gaze
Exploration-index (GE-i). Themodule comprisedGaze
Exploration Visualization, that is meant for different
visual exploration tasks (T1, T2 and T3) in the form
of fusion maps.

Participants were engaged and oriented to different
tasks displayed on the laptop screen. The underlying
computer-aided detection model has generated screening
index and created fusionmaps, which utilized the information
based on task performance and eye movement behavior. The
study estimated exploratory gaze patterns that reflect in all
tasks for the glaucoma group.

C. PARTICIPANTS
The prospective hospital-based cross-sectional study which
is conducted in Narayana Nethralaya, Narayana Health City,
Bengaluru is ethically approved by Ethics Committee of the
hospital. The purpose of the experiment was explained and
different participants signed the consent sheet, and followed
by which he/she was invited for the study. The study is carried
on participants diagnosed with glaucoma by the standard test
(clinical evaluation, visual field test, imaging techniques) and
the same number of age-related controls, with an age group
of 30-70 years and no constraint on gender. The participants
were selected during their regular glaucoma screening. After
visual field test, the Humphrey Field Analyzer (HFA) with
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FIGURE 1. Overview of Gaze Exploration - index (GE-i) based explainable detection model.

24-2 program produced a visual field report of different
participants. The experimenter maintained a copy of visual
field report for clinical validation. A total of 117 participants
were recruited. The gaze data of participants are allocated
with unique ID: Sub_1, Sub_2,. . . ,Sub_117. Among them,
50 were glaucoma participants, 48 were normal participants,
7 patients had field loss due to other diseases, 2 participants
could not complete the experiment due to droopy eyes, and
10 data loss. Thus ninety-eight participants were involved in
the experiment.

The study did not include participants who had under-
gone ocular surgery in the past three months, history with
a squint and retinal surgery, and glaucoma suspects. Par-
ticipants satisfying the inclusion criteria for the study were
recruited from outpatient department (OPD) in the hospital.
Glaucoma Hemifield Test (GHT) on the perimetry provides
the label of ‘outside normal limits’ for glaucoma participants.
Glaucoma is diagnosed as mild, moderate, and severe based
on the Visual Field Index (VFI) [49]. The flowchart of data
collection is shown in the Figure 2.
In the present study, glaucoma were categorized based on

Visual Field Index (VFI) [49]. VFI value less than 40 was
considered as severe category, VFI between 40 and 60 was
considered as moderate category, and VFI value between
60 and 100 was considered as mild category. The subgroups
of glaucoma and normal were also identified based on age
groups such as young (age less than 45), middle-age (age
between 46 and 60) and elder (age greater than 60) subgroups.
The subgroup analysis based on severity grade and age-group
enlightened the understanding of exploratory gaze patterns
in different tasks. The flow diagram of subgroup analysis is
shown in the figure 3.

D. EQUIPMENT SETUP
The experimenter or person who had conducted an
eye-tracking experiment explained the different tasks in
English or in their regional language to the participants. The
distance of the participant from the monitor was maintained
at 60 cm. A non-invasive eye tracker Eye Tribe 60 Hz

FIGURE 2. Flowchart of data collection.

FIGURE 3. Flow diagram of subgroup analysis.

with accuracy 0.5◦ and spatial resolution 0.1◦ is attached
to the screen. The eye tracker uses infrared illumination to
capture the eye movements of the participants when viewing
the stimulus on the computer screen. Before starting the
experiment, 9-point calibration is run to get the Pupil-Corneal
Reflex (PCR) of participants and if required, re-calibration is
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done to get the pupil position correctly. The proposed system
focused on the strategy of exploratory eye gaze patterns of
different participants in different visual exploration tasks.

E. DESCRIPTION OF VISUAL EXPLORATION TASKS
Visual exploration tasks are screen-based tasks that depict
specific tasks such as searching for an object, watching T.V.,
and viewing photographs in daily life. The tasks were based
on images that included certain scenes or contained a target
with distractors. Participants engaged and explored images
based on the instructions given by the experimenter. The
images were designed in such a way that the participants
should utilize all parts of the screen. Figure 4 shows the
sample images of different tasks.

1) SIMPLE DOT TASK
This was the first task (T1), in which the stimulus included a
white dot of size 12 pixels. The dots were displayed randomly
on the screen. The position of each dot is arranged in four
quadrants: Top Left (TL), Bottom Left (BL), Top Right (TR)
and Bottom Right (BR). There were 30 images in the task and
each image was displayed for 1.5 sec. The participant viewed
the image monocularly (each eye separately) and no response
was required from them. Figure 4(a) shows a sample image
of T1 task.

2) VISUAL SEARCH
The second task (visual search) was a task-oriented activity
that included a set of cartoon images, in which each image
was displayed on the screen for 20 sec. The image was
selected from Bing search engine and a target in the form of
‘star’ was placed at different positions. The target question
was ‘‘Find the star in the image’’? Participants searched for
a target and responded by clicking the mouse button on the
target or telling the experimenter the target’s position. There
were 20 images in the task, which included colour and gray
scale images. The target included different modalities such
as size (varies between 10 and 14 pixels to match the back-
ground), orientation, position, and opacity in four quadrants
(TL, TR, BR, BL). There were at least four images in each
quadrant. A central dot was displayed for 1 sec after every
image. Figure 4(b) shows a sample image of T2 task.

3) FREE-VIEWING TASK
This was the final task (T3), in which no response was
required from the participants. The task included 20 images
and they observed different salient features such as traffic
lights, people, animals, etc. The images were selected from
Bing image search engine and CAT2000 benchmark dataset
(selected Indian based images). The task included color and
gray-scale images and the trial time was 4 sec. The image
size was 1366× 768, which was displayed on the full screen.
A central dot was displayed for 1 sec after every image. Some
images were inverted or applied noise on images to grab
the attention of participants to the task. Figure 4(c) shows a
sample image of T3 task with social scenes and applied some

noise on it. Figure 4(d) shows a sample image of T3 task with
background scenes.

F. ESTIMATION OF EXTENSIVE GAZE AND
PERFORMANCE (EXGP) MODULE
The proposed system included a submodule called Estima-
tion of eXtensive Gaze and Performance (EXGP) module.
The submodule comprised open-source software OGAMA
5.0 [50] and customized software [35]. OGAMA 5.0 esti-
mated basic eye gaze parameters from the gaze samples
from the eye tracker. The basic eye gaze parameters fed
to the customized software. The customized software esti-
mated extensive eye gaze parameters or derived parameters
to differentiate eye movement behavior between glaucoma
and normal. The inclusion of OGAMA open source software
in EXGP module is required to calculate basic eye gaze
parameters from gaze samples that cannot be calculated using
customized software.

1) BASIC EYE GAZE PARAMETERS
The open-source software OGAMA 5.0 preprocessed sam-
ples from the eye tracker to remove artefacts and outliers.
The software estimated events such as fixations and saccades
from the gaze samples from the eye tracker. Fixations were
estimated as clusters of still eye movements over a time
period. Saccades were estimated as rapid eye movements
between fixations.

2) DERIVED PARAMETERS
Since visual exploration tasks such as free-viewing and goal-
oriented tasks (visual search) expected different manner of
eye movements, the customized software is needed to cal-
culate different comprehensive eye gaze measures from the
basic eye gaze parameters. The summary of the relationship
of eye gaze parameters with the visual field is depicted in the
table 1.

The derived parameters are described as follows:
• Fixation Count (FC) – FC is calculated as the count
of fixations done by the participant while viewing a
stimulus. Average value of all trials are estimated for
each participant. Average FC for visual search and
free-viewing tasks are denoted as Star_Avg_FC and
fv_Avg_FC respectively.

• Saccade Count (SC) – SC is calculated as the number of
saccades made by participant while viewing a stimulus.
There can be saccades along a reverse direction called
regression. Average of SC for visual search task and
free-viewing task are abbreviated as Star_Avg Saccade
Count and fv_Avg Saccade Count respectively.

• Saccade rate – It is calculated as the number of saccades
made by the participant per second, and it is also known
as eye movement rate. Average of SC for visual search
task and free-viewing task are denoted as star_Avg Sac-
cade Rate and fv_Avg Saccade Rate respectively.

• Fixation Duration (FD) – The duration taken by the
eye to be still at a particular area. While viewing the
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FIGURE 4. Sample of visual exploration tasks.

TABLE 1. Relation of eye gaze measures and its outcome.

stimulus, participants show a smaller number of fixa-
tions and higher number of saccade amplitude to under-
stand visual information and later fixation duration will
be increased and saccade amplitude will get reduced
to understand the semantics of the stimulus. Generally
visual field is longer horizontally than vertically. Aver-
age of SC for visual search task and free-viewing task are
denoted as Star_Avg FD and fv_FD mean respectively.

• Fixation/Saccade ratio (F/S ratio) – It indicates the num-
ber of saccades greater than the amplitude threshold
divided by the number of saccades smaller than the
amplitude threshold. It shows the difference between
global scanning and detailed inspection. F/S ratio of

free-viewing and visual search are prefixed with star and
fv as star_F/S ratio and fv_F/s ratio respectively.

• Saccade Velocity – Saccade velocity (SV) is the eye
movement speed. It is calculated by dividing saccade
amplitude by saccade duration. SV of free-viewing and
visual search are prefixed with star and fv as star_SV
and fv_SV respectively.

• Scanpath Length (SL) - This parameter is calculated
by adding saccade amplitudes in a scan path. SL of
free-viewing and visual search are prefixed with star
and fv as star_SL and fv_SL respectively. The length
between fixations are denoted as Fix Conn Length; pre-
fixed with star and fv.
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• Saccadic Direction – Saccadic orientation is the direc-
tion of saccades and generally while viewing scenes par-
ticipants show horizontal orientation and the dominance
of horizontal and vertical saccades can be inspected
using Horizontal and Vertical Ratio (HV-ratio). Saccadic
Direction of free-viewing and visual search are pre-
fixed with Star and fv as star_Saccadic direction and
fv_Saccadic direction respectively.

• Scanpath - Scanpath is a graph containing fixations as
vertices and saccades as edges between vertices.

• Convex Hull Area – It refers to the polygonal space
that covers all fixations of a participant across all trials.
It shows the shape of the scanpath done by a partici-
pant across all trials. Average of convex hull area for
visual search task and free-viewing task are denoted
as star_Convex Hull Area and fv_Convex Hull Area
respectively.

3) PERFORMANCE MEASURES
The performance of participants during visual exploration
tasks was estimated based on the parameters from the EXGP
module. The monocular performance in simple dot task and
binocular performance in visual search task was estimated
based on the fixation over the target within the trial time.

The monocular performance of participants in the simple
dot taskwas estimated using averagemiss. The parameter was
calculated by summing up of miss in different trials divided
by number of images. It was estimated for each eye such as
left eye miss and right eye miss. If the participant could fixate
the target, it was considered as seen/hit. The performance
measure in simple-dot task is denoted as Dot_Avg Miss.

The task was followed by binocular performance in daily
routines tasks such as visual search and free-viewing tasks.
The reaction time to identify the target was calculated by
clicking the mouse on the region of interest ‘star’. The par-
ticipants could also communicate the experimenter the star’s
location and fixate on the target for five seconds. The thresh-
old of fixation duration was decided based on the pilot study.
The average reaction time was calculated as the summing
up of reaction time divided by the number of images. The
performance measure in visual search task is denoted as
Star_Avg RT.

The free-viewing task was not goal-oriented activity and
hence no performance measure was estimated. The extensive
eye gaze and performance measures are called feature set of
EXGP module. EXGP module outputs EXGP Feature Set.
The feature set includes 28 features which are fed to analysis
framework and detection model.

Mean, standard deviation (in paranthesis) and p-value
between glaucoma and normal of different features in EXGP
feature set are shown in the Table 2. The p-value <0.05 is
shown in boldface manner, that are significant.

The performance measures such as Dot Avg Miss and
Star Avg RT is significantly different between glaucoma
and normal with p<0.001 and p<0.05 respectively. There
is also a significant difference in fixation duration, fixation

count per sec, saccade velocity and fixation connection length
with p<0.05 between glaucoma and normal in visual search
task. Glaucoma group had taken longer fixation duration than
normal with less number of fixation count and that made their
performance in visual search poor.

There is also a significant difference in fixation count
per second, fixation connection length, convex hull area and
saccade rate between glaucoma and normal in free-viewing
task. Glaucoma participants showed lower fixation count and
less convex hull area than normal participants in free-viewing
task.

G. EXGP FEATURE ANALYSIS
EXGP module in the GE-i proposed model estimated
28 parameters, which included 26 comprehensive eye
gaze measures estimated during visual search task and
free-viewing task altogether, average miss estimated during
simple dot task and average reaction time estimated during
visual search task. These comprised to form EXGP feature
set. The feature set is analysed based on different sever-
ity grade subgroups and age-based subgroups. The sum-
mary of significance testing is tabulated in Table 3, Table 4
and Table 5, and explained in the subsequent two sections:
Severity-based Analysis and Age based Analysis.

1) SEVERITY-BASED ANALYSIS
The glaucoma group was categorized into severe, moderate
and mild subgroups for the study purpose. Comparison of
eye tracking measures between severe and mild subgroups
showed that there is a significant difference in saccade count
and saccade rate p<0.001 during both visual search and
free-viewing tasks and in the reaction time during visual
search. No significant difference has been identified in aver-
age miss as well as other eye tracking measures between
severe and mild subgroups.

The comparison between moderate and mild subgroups
showed that there is a significant difference between sac-
cade count and saccade rate in free-viewing task and visual
search task with p<0.001. But no significant difference has
identified in other EXGP features. Saccade rate and saccade
count were the exploratory eye gaze patterns shown by mild
glaucoma subgroups than moderate and severe glaucoma
subgroups.

2) AGE-BASED ANALYSIS
Based on age group, the glaucoma group was categorized
into elder, middle-age and young subgroups. The comparison
between elder and middle age subgroups showed that there
is a significant difference in average miss in simple dot task
with p≤0.001 and convex hull area in free-viewing task with
p-value 0.037.

Elder and young subgroups showed a significant difference
in the performance of average miss and average reaction
time with p-value=0.018 and p-value=0.014 respectively.
There is a significant difference in fixation duration in both
visual search and free-viewing tasks with p-value=0.031 and
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TABLE 2. Mean and standard deviation (in parenthesis) of EXGP features and p-value between glaucoma group and normal group.

TABLE 3. Summary of significance testing and impact in severe glaucoma subgroup.

p-value=0.035 respectively. Convex hull area in visual search
task showed p-value with 0.04 between elder and young
subgroups.

No significant difference showed in EXGP features
between young and middle-age subgroups. There is signifi-
cant difference in the performance during tasks between elder
and young subgroups. Elderly glaucoma subgroup showed
longer fixation duration that led to limited exploration during
the performance of both tasks.

H. CLINICAL VALIDATION
Humphrey Field Analyzer (HFA) visual field test is done for
left and right eyes separately. The parameters in the visual

field report estimate the retinal sensitivity of each eye, which
helps the clinicians to understand functional deficits in terms
of the visual field.
• Mean Deviation (MD) - the average deviation from the
age-matched normal in terms of retinal sensitivity. The
negative values show the presence of the worse field
defect.

• Pattern Standard Deviation (PSD) - Clinicians used PSD
to understand the irregular depression in the visual field
defect. The higher positive values indicate the higher
functional loss.

• Visual Field Index (VFI) - the percentage of visual field
status. The lower value indicates worse field defects.
Glaucoma is diagnosed as mild, moderate, and severe
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TABLE 4. Summary of significance testing and impact in moderate glaucoma subgroup.

TABLE 5. Summary of significance testing and impact in elderly glaucoma subgroup.

FIGURE 5. Histogram plot. L_MD and R_MD (left and right eye mean
deviation), L_VFI and R_VFI (left and right eye visual field index), L_PSD
and R_PSD (left and right eye pattern standard deviation).

based on the Visual Field Index (VFI) [26]. The higher
severity grade is labeled in case each eye has different
severity grades.

The distribution of data in different clinical measures are
shown in the Figure 5. The descriptive statistics of clinical
measures and p-value between glaucoma group and normal
group are given in the Table 6.
EXGP features were validated with clinical features using

Spearman Correlation Coefficient. Since visual search and

TABLE 6. Mean and standard deviation (in parenthesis) of age and
clinical features and p-value between glaucoma group and normal group.

free-viewing tasks were performed using both eyes, but clin-
ical testing was performed for each eye, for validation pur-
pose, clinical measures such asMD, PSD and VFI were taken
for higher severity eye only.

Average Reaction Time is positively correlated with
age 0.44. Convex hull area in visual search task is positively
correlated with VFI of 0.42. Other EXGP features have weak
correlation with clinical measures.

I. EXPLAINABLE DETECTION MODEL
Explainable Detection Model includes Deep Neural Network
and Gaze Exploration Visualization. The explainability of
the detection model is based on the contribution of different
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TABLE 7. Summary of DNN architecture.

features in generation of Gaze Exploration - index (GE-i) and
the visualization of exploration tasks of different subgroups.

1) DEEP NEURAL NETWORK MODEL (DNN)
The eye gaze parameters and performance measures of visual
exploration tasks unified to form EXGP feature set, which
included 28 input parameters. The input feature vectors were
fed to a sequential DNN model, which predicted the class
label (glaucoma and normal).

Sequential DNN model is a stack of layers that produces
output values based on the input feature vectors x1, x2,..,xm,
where m is the number of feature vectors. The input shape of
the DNNmodel was 28 features in EXGP feature set. The fea-
ture set is fed in to 28, 24, 22 stack of fully connected (dense)
layers with drop out value 0.5 at the end of every dense layers.
Dropout technique helped to drop or retain the nodes for the
next layer. Rectified Linear Unit (ReLU) activation function
was applied to every dense layers to activate the nodes. ReLU
is calculated as f (x) = max(0, x). The final dense layer
outputs the probability between 0 and 1 with threshold 0.5.
Class 0 referred as Normal and class 1 referred as Glaucoma.

The DNN model was compiled using Keras libraries with
Tensorflow as the backend. Loss of the model was defined as
mean squared error and optimizer as adam stochastic gradi-
ent descent algorithm. The model was fitted in the training
dataset over 200 epochs. DNN model finally predicted on
the test dataset and generated evaluation metrics such as
accuracy score, sensitivity and specificity. The summary of
the sequential model is given in the table 7.
The decision of the input shape or input features fed

to the DNN model was based on SHapley Additive exPla-
nations (SHAP) KernelExplainer. KernelExplainer computed
the relevance of each feature towards DNN model based on
SHAP values. Postive SHAP values inferred that the feature
has a positive impact towards the model, otherwise it has
a negative impact towards the model. SHAP values were
generated mathematically using (1).

φi(f , x) =
∑
z′⊆x ′

(|z′| − 1)!(|x ′| − |z′|)!
(|x ′|)!

(
fx(z′)− fx(z′\i)

)
(1)

Shapley value of feature vector fed to the model and is
represented by φi(f , x). The Shapley value is calculated by
taking all the permutations of different features in feature
vector, x ′. The permutation set of feature vector is represented
by |z′|. The count of features in feature set is represented by

FIGURE 6. Workflow in explainable detection model.

|x ′| and |z′|. The relevance of each feature i in z′ is considered
by removing ith feature in z′, which is represented by fx(z′\i).
The Explainer() in the shap library returned the relevant

features from the EXGP dataset. The relevant features fed
to the DNN model and the performance of the model were
evaluated for different iterations. Iteration in the detection
model is the repeated selection of features from the EXGP
dataset and estimation of performance metrics of DNNmodel
after feeding the pertinent features in the model.

In iteration number, t=1, all 28 features i.e., f=28 in EXGP
feature set were fed to DNNmodel. The model was evaluated
based on criteria such as accuracy, sensitivity and specificity.
The explainability of DNN model was checked based on
KernelExplainer and top 10, i.e. f=10 which contributed
towards evaluation were selected for iteration number, t=2.
The evalutaion metrics of the model were calculated and
recorded. The final feature list which includes top 5 features,
f=5 were selected and fed to DNNmodel in iteration number,
t= 3. The final Explainable Detection Model for the predic-
tion of glaucoma is based on top 5 features: fv_Convex Hull
Area, star_Fix Conn Length, star_Avg FC, Dot_AvgMiss and
fv_Fix Conn Length. The workflow pipeline in Explainable
Detection Model is shown in the Figure 6.

2) DASHBOARD
The explainability of the feature importance was amal-
gamated with an interactive dashboard using ‘explain-
erdashboard’ library. ‘RegressionExplainer’ performed
explainability of final list of 5 features using scikit-learn
based machine learning model on test data. The dashboard
helped to answer different ‘what if’ questions by showing
feature dependence plot, feature contribution plot and table
based on actual class: glaucoma and normal. Certain weights
were assigned to the relevant features to discriminate between
glaucoma and normal. Thus a screening index called Gaze
Exploration-index (GE-i) is generated.

3) VISUALIZATION
Another task of Explainable Detection Model was the visual-
ization of gaze exploration. The pertinent or exploratory gaze
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TABLE 8. Iterative improvement in accuracy of DNN model based on
feature relevance.

patterns were visualized on to a single image. This helped
to understand the difficult regions of participants during the
performance of tasks.

Gaze Fusion Map (GFM) map was generated by fusing
relevant information of 30 images [36]. It is the outcome of
monocular performance of different participants by fusing
‘hit/miss’ of 30 images. The dark spot represents ‘not seen’
the target and red spot represents ‘seen’ the target.

Gaze Fusion Reaction Time (GFRT) map was generated
by fusing relevant information or target on to a single image.
Two variables such as hit/miss and reaction time during visual
search task were overlaid onto the image. It is the outcome of
binocular performance during 20 images. GFRT visualization
helped to understand position of different targets, hit/miss of
the target, and average reaction time.

Reaction time and miss of different participants visualized
on to a single image, highlighted the difficult regions irre-
spective of exploratory gaze patterns.

IV. RESULTS
Gaze Exploration-index (GE-i) Explainable Detection Model
is an interactive platform written in the collaboratory note-
book. The sample dataset included 98 cases, and 67% of
the dataset was set as training dataset and 33% was set as a
testing dataset. The Sequential Deep Neural Network (DNN)
model fits the training dataset, and the accuracy score of
the testing dataset is recorded after every iteration of feature
relevance. The final list of 5 relevant features predicted the
unseen samples and improved the accuracy score of themodel
to 0.80.

KernelExplainer on SHAP (SHapley Additive exPlana-
tions) explained different attributes of the detection model.
The summary plot of SHAP depicted the feature relevance
in descending order. The accuracy of the DNN model is
improved based on the relevant features given as input vari-
ables. In each iteration, f=28, f=10, and f=5 pertinent fea-
tures of the training dataset were fed to the model and
recorded the accuracy, sensitivity, and specificity. The sum-
mary plot of iterative improvement in the accuracy of the
DNN model after feature relevance is shown in the table 8.

FIGURE 7. Feature relevance on detection model.

FIGURE 8. Feature interaction between dot_average miss and
star_fixation connection length.

FIGURE 9. Feature interaction between fv_convex hull area and
star_fixation connection length.

The final list of 5 relevant features are shown in the bar graph
Figure 7.

A positive interaction existed between average miss during
simple dot task and fixation connection length generated
during visual search. The dependency plot between average
miss and fixation length of visual search is shown in the
Figure 8.

There is linear and negative trend between convex hull
area and fixation connection length. The dependency plot
between convex hull area generated during free-viewing task
and fixation connection length during visual search is shown
in the Figure 9.

74344 VOLUME 10, 2022



S. Krishnan et al.: Gaze Exploration Index (GE i)-Explainable Detection Model for Glaucoma

FIGURE 10. Water fall plot of feature relevance.

The waterfall plot shows the feature relevance towards the
prediction of class. The waterfall plot of relevant features are
depicted in the Figure 10. The base value or E[f(X)] is the
expected value that calculates the model output’s average.
Convex Hull Area estimated during the free-viewing task
had a negative trend towards prediction result. Fixation con-
nection length generated during the visual search task had a
positive trend towards the prediction. Fixation count in visual
search, fixation connection length generated during visual
search task, and average miss in simple dot task had a pos-
itive trend towards the prediction result. Fixation connection
length and convex hull area during the free-viewing task had
a negative trend from the actual class label.

A. GAZE EXPLORATION VISUALIZATION
The comparison between fusion maps of study eye is shown
in the figure 11. The fusion maps of three subgroups of
glaucoma: severe, moderate and mild, and normal are shown
in the figure. GFM map of severe glaucoma participant,
Sub_73 showed more dark spots in the edges of the screen
and towards the center. GFRT map of severe glaucoma par-
ticipants did not identify the target in most of the stimuli, and
reaction time was longer towards the edge of the screen. The
subgroup showed restriction in the field of viewwith a limited
number of fixations in the GFCH map. GFM map and GFRT
map of moderate subgroup, Sub_42 showed that the miss of
target is less than that of the severe subgroup. The reaction
time to find out the target is longer towards the screen.
GFCH map of moderate subgroup showed that the number
of fixations are occupied on a specific part of the screen.
The participant in the mild subgroup, Sub_97 showed less
miss in simple-dot and visual search tasks than the severe
and moderate subgroups. On the other hand, the GFCH map
depicted that the moderate subgroup showed more fixations
than higher severity subgroups. The normal group (Sub_86)
could find almost all the target points in simple-dot and visual
search tasks. The reaction time of the normal group during
the visual search task is shorter than other subgroups of the
glaucoma group. GFCH map of the normal group occupied
more fixations overall portion of the screen without any
restriction.

B. GAZE EXPLORATION - INDEX (GE- I)
A dashboard was created to reveal model explainability and
to generate Gaze Exploration-index (GE-i). The final relevant

TABLE 9. Mean and standard deviation (in parenthesis) of GE-i value.

features are fv_Convex Hull Area, star_Fix Conn Length,
star_Avg FC, Dot_Avg Miss and fv_Fix Conn Length.
fv_Convex Hull Area showed high predictive power towards
class label (Glaucoma and Normal). The equation is derived
based on the weights formulated after regression equation.
Gaze Exploration-Index (GE-i) is a single parameter based
on the top 5 relevant features. GE-i equation is generated as
in (2), significantly different between glaucoma and normal.

GE − i

= w1 ∗ fv_Convex Hull Area

+w2 ∗ star_Fix Conn Length+ w3 ∗ star_AvgFC

+w4 ∗ Dot_Avg Miss+ w5 ∗ fv_Fix Conn Length+ b0.

(2)

The mean and standard deviation of GE-i value of glau-
coma and normal is shown in the Table 9. There is significant
difference between glaucoma and normal in GE-i value. The
box plot showed the distribution of GE-i of glaucoma and
normal in the figure 12.

V. DISCUSSION
The Gaze Exploration-index (GE-i) Explainable Detection
Model comprised data acquisition, estimation of performance
and eye gaze parameters, explainable detection model, and
generation of screening index. The visual exploration tasks
were displayed on the screen to understand the exploratory
eyemovement patterns to compensate for the visual field loss.
The feature extraction process included estimating basic eye
gaze parameters using open source software and estimating
derived parameters using customized software in the pro-
posed model. The explainable detection model determined
the relevant features for predicting glaucoma and generated
a screening index on gaze exploration.

During visual exploration tasks, glaucoma participants
showed a slower response in search tasks because of longer
fixation duration. Simple dot task is a short trial time task, and
hence the difference in the performance between glaucoma
and normal is enormous. Nevertheless, glaucoma participants
performed the task-oriented activity better than the free-
viewing task. The decrease in the performance is due to
longer fixation duration, and they did not respond within the
trial time. However, the free-viewing task’s restriction in eye
movement behavior was explicitly seen due to less fixation
count and shorter fixation connection length.

Analysis of EXGP parameters also enlightens compen-
satory eye gaze patterns among different glaucoma sub-
groups. Statistical measures showed that age reduced the
effort of ignoring distractors and affected the performance
of glaucoma participants during the simple-dot task and
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FIGURE 11. Comparison of fusion maps generated for different tasks.

FIGURE 12. Box plot of GE-i value.

visual search task. Young glaucoma participants improved
the search performance by coping with the difficulty by
improving the frequency of fixation and its duration, neglect-
ing their limitation in the field of view. Mild glaucoma or
early-stage glaucoma patients showedmany saccades to com-
pensate for the visual field loss. The exploratory gaze patterns
are involved in both free-viewing and visual search tasks.
Elderly glaucoma participants show restricted eye movement
behavior compared to middle-aged and young glaucoma
participants.

Subgroup analysis of EXGP features highlights that visual
exploration is worsened due to the impact of age rather than

severity. Restriction or convex hull area is positively corre-
lated with the visual field index or the indicator of severity
grade.

The pertinent features of each task was visualized onto
fusion maps. Gaze Fusion Map (GFM) highlighted the
monocular ability of search performance. The binocular per-
formance of all glaucoma subgroups was improved due to
compensatory eye movement patterns, which can be seen
in the Gaze Fusion Reaction Time (GFRT) map. The visual
processing was reduced during the free-viewing task which
is depicted in Gaze Convex Hull Map (GCHM).

All EXGP features are initially fed to the deep learning
model, and the performance is tuned based on the input
of relevant features. The relevant features to discriminate
between glaucoma and normal are present in different visual
exploration tasks. In simple image-viewing tasks, glaucoma
patients occupied their fixations in a limited field of view,
and during task-oriented activity, they utilized compensatory
eye movements in the form of more number of fixations and
increased fixation connection length. All these features were
dependent on each other and contributed to the detection of
glaucoma.

A. TRUE CASE: NORMAL PREDICTION
Figure 13 (a) and 14 (a) showed the contribution table and
plot of the top relevant EXGP features of a normal participant,
Sub_44 respectively. The normal participant showed a large
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FIGURE 13. Contribution table of relevant features towards the prediction.

number of fixations in performing visual search tasks and
free-viewing tasks and the average miss is less in the simple-
dot task. FC in the free-viewing task showed a positive impact
on the model.

B. FALSE PREDICTION AS GLAUCOMA
Figure 13 (b) and 14 (b) showed the contribution table and
plot of the top relevant EXGP features of a normal participant,
Sub_64 towards the final prediction. The participant is the
middle-age normal group. The convex hull area parameter
during the free-viewing task is less than the mean value
of glaucoma. The fixation connection length during visual
search and free-viewing tasks is shorter than that of glau-
coma participants. Hence the GE-i Explainable Detection
model has misclassified Sub_64 participant as a glaucoma
participant.

C. FALSE PREDICTION AS NORMAL
Figure 13 (c) and 14 (c) showed the contribution table and plot
of the top relevant EXGP features of a glaucoma participant,

Sub_45 towards the final prediction. The severity of Sub_45
participant was severe in one eye and normal in another
eye and belonged to the young age group. The explainable
detection model misclassified the glaucoma participant as
normal because the convex hull area is larger than the mean
value of normal and fixation connection length in case both
visual search and free-viewing task are longer, similar to
normal. Since only one eye is affected with severe glaucoma
and belonged to the young age group, the participant used
compensatory eye movement patterns and showed more fix-
ation count to find the target. Convex hull area also showed
that they utilized a large portion of the screen to explore the
images.

D. TRUE CASE: GLAUCOMA PREDICTION
Figure 13 (d) and 14 (d) showed the contribution table and
plot of the top relevant EXGP features of a glaucoma par-
ticipant, Sub_75 towards the final prediction. The severity of
Sub_75 participant was severe on both eyes and belonged to
themiddle age group. The value of relevant features shown by
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FIGURE 14. Contribution plot of relevant features towards the prediction.

Sub_75 are less than the mean value computed for glaucoma,
and hence the features positively impact the model and are
correctly predicted as glaucoma.

Young age group participants with no glaucoma condition
in one of the eyes showed compensatory eye movements with
more fixation counts in their defected visual field area.

In some previous works, Glaucoma Risk Index (GRI) was
formulated [37]–[40], [41] based on clinical measures calcu-
lated on structural fundus images. The proposed work Gaze
Exploration - index (GE-i) Explainable Detection Model is
different from the previous works in the aspect of eye move-
ment measures while viewing any visual exploration tasks.
The proposed system focused on how the glaucoma group
utilized the field of view in performing day-to-day tasks. GE-i
is formulated based on the weights applied on the relevant
features. The relevant features are taken based on the SHapley
Additive exPlanations (SHAP) and the weights are generated
using regression. The GE-i screening index discriminated
glaucoma and normal based on the visual exploration on day-
to-day tasks.

The system used a sequential deep learning model, and
a dashboard is created to understand the model’s explain-
ability and generate a screening index to understand visual
exploration of glaucoma. However, since the exploratory
gaze patterns were performed by young and early-stage glau-
coma participants during visual search, there is a significant
chance of a late diagnosis of disease. Therefore, the proposed
system can probably be extended to modify the screening
index to identify such subgroups and advise them for further
diagnosis.

Thus the answers to the research questions are:
1) Are exploratory gaze patterns of the same participant

reflect in all tasks? No, the same participant did
not show the same exploratory gaze pattern in all
tasks. Visual exploration is performed more dur-
ing goal-oriented activity than the free-viewing task.
Young glaucoma and early-stage glaucoma partic-
ipants showed more fixations and longer fixation
duration in goal-oriented activity or visual search,
ignoring the visual field defect. Age is also a
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critical factor in the involvement of exploratory gaze
patterns.

2) What are the relevant eye gaze measures and per-
formance measures that contribute the prediction of
glaucoma?
The relevant features to design the detection model
are convex hull area and fixation count. This depicts
restriction in the field of view. Fixation connection
length in any task reveals gaze orientation of finding
the target or salient features. Performance measure of
simple dot task correctly discriminates between the
defected and less defected eye.

3) Can we formulate screening index that discriminates
glaucoma and normal?
Yes, finally the detection model generated screening
index based on the weights applied to different 5 fea-
tures. Convex hull area has given more weight than
other relevant features. The exploration index signifi-
cantly discriminates between glaucoma and normal.

VI. CONCLUSION
The proposed system Gaze Exploration - index (GE-i) is
Computer-Aided Detection (CADe)model for glaucoma. It is
a blend of screening index for visual exploration and visual-
ization of the influence of severity and age in eye movement
behavior. The explainability and estimation of exploratory
gaze patterns depict that exploratory gaze patterns have
pertained in visual search than simple image viewing. The
devised screening index discriminates glaucoma and normal
and helps to utilize the knowledge of compensatory eye gaze
patterns to cease the decline in their quality of life.
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