
Received 25 May 2022, accepted 23 June 2022, date of publication 7 July 2022, date of current version 15 July 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3189021

Multiagent Reinforcement Learning for Strategic
Decision Making and Control in Robotic Soccer
Through Self-Play
BRUNO BRANDÃO 1, TELMA WOERLE DE LIMA1, ANDERSON SOARES1,
LUCKECIANO MELO1, AND MARCOS R. O. A. MAXIMO 2
1Deep Learning Brazil, Federal University of Goiás (UFG), Goiânia, Goiás 74690-900, Brazil
2Autonomous Computational Systems Laboratory (LAB-SCA), Computer Science Division, Aeronautics Institute of Technology, São José dos Campos, São
Paulo 12228-900, Brazil

Corresponding author: Bruno Brandão (brunobrandao1523@gmail.com)

This work was supported in part by the Brazilian Coordination for the Improvement of Higher Education Personnel (CAPES) under Grant
88882.385785/2019-01.

ABSTRACT Reinforcement Learning (RL) has shown promising performance in environments for both
robotic control and strategic decision making. However, they are usually treated as separate problems with
different objectives. In this work, we propose the use of Reinforcement Learning to solve both control and
strategic problems as one, in a multi-agent robotic soccer environment. We use the IEEE Very Small Size
Soccer (VSSS) challenge from the Latin American Robotics Competition (LARC) as a study case. In the
VSSS, two autonomous teams of wheeled robots compete by pushing the ball around to score goals. To unify
both control and strategy problems, our approach gives full control of the actuators’ speed to the RL algorithm
whilst keeping the broader objective of winning the game. Our method achieves win rates as high as 93%
against hand-coded heuristic strategies. In this work we contribute by developing an RL agent that can learn
from self-play and generalize against new opponents. Our methodology uses multi-agent Reinforcement
Learning with self-play in order to build up the knowledge for complex tasks. We also developed a simulated
environment for the robotic soccer game.

INDEX TERMS Decision making, multi-agent, reinforcement learning, self-play, strategy.

I. INTRODUCTION
Robots are primarily used for automation since they can be
designed specifically for each task, and in some cases are
cheaper, and safer than human workers. As the use of robots
become more widespread, the problem of decision-making
and control becomes more relevant.

Reinforcement Learning is capable of solving high-level
decision-making tasks. Studies prove that it can surpass
humans in strategy games such as Chess, GO, ATARI,
StarCraft2,1 and DOTA22 [1]–[4]. These games are famous

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhan Bu .
1StarCraft 2 is a real time strategy game, developed by Blizzard Entertain-

ment Inc. More information can be found at https://starcraft2.com/en-us/
2DOTA2 is a multiplayer battle arena game developed by Valve Corpora-

tion. More information can be found at http://blog.dota2.com/?l=english

for demanding that players plan ahead and consider different
outcomes. In the special cases of StarCraft2 and DOTA2,
they even require different levels of decision-making called
macro and micro management [3]–[5]. RL is also capable of
solving several robotic control tasks. Those include walking
on uneven terrain using humanoids and ant-like agents [6],
stabilizing drone flights [7], and dexterity manipulation using
robotic arms and hands [8]. These control tasks require the
algorithm to apply either speed or torque to robot actu-
ators without intermediate systems to accomplish specific
behaviors.

To further test the capabilities of Reinforcement Learning,
some researchers show that it can also solve multi-agent
environments [5], [9]–[11]. In these problems, the algorithm
interacts with an environment that contains other learners.
These interactions lead to the emergence of both cooperative
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and competitive behaviors [9], [12]. Some applications of
Multi-Agent Reinforcement Learning (MARL) include man-
aging smart grids [13], unmanned aerial vehicles [14], and
micro-managing units in strategy games [5].

In this work, we demonstrate that RL can solve both
control and strategy problems simultaneously. We make use
of a robotic soccer environment to tackle both problems
at once. More specifically, we use the IEEE Very Small
Size Soccer category from the Latin American Robotics
Competition3 [15]. The robotic soccer is a multi-agent envi-
ronment where teams of robots–wheeled robots in the case
of the VSSS category– attempt to score goals on each other.
Winning the game demands accurate robot control to accom-
plish behaviors such as pursuing the ball and blocking attacks.
The environment also demands strategic decision-making to
coordinate players, overcome the opponent team, and score
goals.

There have been other attempts to solve robotic soccer
games with Reinforcement Learning [16]–[18]. However,
they pursue either the control problem or the strategy prob-
lem [19], [20]. Both problems are often looked at separately
because they form a hierarchy. Decisions in strategy can
generate either targets or behaviors that will be executed by
controllers [19]–[21]. This separation can be useful, as it
makes the search space smaller, and thus the optimization
process shorter. Nonetheless, it limits the available behaviors
agents can perform as it bounds their decisions to a single
level of the hierarchy. It is worth remembering that the main
objective of robotic soccer is not only to optimize control or
find suitable strategies, it is to do both in order to effectively
win the game. Thus this separation comes from practicality
rather than efficiency.

Approaches that focus on control commonly strive to solve
a single task such as passing, or kicking [22], [23]. Mean-
while, strategy-focused approaches often make use of RL for
high-level decision making. That includes deciding among a
discrete set of actions for robots, choosing a specific strat-
egy, or selecting the best angle to kick [16]–[18]. In this
work, we give the artificial neural network full control of
the actuators from a single robot, which require continuous
actions to determine their speed. In our design of this multi-
agent environment, all robots (i.e. agents) of the same team
share the same network. In other words, the decision-making
policy is the same for all teammates. It reads a single state
and acts on a single robot, however, we run it once for each
player in a single timestep. This configuration allows us to
collect more experiences from a single VSSS match than we
would on a single-agent configuration or multiple agents with
different policies. Essentially, for every situation, our training
algorithm uses experiences from all players on the team to
learn. Our approach also saves computational resources by
allowing us to store a single policy model that is used on all
agents instead of multiple different models. Since our actions

3The Latin American Robotics Competition’s website is http://www.
cbrobotica.org/

are designed as velocities for actuators, the task demands
both control proficiency for achieving complex behaviors and
strategic decision making for coordinating multiple players
to win the game. We use the state of the art Proximal Policy
Optimization (PPO) training algorithm due to its higher sam-
ple efficiency and performance on continuous environments
compared to other on-policy methods [6], [24]. The PPO
algorithm is also able to solve similar tasks in control, soccer,
and multi-agent environments [9], [22]. We also perform
self-play [25] during training and show that this creates an
auto-curriculum learningwhere the difficulty of the adversary
increases as learning progresses. It also allows for the result-
ing model to generalize against previously unseen opponents.

To validate our work we use heuristic strategies and control
developed by the Brazilian team Pequi Mecânico4 [19], [20].
The team is an avid participant of the IEEE Very Small
Size Soccer category for over ten years. After training, our
model was able to surpass the PequiMecânico’s best heuristic
strategy and achieve a winning rate of 83% against it.

Our main contributions in this paper are:

• An agent that can learn from self-play and generalize
against previously unseen opponents;

• A simulated environment of the robotic soccer game;
• An analysis of the learning process to show how
self-play is essential for learning in this environment;

• A unified approach to control and strategic decision
making.

The remainder of this paper is structured as follows.
Section II presents a theoretical background. Section IV dis-
cusses related works. Section III describes the VSSS category
in more detail. Section V depicts the simulated environ-
ment. Section VI contains the problemmodeling. Section VII
details our methodology, including the training algorithm and
evaluation methods. Section VIII displays and discusses the
results from experiments. Finally, section IX holds conclud-
ing remarks.

II. BACKGROUND
A. MULTIAGENT REINFORCEMENT LEARNING
Reinforcement Learning problems are mathematically for-
mulated as Markov Decision Processes (MDP) [26, pp. 47].
In cases where the agent does not have the complete infor-
mation about the state of the environment, this formulation
can be extended to Partially Observable Markov Decision
Processes (POMDP) [27, pp. 12], [26, pp. 197]. A POMDP
is represented by the following tuple F = 〈A,S,Z,R,P〉.
An agent observes the environment through s ∈ S and
chooses an action a ∈ A. The action triggers a change in the
true state of the environment z ∈ Z according to a probability
function P(z′|z, a) : Z × Z × A → [0, 1]. The new state
also implies in a new observation s′ ∈ S. Afterwards, the
agent receives a reward r according to the function R(z, a) :

4Pequi Mecânico is a Brazilian robotics lab from Federal Univer-
sity of Goiás; their publicly available code releases can be found at
https://github.com/PEQUI-MEC
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Z ×A→ R. Each transition can be represented as a tuple of
an observation, an action, a reward, and the next observation
(s, a, r, s′). The goal of the RL algorithm is to find the policy
π that maximizes the return:

Rt =
∞∑
i=0

γ irt+i, (1)

which sums rewards r across time discounted by γ ∈ [0, 1),
via interactions between the policy and the environment.

In Multi-Agent Reinforcement Learning, sequential
decision-making problems can be formalized as Decen-
tralized Partially Observable Markov Decision Processes
(Dec-POMDP). These processes are similar to regular
POMDPs, except each agent will have its own observation,
action, and reward. This multiplicity means that instead of a
single observation, the environment will provide a set of joint
observations, likewise for actions and rewards. Dec-POMDPs
can be represented by a tuple G = 〈D,A,S,Z,R,P〉 [27].
At each timestep t a set of agents d ∈ D ≡ {1, . . . , n} process
their each individual observations within their observation
space sd ∈ S . The combination of these observations result
in the set of joint observations s ∈ O ≡ Sn. Afterwards,
each agent processes observations and chooses actions within
their action space, ad ∈ A, according to its own decision
policy πd (a|s). A policy πd denotes the probability of agent
d choosing action a given observation s. These actions com-
bined form unified actions u ∈ U ≡ An which trigger a
change in the true state of the environment z ∈ Z according
to the probability function P(z′|z,u) : Z × Z × U→ [0, 1].
The sets of unified actions u and observations s are vectors
whose elements are individual actions and observations of
each agent. After changing the state of the environment,
the agents receive rewards separately, though according to
the same function R(z,u) : Z × U → R. The vector
with all the agents’ rewards is denominated r. Therefore,
each interaction, or transition, between the agents and the
environment in MARL is denoted by a vector form of the
regular RL transition tuple (s,u, r, s′).

B. PROXIMAL POLICY OPTIMIZATION
Policies in Reinforcement learning can be parameterized [26,
pp. 321]. A parameterized policy performs transformations
on the state information in order to output action probabilities.
The parameter vector is often referred to as θ , and a policy
parameterized by θ is represented as πθ . Policies can be
parameterized in more than one way as long as the probabil-
ities πθ (a|s) are differentiable with respect to the parameters
θ [26, pp. 322]. In recent RL development, most applications
make use of Artificial Neural Networks (ANN) to compute
action probabilities [3], [4], [6], [28], [29]. When this is the
case, the parameters θ correspond to the ANNweights across
all its neurons.

Policy gradient algorithms for Reinforcement Learning
aim to maximize the return in (1) with respect to the param-
eters θ of a parameterized stochastic policy πθ [26, pp. 321].

However, these type of algorithms can be prone to high vari-
ance, where a policy’s action probabilities change abruptly
between updates [6]. In an attempt to stabilize policy updates,
Schulman et al. propose the use of trust regions that do not
allow for a policy to diverge beyond a certain threshold from
its former distribution [24], [30]. The Proximal Policy Opti-
mization algorithm implements these constraints by clipping
its loss function [24], which can be expressed as

L(θ ) = Et
[
πθ (at |st )
πθold (at |st )

Ât

]
= Et

[
rt (θ )Ât

]
. (2)

The loss function is composed of a ratio rt (θ ) and an
advantage estimation Ât . The ratio is computed between the
probability of action at from the current policy πθ and the
probability of the same action from πθold , the policy before
the update [24]. The advantage is calculated via (3) and (4),
also called Generalized Advantage Estimation (GAE) [31].
Its purpose is to take the return Rt into account whilst using
an estimated value of the state V (s) as a baseline.

At = δt + (γ λ)δt+1 + (γ λ)2δt+2 + . . .+ (γ λ)T−(t+1)δT−t ,

(3)

δt = rt+1 + γVφ(st+1)− Vφ(st ), (4)

where T is the time length to be considered. T does not need
to match an entire episode, since (4) allows for bootstrapping
with a value function Vφ(s) parameterized by φ. γ still acts
as a discount factor for future rewards, however, λ ∈ [0, 1]
regulates between relyingmore on the value estimationVφ(s),
when λ→ 0, or relying more on the actual rewards received
at each step, when λ→ 1 [31].

The loss in (2) is then clipped according to (5). Where
min(x, y) takes the minimum between the two arguments
separated by comma, and clip(x, y, z) clips the value of the
first argument into the bound delimited by the lower bound y
and upper bound z. The clipping constant ε ∈ (0, 1) defines
how far πθ is allowed to diverge from πθold [24].

LC (θ ) = Et
[
min(rt (θ )Ât , clip(rt (θ ), 1− ε, 1+ ε)Ât )

]
. (5)

The PPO algorithmic flow takes turns between collecting
trajectories via interactions with the environment and making
policy updates [24]. The clipping method allows for a series
of subsequent updates, also called epochs, to happen with the
same batch of data for a greater sample efficiency. Therefore,
the algorithm can run multiple epochs on the same batch
before discarding it and collecting new data. Heess et al.
showed that PPO can alsomake use of distributed training [6].
That means one can instantiate multiple environments and
acquire data from all of them in parallel [28]. Not only this
process can speed up data collection, but it also allows for
more diverse interactions to be batched together, which has
shown to improve training stability [6], [28].

III. THE VERY SMALL SIZE SOCCER CATEGORY
The VSSS category proposes a soccer game between two
teams of three robots each. The robots must act autonomously
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FIGURE 1. Diagram of the Very Small Size Soccer category processing
flow: 1) Camera captures image; 2) Information is extracted from the
image, such as positions and orientations of all objects; 3) Conditional
algorithm chooses target positions for the robots; 4) Control system
computes speed for each wheel; 5) Robots receive the target speeds via
radio.

though they are allowed to process information on hard-
ware not physically attached to them. Other than complying
with a size limit, the teams are free to define their robot’s
structure and algorithms for both control and strategic
decision-making. This freedom demands that those same
algorithms are capable of generalizing against previously
unseen strategies in order to beat them.

Fig. 1 shows the setup for a match. A camera is placed
above the field for each team to capture images. One
computer for each team may process the pictures, make
calculations, and communicate with the robots. In order to
facilitate the feature extraction process, the teams must have
predefined colored tags on top of each robot, identifying both
the team and the player. Fig. 1 also presents the flow of infor-
mation processing used by the Pequi Mecânico team [19].

The decision process depicted in Fig. 1 can be formulated
as a POMDP. We can regard the decision-making agent as a
union between steps 2, 3, and 4 in Fig. 1. The image captured
by the camera is the observation s ∈ S and the desired
speed for each wheel of all three robots is an action a ∈ A.
The true state of the environment z ∈ Z is composed by
all the information regarding positions, orientations, velocity,
forces, and directions of all components in the field, and the
overall probabilities of state transitions P(z′|z, a) are dictated
by the world’s physics.

The formulation of the problem as a POMDP may vary
depending on the focus of the application or research.
Control-focused approaches can use target positions and actu-
ator angles of a single robot as observations and velocities as
actions, thus bypassing strategic decision-making. Strategy-
focused approaches on the other hand may use current posi-
tions and orientations as observations and target positions as
actions, thus omitting the image processing and control steps.

To formulate the robotic soccer problem as a Dec-POMDP
we can first define each robot as an agent d ∈ D ≡

{1, . . . , n} where n = 3. Each agent will have its own
policy πd . An agent’s policy processes its observation sd

and outputs its action ad . Observations can be different for
each agent with local or relative information, or they can
all process the same global view of the environment. The
joint observation s is a vector of the observations for each
agent [s1, s2, s3]. Similarly, the joint action is the vector
of actions for each agent [a1, a2, a3]. Once again, the actions
depend on the approach, only this time they are focused on a
single robot. Thus if the actions are actuator speeds, or target
positions, they will refer to a single robot. The environment
also responds with a joint reward r = [r1, r2, r3] which
can be some form of individual scoring for each agent or
a shared reward when the team scores a goal. The steps in
Fig. 1 do not necessarily change, since the agent’s processing
can happen on outside hardware. Though it is important to
say that each agent would have its own information flow. Our
formulation of the robotic soccer as a Dec-POMDP is detailed
in section VI.

IV. RELATED WORK
A. ROBOTIC SOCCER
The robotic soccer environment, as a sequential decision-
making problem, has multiple variations. It has been formu-
lated as a completely virtual environment with and without
robotics [18], [32], or as real environments that escalate on
difficulty of robot control and coordination from wheeled
robots (i.e. the VSSS category) to humanoids [15], [33], [34].
There have been studies that use Reinforcement Learning in
most variations of the robotic soccer game [17], [18], [23],
[32], [35]. However, as stated before, they either focus on the
control part or the strategy part of the problem.

1) CONTROL-FOCUSED APPROACHES
Control-focused approaches often optimize a subsection
of the game. Sheikhlar and Fakharian use RL to make
an adaptive controller that improves path following in an
omni-directional robot [35]. Melo makes use of RL to control
a simulated humanoid robot’s joints to effectively kick the
ball [23]. These tasks will unlikely single-handedly win the
game, though they are definitely crucial parts of the problem.
They are also by no means easy or simple, which helps us
scope the capabilities of Reinforcement Learning.

2) STRATEGY-FOCUSED APPROACHES
Strategy-focused approaches have more in common with
our work because of their ultimate goal. Strategic
decision-making can be considered a high-level process,
as opposed to control tasks that perform on actuators [7].
Thus, their target is often to win the game, or score goals.
Shi et al. use RL as a method for selecting predefined strate-
gies [17]. They map the game into a finite set of situations
based on the ball’s position and match them to a set of three
predefined strategies. Liu et al. uses RL in a similar approach
to ours as their algorithm also controls simulated agents in
an effort to win the game [10]. They use population-based
training where multiple learners train together. Though their
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approach is similar to ours, their environment was not meant
to depict real situations [10].

Other forms of strategic decision-making act by micro
managing each agent. Instead of controlling their actuators,
these approaches choose from a predefined set of actions for
each agent individually [16], [18], [32], [36]. Xuanyu et al.
and Zhao et al. both use the Sarsa algorithm to choose dis-
crete actions for optimizing a task called Keepaway [32],
[36]. The purpose of the task is to maintain ball possession
whilst avoiding opponents to improve coordination. In their
work, the algorithm chose among predefined actions such
as passing, dribbling, and kicking [32], [36]. Fahami et al.
uses RL to choose the best angle at which to kick in order to
score [18]. They also define a finite set of actions representing
possible angles for the algorithm to choose from. A Brazilian
team called RoboCin used Deep Reinforcement Learning
techniques to train a single robotic agent in a simulation of
the VSSS category [16]. Similar to other studies, they used
predefined actions for moving the robot. Since the game has
multiple agents, the same policy was deployed on all robots
for execution [16]. However, it is important to notice that
other agents’ behavior was not considered during training.

As we can see, most of the approaches focused on strate-
gic decision-making have discrete action spaces whilst the
control-focused ones use continuous action spaces. It is well
established that continuous spaces are high-dimensional and
take longer to explore [37]. The idea behind the use of contin-
uous actions in control tasks is that they can be encapsulated
without simulating a whole game or entire teams, and thus
their state space is also smaller [22], [23]. For strategy tasks,
it makes sense to discretize both action and state spaces to
make the optimization process shorter and comply to algorith-
mic restrictions [16], [18], [32]. However, by doing so, one
limits the possible combinations of state-action pairs, thus
constraining the solutions an RL algorithm can provide. It has
already been demonstrated that giving full control of joint
motion in RL training can provide solutions and outcomes
that the research team did not foresee [6].

B. MULTIAGENT REINFORCEMENT LEARNING
Multi-agent Reinforcement Learning allows for a series of
combinations and different approaches since there are mul-
tiple learners interacting with the same environment. Agents
can each learn a different behavior [11]–[13] or share param-
eters and learn the same policy together [5], [9]. Shao et al.
use MARL to solve a StarCraft micro management problem
which requires simultaneous commands for multiple in-game
units [5]. They use a single neural network to control all
the agents separately though simultaneously, meaning the
agents share the same policy. Since each one has a different
perspective of the environment, they do not act equally [5],
[9]. Sharing parameters can save memory and create circum-
stances for a better generalization since the network learns
from all the agents. It also allows for an increase in the
amount and diversity of data collected from a single instance
of the environment.

In some applications agents are able to communicate with
each other [13]. It can be useful to allow agents to share
individual information. However, this is not necessary when
their information comes from a centralized source, which
is the case for the VSSS category. Centralization in MARL
can be useful during training, though not always desirable
during execution [11]. Sharing policy parameters can be a
form of centralization as it allows for training using expe-
riences from all agents. Other forms of centralization use
mixing networks as an attempt to centralize only the training
process whilst maintaining each agent with their own learned
policy [11], [38].

Shao et al. along with Muzio in his control tasks, use a
technique called curriculum learning [5], [22]. This technique
places the learner on tasks with increasing levels of difficulty
which helps build up the knowledge towards more complex
tasks [39]. Curriculum can also be achieved in competitive
multi-agent games. Baker et al. achieve curriculum learn-
ing through another technique called self-play when solv-
ing a hide and seek game [9]. In this scenario agents play
against themselves, or different versions of their policies.
This method has proven to be useful for games that do
not have a default adversary and has shown to be effec-
tive in complex game environments, such as Starcraft2 and
DOTA2 [3], [4]. Given that agents are theoretically always at
the same skill level, this technique can automatically create
a curriculum learning. However, it needs to be used with
caution. There are reports of cyclic behaviors emerging when
the agent learns to beat its most recent versions, but forgets
how to counteract older strategies [40]. Also, in some envi-
ronments with two competing learning agents, Bansal et al.
show that when one starts winning, the other becomes unable
to learn whilst always being bested by its opponent [41].

V. SIMULATED ENVIRONMENT
Since RL algorithms require a lot of timesteps to converge,
training on real robots is unfeasible. Therefore, we resorted
to a simulated environment. To simulate the robotic soccer
environment, we require a physics simulator. We chose the
MuJoCo physics engine, designed for fast and accurate robot
simulation [42]. The simulation was constructed following
the official rules of the VSSS category [15]. We also coded
into the simulator a virtual referee to incorporate situations
where a team commits a foul and the robots have to be rear-
ranged. The two main situations that require rearrangement
are for a penalty kick and a free ball. The penalty kick occurs
when two players of the defending team enter the large area
in front of the goal along with the ball, which grants the
attacking team a penalty kick. A free ball occurs when the ball
has not moved for ten seconds. The measurements of the field
and its markings can be seen in Fig. 2.

Since other teams’ robots were unavailable for measure-
ment, we used the Pequi Mecânico’s robots as models. There
was no need to create models of every component inside
the robot, such as controllers, radio, and battery. Therefore,
we simplified the model into fewer pieces; a central block,
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FIGURE 2. Diagram of the VSSS field measurements. PK stands for
Penalty Kick, and FB stands for Free Ball. The crosses show where the ball
starts from when a foul is committed. The gray circles represent where
the robots start from in the case of a Free Ball.

FIGURE 3. Simulated robot in MuJoCo.

TABLE 1. Dimensions for the pieces of the simulated robot.

two wheels, a top piece, and four slabs, one for each side.
Fig. 3 shows a diagram of the simulated robot pieces and in
Table 1, their measurements.

VI. MODELING
As our goal is to apply RL to strategic decision-making
and control, we aimed to replace steps three and four of
the diagram in Fig. 1. To model this problem in terms of a
Dec-POMDPwe started by defining each robot in the field as
an agent d . Each agent has its own observations sd ∈ S and
actions ad ∈ A. The observations are composed of positions
and orientations relative to the agent, and each action is a
tuple of two continuous values of speed, one value for each
wheel of the agent. Each agent will have a policy πd to make
decisions. However, instead of parameterizing each policy
individually, we have them share the same parameters θ .
All policies are parameterized by the same neural network
architecture, and share the same weights. In other words,
at each timestep t the neural model runs once for each agent,
reading its observation sd and outputting its action ad . The

combination of all three actions is the unified action u ∈
U ≡ An of that timestep. Similarly, the rewards are returned
for each individual agent rd , where the goal is for each
agent to maximize its return function (1). The agents do not
communicate or share observation information between each
other.

An agent’s policy can be trained with a set of transitions,
where a transition is represented as the tuple: (sd , ad , rd , s′d ).
Since our agents share the same parameters θ , their shared
policy can be trained with transitions acquired from all
agents. Therefore, our configuration allows us to train our
models with more experiences than with either a single agent
approach or a multi-agent approach with individual policies.
In both alternate cases each timestep would provide a single
transition for the single agent policy or for each individual
policy. Meanwhile, our configuration collects one transition
for each agent, all of which can be used to train the same
shared policy.

To maintain consistency and allow future applications,
we composed the agent’s observation sd as a function of
the Pequi Mecânico’s visual system’s output (i.e. positions
and orientations). We also added noise to the measurements
comparable to the visual system, sampled from a Normal
distribution [43]. The noises had standard deviations of
1.854e-3 m for the position along the X axis, 1.679e-3 m
for the position along the Y axis, and 3.123e-2 rad for the
orientation of players. By combining positions and orien-
tations, each agent receives the following information as
input:

• Cartesian positions of itself, allies, adversaries, and the
ball, zeroed at the center of the field.

• Sine, cosine, and arc tangent of its orientation.
• Sine, cosine, and arc tangent of the angles formed by the
line between the agent and each ally, each adversary, and
between the ball and each goal center.

• Euclidean distances between the robot and each ally,
each adversary, and the ball.

• Distance between the ball and each goal.
• Actions chosen by all ally agents in t − 1.
• Time left in episode.

To add time-sensitive information, such as direction of
movement and speed we stacked the data eight fold. The
Pequi Mecânico’s visual system processes thirty frames per
second [19]. However, we only use ten readings per second to
avoid stacking nearly identical states [2], [44]. All input data
is normalized by their respective maximum values to remain
bounded in [−1.0, 1.0].
Each agent requires two values of speed in radians per

second, one for each wheel. Therefore an action a represents
a tuple of two values. Since the real robots have limitations
in speed, we used the same limitations to define our action
space. The Pequi Mecânico’s actuators have a speed limit of
46.66 rad/s. Thus our action space is defined as A ≡ V2

:

V → [−1.0, 1.0] where we can scale a multiplying it by the
maximum speed.
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FIGURE 4. Diagram of the feed forward architecture of both policy and
value networks. The number of neurons is shown in each layer, and the
activation functions are shown on the sides.

A. NEURAL NETWORK MODEL
As explained in Section II-B the Proximal Policy Optimiza-
tion algorithm has two parameterizable functions, a policy
πθ and a value function Vφ . To approximate these functions
we used artificial neural networks. Fig. 4 shows the network
architecture in more detail. The model for πθ is called the
policy network whilst the model for Vφ is called the value
network.

In order to output continuous actions we used Beta prob-
ability distributions [29]. By definition these distributions
are bounded in [0.0, 1.0] and thus fit into our control prob-
lem where there is a maximum and minimum speed for the
wheels. Beta distributions are defined by two parameters α
and β. Our policy network outputs a pair of each. A single
(α, β) tuple defines a distribution from which a single con-
tinuous value is sampled. Therefore we end up with two
continuous values sampled from different distributions, one
for each wheel. Additionally, we add +1 to both α and β
to avoid bimodal distributions where the extreme opposites
would have high probabilities [29].

B. REWARD FUNCTION
To create a reward function for this problem, we defined
two types of reward components, specific and universal [10].
Specific components consider the agent’s aspects and behav-
iors alone whilst universal components consider the entire
team’s performance. Together, they create the reward signal;
the agent itself does not perceive the difference between them;
it only receives their linear combination.

As part of the universal reward, we used two main aspects
of the game, the proximity of the closest team member to the
ball, and the speed of the ball towards the adversary’s goal,
both represented in Figs. 5(a) and 5(b) respectively.

The speed-related reward shown in (6) and (7) is based
on the distance traveled by the ball in a single timestep
towards the goal. dist(bt,G) computes the Euclidean dis-
tance between the ball’s position b at time t and the goal’s
position G. We normalize it by a maximum of 0.14 m and
subtract a small value of 0.05 to send a negative reward signal,

or punishment, should the ball remain still, thus shifting its
point of zero reward.

v =
dist(bt−1,G)− dist(bt,G)− 0.05

0.14
(6)

rspeed = clip(v,−1.0, 1.0) (7)

The proximity term is presented in (8) and (9), and takes
into consideration only the closest team member to the ball.
The distance is calculated between each agent’s position d ∈
D at time t for a single team Da ⊂ D. As the distance value
cannot be lower than zero, this term receives only an upper
bound of 1.0 m. This choice is intended to show that there is
little difference between being 1.0 m away from the ball and
1.7 m away. The reward reflects that the agent in those cases
has little influence in the ball’s motion either way.

P = dist(Da,t ,bt ) (8)

rdist =

{
−1, if min(P) ≥ 1
−min(P), if min(P) < 1

(9)

Moving on to the specific rewards, we decided to take a
unique approach. By looking at the middle angle between
three points a, b, and c, it is possible to create a reward signal
based on the relative position of the agent. If the agent is
positioned between the ball and the goal, we consider it a
defensive position. If the agent is positioned behind the ball
with a straight line to the adversary’s goal, we consider it an
offensive position. We could not determine whether it was
better to keep an offensive or defensive positioning, therefore,
we placed both as terms of the reward signal. The equations
for computing these angles are depicted in (10) to (13).

−→
ba = a− b (10)
−→
bc = c− b (11)

ψ = arccos

( −→
ba ·
−→
bc

||
−→
ba|| × ||

−→
bc||

)
(12)

rpos =
ψ

π
− 1.0 (13)

To measure the value for an offensive position roff , we set
the points a, b, and c, as the robot in question, the ball, and
the adversary’s goal, respectively, as presented in Fig. 5(d).
Thus, the closest the angle formed at the ball is to π , the
greater is the reward signal. In this case, the angle approaches
π as the robot’s position lines up behind the ball and the goal.
Similarly, to compute the value of a defensive position (rdef ),
we set those points as the ball, the robot, and the current
team’s goal, respectively, as presented in Fig. 5(c). The angle
approaches π while the robot positions itself between the ball
and the goal. Both reward signals are normalized within the
interval [−1.0, 0.0]. It is important to notice that even though
these reward signals might seem competing, they are not. It is
possible for the agent to maximize both depending on the
situation. Should the ball be at the center of the field and the
robot directly behind it, it has simultaneously an offensive and
defensive position.
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FIGURE 5. Different reward terms that compose the final reward signal. (a) presents the distance of the closest team member to
the ball; (b) is the velocity of the ball towards the adversary goal; (c) is a defensive angle formed between the team’s goal,
a robot, and the ball; and (d) is an offensive angle, formed between a robot, the ball, and the adversary goal.

Finally, the resulting reward signal is a linear combina-
tion of all terms, both universal and agent-specific rewards.
As shown in (14), the speed receives the biggest weight
because it summarizes how fast the ball is getting to, or away
from, the objective. As the other three terms, we could not
decide which one was most important, if it was a good offen-
sive or defensive positioning, or a better control of the ball’s
motion. Therefore, we determined equal weights, so the agent
would then decide which ones to maximize. In the worst case,
depleting one to favor the other would not result in any loss
of reward.

r = 0.7 rspeed + 0.1 rdist + 0.1 roff + 0.1 rdef (14)

In addition to the continuous reward present at each step,
we also used a scoring and conceding reward of +10 and
−10 respectively, [10], [17]. In order to translate the fact that
a goal scored earlier in the episode was better than a later one,
we weighted those values by the remaining time:

g =

{
+10, if scoring
−10, if conceding,

(15)

rgoal = g
(
1+

(T − t)
T

)
. (16)

where T is the total time of an episode, and t is the current
timestep. We also used a −1.0 reward for getting a penalty
foul. In the event of a goal or foul, this reward replaced the
one in (14) and was given to all players of the team equally.

VII. METHODOLOGY
A. TRAINING ALGORITHM
Our algorithmic flow follows the distributed method for PPO.
In our case, we ran 200 instances of the simulated environ-
ment in parallel. Given that we modeled the problem as a
multi-agent problem, we were able to collect one transition
of state, action, reward and next state, per agent per environ-
ment. This means for each timestep of a single environment
we collect three different transitions, which gives us more
diversity in a batch of data. We can only use them in the
same batch because our agents share the same policy, thus
it is updated with data from all of them.

When running our policy inmultiple environments, we col-
lect a total of 128,400 experiences for our batch. After the data
is collected, we use it to update our policy and value networks
through five epochs. After five updates, the data is discarded
and the environments resume to collect new data. This pro-
cess continues until the model has collected 160 million
transitions, or experiences, in total. Other hyperparameters
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TABLE 2. Hyperparameters for training.

for the PPO algorithm, mentioned in II-B are displayed in
Table 2.
A real-life match of the VSSS category has a maximum

time of twenty minutes. However, since the robot’s positions
essentially reset after a goal, and the intent of the team is to
score more, regardless of the score, we decided to end the
match after the first goal. Also, to quickly end matches where
no team scores, the maximum time was shortened to forty
seconds.

B. SELF-PLAY
The Very Small Size Soccer category is a competitive envi-
ronment that does not have a default strategy. Therefore,
we had to define an opponent against which our policy would
train. One option would be to use the best strategy available
to us from the Pequi Mecânico team. Another option was
to use self-play since the VSSS environment is symmetric.
We executed training runs with both types of opponents, the
evaluation methods and results are presented in the following
sections.

When using self-play training, we chose to set the opponent
as an earlier version of the learning model. The adversary is
fixed, thus it does not learn or collect experiences. However,
it is noticeable that eventually the learning model would
improve beyond its opponent and overfit against it. To keep
the opponent stable, yet at the same skill level of the current
policy, we used a measurement of score that is computed
across multiple games. The score

s =
Gs − Gc

n
, (17)

measures the rate of the difference between goals scored,
as Gs, and goals conceded, as Gc, across n number of games.
Whenever the score achieved a certain threshold, we would
update the adversary to the newest version of the model.
We set the threshold for updating the opponent at 0.6, in an
attempt to require more goals scored than conceded, yet
not allowing for the learning model to overfit on a single
opponent.

C. EVALUATION
In order to evaluate a learned policy we required fixed oppo-
nents. As the VSSS environment does not provide a default
strategy for evaluation, we used the Pequi Mecânico’s heuris-
tic strategies. The Brazilian team provided two different
approaches. The VSSS-EMC code has been in development
for longer and, in 2019, placed fifth in the Latin American
Robotics Competition. The VSSS-INF code is newer and
uses a different strategy. We also added to the opponent
set, a strategy that behaves randomly. This random adversary

TABLE 3. Evaluating heuristic algorithms in one hundred matches against
a strategy that behaves randomly.

chooses the speeds of the robots’ wheels from a uniform
distribution.With a set of different opponents we can evaluate
not only the performance of a policy, but also its generaliza-
tion capabilities.

In the evaluation process the learned policy plays one
hundred matches against each of the three opponents,
VSSS-EMC, VSSS-INF, and the random strategy. These
evaluation games, apart from training matches, did not end
upon the first goal, and had a time limit of 120 seconds.
Following the rules of the VSSS category however, the game
is interrupted when the difference of goals reaches 10. This
process of running evaluation games was repeated across
multiple checkpoints during training. Each checkpoint con-
figures 50 loops of the PPO algorithm, which means, with
our specifications, 2.14 million timesteps executed.

The metrics used in the evaluation process were computed
across all one hundred games for each different opponent.
They are the following:
• Win, loss, and draw rates.
• Mean scored and conceded goals.
• The score metric from (17).

VIII. RESULTS
All experiments were done in a machine with Intel(R)
Xeon(R) CPU E5-2698 v4 @2.20GHz processors totaling
80 cores, and 528GB of RAM running Ubuntu 16.04. We did
not use any GPU resources in these experiments.

The first experiment we executed was intended to measure
the performance of both heuristic strategies provided by the
Pequi Mecânico Team.We conducted a round of one hundred
games against the random strategy for each of the heuristics.
Results are shown in Table 3. It is clear that against the
random opponent both heuristics had high win rates, goals
scored and mean score, with slightly higher values for the
VSSS-EMC.

We also conducted another round of one hundred games,
however, this time, placing the VSSS-INF and VSSS-EMC
heuristics against each other. The results are shown in
Table 4. This new round of matches confirms that the
VSSS-EMC heuristic surpasses the VSSS-INF by winning
56% of matches with a positive mean score of 0.68.

As stated before, we ran two types of training, a training
with self-play, and a training where the opponent was fixed as
the best heuristic strategy available. In light of our first exper-
iments’ results, such strategy was defined as the VSSS-EMC.
We set a maximum of 160 million transitions, or experiences,
collected for both training experiments. Since one timestep
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TABLE 4. Evaluating heuristic algorithms in one hundred matches against
each other.

of an environment provides us three different transitions (i.e.
one for each agent), this maximum can be interpreted as
53.33 million timesteps executed in total. We used Bootstrap
Confidence Intervals among five runs to acquire statistical
significance [45]. The error marks in the following result
charts show the interval where the real value lies, with 95%
confidence.

A. COMPARATIVE RESULTS
Fig. 6 shows the win rate evaluation results for both experi-
ments against only the VSSS-EMC strategy, without the other
opponents. In greenwe have the trainingwith self-play, and in
blue, the training against the VSSS-EMC. Thus the blue line
represents a model being evaluated against the same adver-
sary we used to train it. Each point in the graph represents
one hundred evaluation matches of a checkpoint during the
model’s training. Meanwhile, Fig. 7 shows the score, from
(17), of these experiments against the VSSS-EMC.

From Figs. 6 and 7 we can see that training against the
heuristic alone showed to be inadequate for the learning
process. The experienced adversary won most training and
evaluation matches. The score metric in Fig. 7 shows that the
model was even unable to defend, as it reaches the lowest
possible value of −10. At its earliest stage, the model is
mostly random. Thus the VSSS-EMC strategy would have
little trouble scoring goals and ending episodes early. By not
allowing the model to explore both action and state spaces
properly, it essentially deprived the agents of experiences for
improving. The narrow confidence intervals on the blue line
show us how the five runs had steady performances, meaning
the results are consistent among them.

On the other hand, the self-play training shows an ascend-
ing curve in both win rates and scores. The ascending
difficulties of the adversaries allowed the model to explore
different states and actions. Therefore it learns different
aspects of gameplay progressively. The self-play experi-
ments showwider confidence intervals, which indicates more
diverging values among the five executions. However, as the
ascending curve implies, we verified consistent ascending
performance across the five runs. The following subsections
explore both training configurations’ results in more detail.

B. TRAINING AGAINST VSSS-EMC
In Fig. 8, we can see evaluations regarding only the training
against the VSSS-EMC heuristic. Each line in the graph
represent a different opponent in the evaluation process.

FIGURE 6. Win rate evaluation against VSSS-EMC heuristic. The green line
shows the training with self-play. The blue line shows the training with
the VSSS-EMC as a fixed opponent.

FIGURE 7. Score against VSSS-EMC heuristic. The green line shows the
training with self-play. The blue line shows the training with the
VSSS-EMC as a fixed opponent.

The win rate measure against the random strategy in
Fig. 8(a) is a way to assess how fast the model is learning,
as it plays against a supposedly easy opponent with no data
processing whatsoever. By looking at Fig. 8(s), it is possible
to observe that the win rate did not increase; it decreased
throughout the training.We could use the draw rate as another
indication of learning. If the model is losing less, and obtain-
ing more draws, this is an indication that it is learning to
defend. However, this is not the case. As Fig. 8(b) shows,
there is no apparent change in the draw rates as well as the
loss rates in Fig. 8(c). Finally, we can use the score metric
to definitively observe if the model is conceding less goals
as training progresses. Nonetheless, Fig. 8(d) shows that the
score metric regarding all opponents have decreasing aspects.
Both measures against VSSS-INF and VSSS-EMC heuristics
achieve the lowest possible value of −10.
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FIGURE 8. Evaluation metrics for the training against the VSSS-EMC heuristic. Each line represents the values against a
different opponent. (a) Win rate; (b) draw rate; (c) loss rate; and (d) score metric. Horizontal colored lines represent the
best value achieved against each opponent, in (a) and (d) they show the highest value, and in (b) an (c) they show the
lowest values.

At sight of these results, a reasonable conclusion could
be that there is a bug, or an error in the algorithm itself
disrupting the learning process. Therefore, we compared the
mean reward of both training configurations, as shown in
Fig. 9. We can see that in both cases the reward increases
as the training progresses. This leads us to conclude that the
algorithm is actively learning, only at a slower pace.

This behavior is an example of how the design of the
problem affects the learning process. In our case, the funda-
mental control aspects of the robots, such as going forward,
backward, and turning, are the basis for creating more sophis-
ticated strategies. However, it is all bound to the ultimate
purpose of scoring goals. When playing against an experi-
enced adversary, it scores so early that there are not enough
time steps in the episode to explore the action space for even
the most basic behaviors. It is essential to remember that in
Reinforcement Learning, the model has no prior knowledge
of the problem. Thus, by not scoring goals the model does not
acquire knowledge of that state, in order to pursue it during
training.

C. TRAINING WITH SELF-PLAY
Fig. 10 shows the results of the training using self-play.
At first glance in Fig. 10(a), it is possible to see how the

FIGURE 9. The mean reward averaged over the last 100 episodes. The
blue line represents the training with self-play. The orange line represents
the training with the VSSS-EMC as a fixed opponent. Distinctive drops in
the self-play training show when the adversary was updated.

model quickly overcomes the random opponent. It achieves
near zero percent loss rate very early in training, as seen in
Fig. 10(c). Its win rate takes longer but eventually achieves
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FIGURE 10. Evaluation metrics for the training with self-play. Each line represents the values against a different opponent.
(a) Win rate, (b) draw rate, (c) loss rate, (d) score metric. Horizontal colored lines represent the best value achieved against
each opponent, in (a) and (d) they show the highest value, and in (b) an (c) they show the lowest values.

a hundred percent. It is possible to see, by the score in
Fig. 10(d), that even though it manages not to lose against
the random opponent, it still takes more time to improve its
scoring technique.

The curves representing games against the VSSS-INF and
VSSS-EMC strategies have similar forms among themselves.
As expected, themodel’s score andwin rate are higher against
the former than the latter in Fig. 10(a). Their shape indicates
that the self-play technique indeed managed to create a task
with increasing difficulty. By starting against a somewhat
random adversary, the learning agent can explore the state and
action spaces in order to acquire fundamental control aspects
and knowledge of the environment. Whenever the adversary
changes, the model transfers the knowledge to the new task,
and learns more complex aspects of gameplay in order to
defeat its new opponent. This scaling in difficulty is similar to
the one used in curriculum learning [5], and when it happens
without specific human design, it is called autocurricula [9].

The score in Fig. 10(d) shows that the model was only
able to win more matches than lose, after approximately
14.98 million timesteps against the VSSS-INF strategy, and
after 23.54million against theVSSS-EMC. Before that, it had
a distinct difficulty against the more elaborate strategies. The
stages for overcoming the heuristic algorithms can also be

seen in the draw rate curves in Fig. 10(b). They present a
notable rise in the beginning and a slow descent afterward.
This shape reflects how the model starts by losing, then
improves towards a draw, and later winning.

These curves show us that the model trained with self-play
was able to generalize its knowledge against opponent strate-
gies it has never learned against. Since it learned on games
against a past self, the VSSS-INF and VSSS-EMC strategies
are completely new to it. Nonetheless, it managed to achieve
higher win than loss rates and positive scores against all three
strategies. It is interesting to notice that these curves do not
show a clear convergence point, meaning their values could
be higher with more training time.

In order to achieve a more stable convergence point for
the self-play training, we ran the experiment for an extra
160 million transitions, totaling 320 million. The results for
this extended training can be found in Fig. 11. From the
curves against a random opponent, we can see how the model
maintained its hundred percent win rate in Fig. 11(a) while
still increasing the score measure in Fig. 11(d).

For the VSSS-INF and VSSS-EMC adversaries, it is pos-
sible to notice signs of convergence given how the win rate
increases at a slower pace. Win rates peak at 94% against
the VSSS-INF strategy and 84% against the VSSS-EMC.
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FIGURE 11. Evaluation metrics for the extended training with self-play. Each line represents the values against a different opponent.
(a) Win rate, (b) draw rate, (c) loss rate, (d) score metric. Horizontal colored lines represent the best value achieved against each
opponent, in (a) and (d) they show the highest value, and in (b) an (c) they show the lowest values.

TABLE 5. Results for the extended Self-Play training taken from the mean
of the bootstrapped values.

The loss rate decreased and achieved values as low as 6.2%.
The score measure against the heuristics kept increasing,
though at a slower pace as well. Table 5 shows the values
achieved by the end of this extended training.

D. SUBJECTIVE ANALYSIS OF BEHAVIORS
Upon watching videos of matches, we were able to notice
some interesting behaviors and patterns.5 We observed that
early in training, the agents learn to pursue the ball and
position themselves behind it. This behavior starts crudely
with robots going back and forth, attempting to catch the ball
from behind. Later on, it is possible to observe more complex
curves to catch the ball even in motion. We also recognized

5Video of the observed behaviors can be found in supplementary material.

a typical blocking behavior used by teams on the VSSS
category. Whenever the ball slides on the sides of the field,
a robot positions itself perpendicularly to the wall blocking
the passage. The standard response from the other team on
competitions is to spin the robot, throwing the ball towards
the center of the field. However, our model learned to push
forward by hammering the ball through the blockade. It starts
with one robot going back and forth. By the end of the
training, it is possible to see a coordinated hammering with
the entire team.

We perceived a distinct difficulty in our model to defend
penalty situations. Two reasons come to mind when ana-
lyzing this deficiency. The first is that there might not
have been enough penalty situations during training for
the model to properly learn to behave in them. The
other reason could regard the positioning of the robots in
such situations. We assumed that the best orientation for
defending a penalty was with the defending robot pointed
straight at the ball, similar to how the VSSS-EMC strat-
egy behaves. Thus we programmed the simulation to repo-
sition the robots this way. However, now we see that this
was a possibly harmful bias inserted into the learning
process.
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IX. CONCLUSION
In this work, we apply Reinforcement Learning into the Very
Small Size Soccer category, a robotic soccer environment.
By using multi-agent and self-play techniques, we show how
RL is capable of learning both the control and strategic
aspects of the problem.

We analyze the learning process by comparing two dif-
ferent types of training: training with self-play, and training
against Pequi Mecânico’s VSSS-EMC hand-coded heuristic.
By comparing the results, we show how self-play is essential
for learning in this environment. It builds up knowledge
by matching the learning model’s skill as an adversary and
allowing exploration.

Themodel trainedwith self-playwas able to generalize and
defeat strategies it had never played against. It managed to
win against the Pequi Mecânico’s best strategy with an 84%
win rate. Meanwhile, the hand-coded heuristic used as an
experienced adversary, did not allow the model to explore
the state-space and develop new behaviors promptly. The
results suggest that with enough training time, the algorithm
may indeed learn by training against this heuristic. However,
assessing how much time it would take is unfeasible with the
computational power available.

Our unified approach for both control and strategic deci-
sion making is promising as it manages to overcome Pequi
Mecanico’s hierarchic solutions in the simulated environ-
ment. This can be concluded from the final winning rates
of our model against the Pequi Mecanico’s strategies. It also
confirms our hypothesis that Reinforcement Learning is
indeed capable of learning these two problems as one.

This approach gives room for a series of possible future
works. The most important one being the deployment of
the model on real robots. As much as we added elements
to approximate our simulation to a real scenario, it might
require some form of fine-tuning to make the sim-to-real
transfer. We also believe that training could be improved
to save time. By using a technique called Imitation Learn-
ing [46], we could create a model that firstly mimics Pequi
Mecânico’s heuristic behavior and then fine-tunes the model
using RL with self-play. Applying this technique would even
generate further analysis on how the imitated heuristic affects
the final behavior.
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