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ABSTRACT The expansion of autonomous driving operations requires the research and development
of accurate and reliable self-localization approaches. These include visual odometry methods, in which
accuracy is potentially superior to GNSS-based techniques while also working in signal-denied areas. This
paper presents an in-depth review of state-of-the-art visual and point cloud odometry methods, along with
a direct performance comparison of some of these techniques in the autonomous driving context. The
evaluated methods include camera, LiDAR, and multi-modal approaches, featuring knowledge and learning-
based algorithms, which are compared from a common perspective. This set is subject to a series of tests
on road driving public datasets, from which the performance of these techniques is benchmarked and
quantitatively measured. Furthermore, we closely discuss their effectiveness against challenging conditions
such as pronounced lighting variations, open spaces, and the presence of dynamic objects in the scene. The
research demonstrates increased accuracy in point cloud-based methods by surpassing visual techniques
by roughly 33.14% in trajectory error. This survey also identifies a performance stagnation in state-of-the-
art methodologies, especially in complex conditions. We also examine how multi-modal architectures can
circumvent individual sensor limitations. This aligns with the benchmarking results, where the multi-modal
algorithms exhibit greater consistency across all scenarios, outperforming the best LiDAR method
(CT-ICP) by 5.68% in translational drift. Additionally, we address how current AI advances constitute a
way to overcome the current development plateau.

INDEX TERMS Visual odometry, point cloud odometry, multi-modal odometry, ego-motion, autonomous
driving, benchmark.

I. INTRODUCTION
In the last decade, autonomous driving has been a topic
involved in much technical and scientific research. Its numer-
ous benefits, such as increased passenger safety, comfort
and convenience, better traffic flow, crewless transport, and
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reduced fuel consumption, attract investment from large
manufacturers responsible for technological advances in
autonomous vehicles. For any autonomous mobile agent,
the ability to self-locate is essential in every navigation
task. Although GNSS (Global Navigation Satellite System)
receivers are usually the primary source of self-localization
in modern vehicles, mass-market devices provide levels of
accuracy and reliability well below those required for use
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in autonomous vehicles. For this reason, autonomous mobile
agents may only loosely depend on satellite data because
of the uncertainty of positioning error, signal delays, and
quality-of-service issues [1]. This problem further aggravates
in urban scenarios due to limited satellite visibility, multipath
effect, interferences, and other impairments [1]. All these
limitations are compensated by drivers’ own visual percep-
tion capabilities. In the same way, autonomous cars can be
equipped with sensors that provide a similar level of pre-
cise relative localization when utilized with proper odometry
techniques.

Odometry can be defined as the use of local sensors’ data
to estimate an agent’s change in pose over time, given a
particular starting point. Usually, these methods try to recover
the position and orientation of the agent by relying on sen-
sors such as wheel encoders, RAdio Detection And Ranging
(RADAR), Inertial Measurement Units (IMUs), cameras, and
Light Detection And Ranging (LiDAR), which are becoming
more prevalent in modern vehicles. It is also important to
acknowledge that these types are not restrictive, as odome-
try methods can be multi-modal, i.e., different sensors can
be used together by a single algorithm. Visual and point
cloud-based odometry are emerging as critical methodolo-
gies, as the use of cameras and LiDARs is becoming more
prevalent in modern vehicles. Unlike GNSS, these sensors
do not require external signals to operate. Furthermore, these
techniques are much more robust than wheel odometry and
easily complemented by IMUs, or GPS [2].

As the demand from government agencies for driver
assistance and autonomous safety features increases, the
research in related areas of autonomous driving prolifer-
ates. Odometry, which takes part in the perception field,
is critical to developing such systems. This research pro-
vides a general overview of visual, point cloud-based, and
multi-modal odometry and compares these categories to a
common ground, while considering practical results obtained
in the exact same conditions. Furthermore, the rise in Deep
Learning (DL) techniques creates the necessity to assess
their current state of development in regard to conventional
approaches. Another motivation behind this work involved
creating an unbiased benchmark of state-of-the-art visual,
point cloud-based, and multi-modal approaches using a
well-known dataset (KITTI-360 [3]). The benchmark tests
different algorithms in challenging situations to validate the
reviewed techniques’ strengths and limitations. This doc-
ument also discusses some current issues that could help
researchers surpass common visual odometry limitations,
such as harsh weather conditions, computational power con-
straints, and the presence of dynamic objects.

The main contributions of this surveying and benchmark-
ing document are:

• Categorization and theoretical discussion of relevant
and promising works in visual odometry, from feature
and appearance-based techniques to recent works that
leverage the power of Deep Learning; in point cloud-

based odometry, including knowledge and learning-
based approaches; and in multi-modal odometry, while
also analyzing the different types of sensor fusion. These
techniques were analyzed using a common evaluation
procedure, across the same scenarios;

• Extensive experiments for benchmarking several
open-source algorithms with a particular focus on
challenging situations such as dynamic environments,
open spaces, brightness variations, dense vegetation,
turnaround maneuvers, and high velocities;

• Identification of the current challenges for ego-motion
estimation, such as the dependency on the scene’s
appearance, high computational loads, and the presence
of moving objects. Analysis and quantification of such
conditions on the performance of the different types of
addressed methodologies;

• Indexing the current state-of-the-art while providing
insight into the present landscape of deep versus
knowledge-based approaches and multi-modal archi-
tectures and how future research may surpass current
results.

This document is organized as follows: sections II and III
present the working principles and state-of-the-art works
in visual and point cloud-based odometry, respectively.
Section IV briefly explains the concepts of data fusion and
shows some multi-modal odometry approaches. Section V
discusses the results on the already established KITTI odom-
etry benchmark, while section VI shows the results of various
open-source methods on selected sequences of the KITTI-
360 dataset along with a discussion and comparison of
the various methods in challenging situations. Section VII
exposes common odometry limitations as well as some possi-
ble solutions, and section VIII presents the main conclusions
arising from this research.

II. VISUAL ODOMETRY
Odometry is the process of estimating an agent’s change in
position and orientation over time. Visual odometry (VO) is
the designation given when relying on the input of a single
or multiple cameras attached to the agent. VO methodolo-
gies consist of reckoning the pose of the sensor (or system
where it is mounted, e.g., autonomous vehicle) by extract-
ing ego-motion parameters from correspondences between
sequential image frames.

Given the agent’s pose in timestep k − 1, Xk−1, in a
fixed frame, the goal of visual odometry is to compute the
transformation T k−1k (Equation 1), such thatXk = T k−1k Xk−1.
This operation allows to retrieve an estimate of the pose in
timestep k , Xk , by relating the different camera perspectives
of successive frames.

T k−1k =

(
Rk−1k tk−1k
0 1

)
(1)

Rk−1k ∈ SO(3) and tk−1k ∈ R3 are the rotation and trans-
lation, respectively, between poses in time-steps k − 1 and
k . The vehicle’s trajectory up to a timestep k , can thus be
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FIGURE 1. Visual Odometry categorization: the distinction is made
between approaches based on Machine Learning techniques and
knowledge-based ones.

reconstructed by integration from the initial pose X0, follow-
ing Equation 2.

T 0
k = T 0

1 T
1
2 . . . T k−1k (2)

The set of existing VO methods can be divided into
two distinct groups: knowledge-based and learning-based
approaches. The first exploits camera geometrical relations
to assess the motion, whereas the other is based on Machine
Learning techniques, which rely on considerable amounts of
data to acquire pose prediction capabilities. As illustrated
in Figure 1, knowledge-based methods can be categorized
into three sub-groups: appearance-based, feature-based, and
hybrid, according to how visual components are used to
generate odometry estimates.

A. KNOWLEDGE-BASED TECHNIQUES
Feature-based methods focus on the premise that prominent
points or regions in each frame can be used to determine cam-
era movement. These key points consist of corners, edges,
lines, and blobs, which are image patterns that are distin-
guishable from their surroundings in terms of intensity, color,
or texture, and therefore are more likely to match well across
multiple images [2], [4], [5]. For feature detection, SIFT [6],
SURF [7], ORB [8] and BRISK [9] are commonly employed.
Feature-based VO is considerably robust to both geometric
distortions, and illumination inconsistencies [10]. However,
by selecting only some points of the image, some valuable
information is discarded because these methods are highly
dependent on correct correspondences, and therefore the
presence of outliers must be minimized. Figure 2 depicts the
pipeline used by feature-based algorithms, as these usually
follow a structured pipeline, which involves a feature detec-
tion and matching stage (or feature tracking), followed by
motion estimation, and lastly, an optimization step. Although
these steps are often transversal, every technique differs in the
way they propose them.

In motion estimation, the most common approaches
include feature-to-feature matching (2D-2D), which exploits
the constraints imposed by epipolar geometry. The epipolar
constraint relates the same feature seen from different per-
spectives by Equation 3, where P1 and P2 are the image coor-

FIGURE 2. Pipeline of feature-based techniques. The final pose
estimation is composed of the agent’s position in space (X , Y , Z ) and
orientation (roll-φ, pitch-θ , yaw-ψ) and can either relate to the previous
pose or to a fixed global frame.

dinates of the same point in images 1 and 2 respectively, and
E is the Essential matrix. By selecting a set of matches, it is
possible to calculate the motion parameters (implicit in E)
that minimize the error imposed by the epipolar constraints.

PT1 EP2 = 0 (3)

Alternatively, 3D-2D techniques resort to minimizing
reprojection errors from 3D tracked landmarks against the
current image frame. As the deviation from the ground-truth
trajectory tends to accumulate, landmark tracking can later
be useful for the optimization step as the coordinates of those
points should be consistent within each camera pose, which
is the principle applied in Bundle Adjustment [11]. This
optimization operation is given by:

argminX i,Ck
∑
i,k

||pik − g(X i,Ck )||2, (4)

where pik is the i-th image point seen in the k-th image, corre-
sponding to landmark X i. g(X i,Ck ) is the image reprojection
of X i in the camera pose Ck . From Equation 4 it can be
seen that both the camera’s pose and the landmarks’ positions
themselves are optimized. Lastly, 3D-3D techniques compare
two sets of tri-dimensional points directly but are usually less
accurate than the remaining alternatives.

ORB-SLAM2 [12] is a popular algorithm among the VO
and Simultaneous Localization And Mapping (SLAM) com-
munities. It is the extension of ORB-SLAM [13] for monocu-
lar, stereo, and RGB-D cameras. This open-source method is
often considered a benchmark in visual odometry. By being a
SLAM technique, this algorithm is composed of 3 threads:
tracking and local mapping, which compose the odometry
module, and loop-closing. Motion estimation is computed
using ORB features tracked over keyframes and a local map,
with particular emphasis on multi-step Bundle Adjustment.
VISO2 [14] is another popular algorithm from 2011 that can
construct 3D maps of the environment using stereo cameras.
This method applies the well-known stereo matching method
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FIGURE 3. Pipeline of appearance-based techniques: the first stream
refers to region matching algorithms and the second to optical-flow
based techniques.

to match a sparse set of features in conjunction with an
odometry method that uses a Kalman filter [15].

Moreover, the works of Cvišić and Petrović [16]–[18]
are of special relevance in the field of visual feature-based
approaches, since their results bring visual methods’ pre-
cision closer to the precision levels of LiDAR-based tech-
niques. In [16], the authors proposed a Stereo Odometry
algorithm whose main focus is the careful selection and
tracking of features (SOFT) and the impact of these steps
on ego-motion estimations. Rotation and translation are com-
puted separately to boost the overall system performance. For
rotation, Nister’s 5 Points [19] is used in monocular fashion
to probabilistically reduce the detrimental effect of outliers
and imperfect stereo rig calibration, while utilizing rotation
to later compute translation using 3 points. Additionally,
an extension of the algorithm is proposed to integrate an IMU,
which estimates rotation ensemble with a Kalman filter. This
first estimate helps to further reject outliers and lighten the
computational cost of 5 Points algorithm, using P3P [20]
and Ransac [21] instead. When the rotation is calculated
via visual odometry, the Kalman state is updated. Later,
Cvišić and Petrović extended SOFT with an additional map-
ping thread, giving rise to SOFT-SLAM [17]. This method
was originally intended for autonomous unmanned aerial
vehicles, focusing on computational efficiency. SOFT-SLAM
integrates the SOFT visual odometry pipeline and completes
it with amappingmodule which adds SLAM features, such as
loop-closure and global consistency constraints. These added
capabilities give this technique superior localization accu-
racy in KITTI dataset [22] over its state-of-the-art alterna-
tives, such as ORB-SLAM2 and LSD-SLAM [23]. Recently,
Cvišić et al. [18] revisited the calibration parameters of the
KITTI Odometry dataset. In this last work, the authors pro-
pose a new one-shot technique for calibrating the parameters
of the multi-camera KITTI setup, which in turn results in
smaller reprojection errors, directly impacting the accuracy
of VO algorithms. The adjusted parameters were applied to
ORB-SLAM2, SOFT, and VISO2, with improvements in the
order of 28% in translation error and 46% in rotation error,
on average.

On the other hand, feature-based techniques discard a sig-
nificant part of the image data by concentrating only on a
few selected points. In addition, these techniques can entail

extra computational costs in matching or tracking operations
and outlier removal. In turn, appearance-basedVO techniques
make use of all the information in the captured frames instead
of just using key points. These methods estimate the camera
pose by analyzing the intensity of image pixels and mini-
mizing the photometric error, which relies on the consistency
principle that pixels from one framemaintain their intensity in
the second frame while considering a moving sensor [5]. This
way, it is possible to mitigate the aliasing effect caused by
repetitive patterns and ensure more robustness in scenes with
limited texture where it is harder to detect good features (e.g.,
foggy or sandy environments). Appearance-based techniques
avoid the time required to extract and match features and
run outlier rejection algorithms. On the other hand, they are
sensitive to illumination variations because of the photomet-
ric principle, and abrupt camera movements compared to
feature-based VO.

Appearance-based methodologies, also called direct meth-
ods, are generally classified into region matching-based or
optical flow-based. The former estimates camera motion by
aligning certain corresponding regions in consecutive frames,
but it loses effectiveness significantly in the presence of
dynamic objects in the scene, besides being susceptible to
local minima solutions. On the other hand, optical-flow-
based techniques resort to the optical flow of the surround-
ing scene to estimate the 6 Degrees-of-Freedom (DoF) of
camera motion based on motion models. Figure 3 aggregates
both approaches in the generalized pipeline of direct tech-
niques. In an effort to mitigate the disadvantages of both
feature-based and appearance-based methods, as well as to
aggregate the added value of each, it is also possible to resort
to different approaches from each domain. These are called
hybrid techniques [5].

In 2017, Engel et al. [24] proposed Direct Sparse Odom-
etry (DSO). This method comprises a direct and sparse
scheme, thus not requiring feature detection and matching
operations. This approach works by continuously optimiz-
ing the photometric error over a finite window of frames.
However, in contrast to typical direct methods, the optimiza-
tion occurs for all parameters simultaneously, including ego-
motion, camera calibration, and inverse depth of 3D points.
By considering the full error, as opposed to the error of
a particular iteration only, this strategy limits the effect of
outliers. The authors conclude that with proper hardware
(global shutters, precise lenses, and high frame rates), direct
formulations could surpass geometrical/indirect approaches
in terms of accuracy, which have dominated research interest
in the past decade.

Traditional (or geometric) methods already have well-
established foundations, and while these approaches have
generated reasonable results throughout their evolution, they
still prove to be fragile in environments with increased
complexity. In fact, it becomes challenging to rely solely
on these types of techniques since it is extremely diffi-
cult to capture the complexity of the real world by hand
formulation.
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FIGURE 4. Pipeline of learning-based techniques. Deep learning networks
can either complement traditional odometry pipelines, or directly output
pose estimates.

B. LEARNING-BASED TECHNIQUES
As seen in diverse areas, data-driven learning-based
approaches can acquire a high-level understanding of the
scene without the need for explicit modeling, as long as
they are trained on sufficiently large-scale representative
datasets [25]. In addition, camera calibration parameters do
not need to be known a priori; translation can be estimated
with the correct scale, and the system becomes more robust
against image noise [26]. As a result, there has been a
paradigm shift in VO, leaning towards learning-based meth-
ods in recent years. Typical data-driven techniques often
consist of multiple sub-nets with distinct functions, such as
depth estimation, feature extraction, and ego-motion estima-
tion [25]. These can be either used to supplement traditional
pipelines or build an end-to-end architecture, as depicted in
Figure 4. The networks are trained by confronting the outputs
with a supervision signal or evaluating them against a cost
function that readjusts and fine-tunes the network parameters.

Yang et al. [27] proposed Deep Virtual Stereo Odometry
(DVSO), which complements DSO with a Deep Learning-
based framework. The core of this work is based on extending
the capabilities of DSO through a network that produces
accurate depth estimates, thus reducing scale drift. StackNet,
the proposed Fully Convolutional Network (FCN), generates
a pair of depthmaps that simulate a virtual stereo rig. Training
is achieved in a self-supervised manner by comparing the
back-warped produced outputs with the original inputs. This
technique is common in odometry learning-based methods,
so to avoid the use of ground truths, which are costly to obtain.
StackNet’s predicted depth maps are added as additional
geometric constraints to the estimated depths in the original
DSO general optimization problem. Deep visual odometry
methods have so far failed to supplant classical ones. This
work, however, goes beyond the learning-based alternatives
and comes closer to conventional state-of-the-art techniques.
In fact, DVSO obtained a slight improvement of 2.2% in
translation error over ORB-SLAM2 in a set of KITTI selected
sequences. Moreover, although DVSO is not an end-to-end
visual odometry architecture, as DeepVO [28], DVSO trans-
lation error is 9.3 times smaller in the KITTI dataset.

In 2020, Yang et al. [29], the same authors of DVSO, pre-
sented Deep Depth, Deep Pose and Deep Uncertainty, also

known as D3VO. The overall architecture of D3VO is slightly
different from that of DVSO and DSO. In D3VO, depth is
estimated from a convolutional network called DepthNet,
which also predicts the uncertainty associated with the esti-
mates. Camera poses, in turn, are estimated from another
deep convolutional network called PoseNet, which, in addi-
tion to transformations, can equalize the illumination of the
current and previous frames that together constitute the pair
of network inputs to mitigate errors arising from the vari-
ation of lighting. Uncertainty is particularly important in
this equalization process as it helps detect non-Lambertian
reflective surfaces that easily violate the photometric consis-
tency principle between frames. Both DepthNet and PoseNet
are trained in a self-supervised and joint manner. The pose
predictions complement a direct tracking front-end module
and a global Bundle Adjustment back-end module based on
previous works DVSO and DSO. The results slightly exceed
those of DVSO (10% in selected KITTI sequences) regarding
trajectory accuracy.

Unlike the previous approaches, the work presented by
Wang et al. [28], DeepVO, is an end-to-end supervised
method whose focus goes on learning feature extraction
with proper geometric significance and implicitly modeling
the motion dynamics over a sequence of frames. A pair of
sequential images are stacked and passed as an input to a
Convolutional Neural Network (CNN), generating a compact
descriptor of the input pair, which is then fed to a Recurrent
Neural Network (RNN), allowing to capture the sequential
properties of VO. Nonetheless, unlike DVSO and D3VO, the
results are somewhat unsatisfactory. Yet, this approach allows
for a non-tuning-dependent model that works as a proof of
concept for end-to-end DL methodologies. In fact, most of
the commonly used DL structures in computer vision, such
as CNNs and RNNs, are not well suited for VO. This kind
of work can serve as a starting point and catalyze new VO
applied research. ESP-VO [30] extends this work by calcu-
lating uncertainties of pose estimates, which is particularly
useful for sensor fusion. Following a similar path, PoseCon-
vGRU [31] is an end-to-end comparable method. PoseCon-
vGRU leverages DeepVO time efficiency by using stacked
Gated Recurrent Units (GRUs) instead of Long Short-Term
Memory modules (LSTM). LSTMs and GRUs are specific
types of RNNs that capture long-term relations between suc-
cessive inputs by learning and storing internally what is rele-
vant to keep, or not, in the form of internal states. This type of
structure is especially important in visual odometry, given the
temporal geometrical constraints over a sequence of frames.
In PoseConvGRU, GRUs are preferred since they are quite
close to LSTMs in performance terms but achieve similar
results with fewer parameters and less time consumed. Never-
theless, while achieving slightly better results than DeepVO,
the improvement is not significant, thus leading to the same
conclusions

DeepAVO [32] is another DL approach based on optical
flow, which relies on a learning-based optical flow extractor,
PWC-Net [33]. It presents a four-branch network for each
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image quadrant to exploit local visual cues. A Convolutional
Block Attention Module (CBAM) [34] mechanism is incor-
porated into the feature encoder prior to pose estimation. This
mechanism acts as a mask to distill relevant features, focusing
on pixels in distinct motion and discarding foreground and
blurred objects. Also relying on PWC-Net, Zhao et al. [35]
predict the optical flow to compute the relative transformation
of the camera pose and reconstruct a few 3D structures of the
scene by triangulation. These structures are then used to align
depth predictions coming from a parallel neural network,
tackling the problem of scale inconsistency between pose and
depth predictions. This is a problem that hinders the learning
process and, therefore, the results, so the authors divide the
training process of pose and depth branches, taking advantage
of the output of both to complement each other and create
consistency between them.

ClusterVO [36] stands out as a dynamics-aware VO
technique that can segment dynamic objects while retriev-
ing the trajectory of the camera and the trajectory of the
detected objects. Themotion estimation part is based on using
key-frames and sliding window optimization (partly simi-
lar to ORB-SLAM2). VLocNet [37] presents an approach
based on Auxiliary Learning applied to visual odometry.
In addition to a VO dedicated network, the authors propose
another module to estimate the agent’s global pose, sharing
features between the two since both tasks are very similar in
nature. This practice promotes a more consistent learning and
less susceptibility to overfitting. This technique was further
extended in VLocNet++ [38] by including a scene segmen-
tation task.

So far, the visual methods landscape has been dominated
by traditional feature-based methods, like ORB-SLAM2 and
SOFT-SLAM, for example. More recently, direct formula-
tion methods have been achieving interesting results, while
we are beginning to observe a race to integrate learning-
based sub-modules to complement the more traditional archi-
tectures, as in the case of DVSO and D3VO. In parallel,
and still beyond the classical alternatives, many end-to-end
approaches for ego-motion estimation have emerged, which
despite the underwhelming results, present great potential
in terms of abstraction to the complexity of road traffic
environments.

III. POINT CLOUD-BASED ODOMETRY
Maintaining the problem setting already established in
section II regarding VO, where the objective revolves around
obtaining the translation, tk−1k , and rotation, Rk−1k , between
poses of time steps k−1 and k , some changes are necessary to
completely establish point cloud-based approaches. Frames
are typically represented in the form of point clouds, which
compose a set of 3D points given directly in world coordi-
nates, contrary to VO, where points are given in pixel/image
coordinates. LiDAR sensors work by measuring the time of
flight or phase shift of an emitted and reflected laser ray.
To create a 3D point cloud of the environment, it is necessary

FIGURE 5. General LiDAR-based odometry pipeline.

to perform this operation multiple times to cover the entire
scanning area.

The categorization of point cloud-based odometrymethods
is not as straightforward as in the case of VO. Themost simple
way of dividing these types of work involves categorizing
them into one of the following: knowledge-based, where
standard and conventional algorithms are used, and learning
based that involve the use of machine and Deep Learning
techniques.

The following sections contain a summarized description
of a general LiDAR-based odometry pipeline as well as brief
descriptions of the methods that constitute the current state of
the art.

Jonnavithula et al. [39] help define the basic steps in laser
odometry algorithms: (1) pre-processing, (2) feature extrac-
tion, (3) correspondence searching, (4) transformation esti-
mation, and (5) post-processing (Figure 5).

In pre-processing, point clouds are restructured into more
convenient forms, usually by segmentation operations or 2D
projections, such as a range images. The last are especially
useful when working with CNNs, for example. Some pro-
cedures like ground and dynamic object removal are also
applied in this step. It is also important to note that the LiDAR
collected point cloud is typically unstructured, i.e., it consists
of a set of points in which the concept of neighborhood
is not explicit, as it is in adjacent pixels. In other words,
there is no information about vertex connection or about the
surface underneath either. By searching the vicinity of each
data point, it is possible to retrieve that kind of information
and store it in a multitude of data structures, like meshes,
voxels, octrees, and K-D trees, which speed up the searching
process. Feature extraction can be done much like in VO,
using extractors like SURF [7] and SIFT [6] if the point
cloud is transformed into a 2D representation, as mentioned
before. 3D features can also be extracted from point clouds
using the concept of local features that encode the shape
of small patches around a set of specific key points. This
step can help avoid storing many points while facilitating the
matching process. In correspondence searching, the objective
is to find point correspondences between successive frames.
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This could be done in a variety of ways, like in Iterative
Closest Point (ICP) [40] where all points are considered, or by
using unique feature descriptors to create correspondences.
In transformation estimation, once point correspondences are
known, it is possible to calculate the transformation matrix
T k−1k for each pair of correspondences. The general pose
transformation between successive frames usually minimizes
the displacement of all matching points in the point clouds.
Post-processing varies from method to method, but it usually
refers to some iterative refinement process as loop closure.
Loop closure occurs once a point in the map is crossed more
than once, adding extra pose constraints to the algorithm.
This operation, however, requires a dedicated mapping and
optimization mechanism.

A. KNOWLEDGE-BASED TECHNIQUES
ICP [41] had its first versions in the nineties and can be
considered one of the most influential algorithms in the area
of LiDAR-based odometry. In its most basic version, this
method finds the transformation between two point clouds
in two steps: data association and transformation estimation.
The data association step aims to find correspondent points
between two point clouds, which can be done using a Nearest
Neighbor approach. The second step aims to minimize the
distance between point pairs by first computing the center of
mass of each point cloud and aligning them, then computing
the rotation using Single Value Decomposition (SVD). This
algorithm is run multiple iterations until a local minimum is
found. The basic concepts of ICP are used in a variety of
state-of-the-art approaches, for example, CT-ICP [42], which
is one of the best performing odometry systems on the KITTI
autonomous driving benchmark. CT-ICP adapts the ICP algo-
rithm to work in real-time, taking into consideration the dis-
tortion of point clouds caused by sensor motion, as it happens
in the autonomous driving scenario. This formulation makes
this approach robust to high frequency movements of the sen-
sor, which is the method’s main strength. The algorithm esti-
mates initial and final positions for each LiDAR scan while
performing an elastic scan matching through interpolation.
Unlike similar methods, the final pose does not necessarily
correspond to the initial pose of the next swipe, providing
elasticity and robustness to more abrupt variations in sensor
movement. In parallel, this method provides a complete map-
ping module with a novel loop closure procedure. The map’s
points are inserted into a 2D elevation grid by clipping the
z coordinate between certain thresholds, which only works if
the sensor’s movement is relatively stable on the z-axis.When
a new grid is built, it is matched against older ones, using
rotation invariant 2D features.When amatch is validated, ICP
is used to refine the 2D transform obtaining a 6-DoF loop
closure constraint.

Another recent approach that relies on the basics of ICP is
MULLS (Multi-metric Linear Least Square) [43] which pro-
vides an efficient, low drift 3D SLAM system. This architec-
ture is especially designed to be independent of the LiDAR’s
specifications, not needing the conversion of the LiDAR data

FIGURE 6. Visualization of the MULLS registration procedure highlighted
within the circles. Different point clouds are represented with different
colors: red and black. Left image: before registration, right image: after
registration.

to rings or range images. Firstly geometric feature points
are extracted and encoded, distinguishing between several
categories such as ground, facade or pillars. The next step
involves the ego-motion estimation by multi-metric linear
least square ICP, based on the selected features, which is
modified to increase the accuracy and efficiency. This varia-
tion has four essential steps. First, point correspondences are
determined within each feature category. After that, weights
are calculated for each correspondence considering several
factors such as point intensity. Then, according to the point
correspondences and calculated weights, the transformation
estimation is computed. Finally the authors use statistical
metrics to evaluate the quality of the registration procedure.
An example of the MULLS registration procedure performed
on LiDAR collected point clouds is depicted in Figure 6.

Another work that is of high relevancy in this area is
LOAM [44]. This method addresses both odometry and sur-
rounding mapping at different frequencies. The odometry
function operates at a higher cadence and generates low
fidelity estimates. At the same time, the mapping module
is slower and adjusts the odometry estimates while gener-
ating and refining a global map. Regarding odometry, point
cloud features are extracted in a preliminary stage, selecting
and grouping points into sharp edges and planar surface
patches. Along the LiDAR sweep, the captured points are
progressively projected onto the previous frame, assuming
the sensor’s constant angular and linear velocities. As features
are extracted and matched, new estimates are produced by a
variant of ICP. When the sweep is completed, the mapping
module refines the alignment, completing the map and pro-
ducing a pose estimate with increased accuracy, passed on
back to the odometry module again.

Other works, such as LeGOLOAM [45] and ELO [46],
employ variations of LOAM specifically designed to have
lower running times while maintaining or improving its orig-
inal performance. LeGOLOAM, that stands for Lightweight
and Ground Optimized LOAM, was developed to be imple-
mented in vehicles with lower computing power and no sus-
pensions (this aggravates point cloud distortion). The basic
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working principle relies on segmenting the point clouds,
removing small clusters and preserving points that may repre-
sent big objects like tree trunks and road surfaces, and saving
them in a range image. Then, features are extracted from these
range images and classified as ground or non-ground features.
Regarding the odometry algorithm itself, the matching of
features across frames becomes faster because of the ground
optimization procedure. As expected, this method improves
the efficiency of LOAM, achieving a 72% reduction in fea-
tures used. ELO [46] was recently proposed by Zheng et al..
It is common for methods like LOAM, for example, to encode
point clouds in a tree-based form, which, while effective in
terms of searching, becomes somewhat limited in large-scale
point clouds. In order to maximize efficiency, this method
proposes a projection of LiDAR measurements onto a spher-
ical image, directly restoring the neighborhoods between
points. The problem arises in the fact that in autonomous
vehicles, LiDAR sensors capture a significant amount of
ground points, which, by the spherical geometry, become
too far away in projections. As a way to take advantage of
these points, the ground points are projected in a top-down
bird’s-eye-view perspective.With the ground and non-ground
points properly segmented and with the proper 2D projec-
tions, the application of the search methods for frame match-
ing becomes much more efficient. Concerning run-time, the
authors suggest that ELO achieves 169 frames per second on a
commodity laptop. In fact, this work registers a running time
21 times lower than the average for the ten top positions in the
KITTI Odometry benchmark. Despite the efficiency efforts,
ELO performs comparably to other methods likeMULLS, for
example.

Some otherworks should also bementioned. F-LOAM [47],
for instance, tries to reduce the computational burden by
transforming LOAM’s iterative processes into a two-stage
distortion compensation method. It also uses special features
such as edges with higher local smoothness and planar
features with lower smoothness, which are good for match-
ing. With such efforts, this method achieves a 20Hz cycle
frequency on a low-power embedded computing unit. ISC-
LOAM [48] is similar to F-LOAM but uses the intensity
values of point clouds and their geometry to improve the
capabilities in loop closure further. R-LOAM [49] takes
this improvement differently by combining the LOAM
framework with prior knowledge about a reference object.
It requires previous knowledge of a 3D model of an obstacle
and its position on a global coordinate system. However, this
formulation makes R-LOAM unsuitable for the autonomous
driving context.

B. LEARNING-BASED TECHNIQUES
A different type of approach involves the use of Deep Learn-
ing techniques to resolve the odometry problem. Because data
from range sensors is unordered and sparse, it is challenging
to apply typical convolution-based DL modules. Therefore
some methods that employ DL techniques transform the
3D point clouds into other formats such as range images.

LO-Net [50] is an algorithm that retrieves the odometry
estimation of the sensor using this type of approach. LO-Net
starts by passing from point cloud format to matrix, project-
ing the points into cylindrical coordinates. Then, for each
point, its respective normal vector is calculated. Both the
matrix containing the normal vectors from the current instant
and the one from the previous LiDAR scan are passed to a
SiameseNeural Network (SNN), which outputs are combined
and fed to a convolutional network that estimates the ego-
motion parameters. The whole network is trained in a super-
vised manner. Furthermore, this algorithm contains a mask
estimation module for dynamic objects in the scene and a
mapping block to further refine the estimates through scan-
to-mapmatching. DeepLO [51] is another method that begins
by projecting the incoming point clouds into the 2D space.
The projection representation is substituted by a pair of 2D
maps containing the point cloud vertices and normals without
precision loss. The vertices’ map from the current instant
and the previous one are passed to a fully convolutional
network, from which it is extracted a feature vector of the
respective pair. The same applies to the normal’s maps, which
are fed to another similar network in parallel. The two resul-
tant feature vectors are then summed and passed to a third
neural network which then predicts the motion parameters.
This network can be trained either, in a supervised manner,
assisted by the sequence ground truth, or in an unsupervised
manner via an error function that incorporates a version of
ICP. LodoNet [52] is also worthy of mention as it transforms
the 3D data into a two-dimensional representation and per-
forms feature extraction using SIFT, obtaining keypoint pairs
between successive scans. These correspondences are then
fed into a convolutional neural network pipeline that extracts
Matched Keypoint Pairs (MKPs). The MKPs can be accu-
rately returned to the 3D space and fed into a convolutional
neural network designed for LiDAR odometry. Another work
that makes use of neural networks is PWCLO-net [53]. This
algorithm learns LiDAR odometry from raw 3D point clouds
in an end-to-end fashion with no need to project the point
cloud into 2D representations. The inputs of the network are
two point clouds, which are encoded by a siamese feature
pyramid that extracts the hierarchical features of each point
cloud. Then, an attentive cost volume is used to associate the
two point clouds and generate point embedding features that
contain point correlation information. An embedding mask
is used to obtain the pose transformation from these features
while also removing dynamic elements.

Other recent and relevant works that employ Deep Learn-
ing are PSF-LO [54], which uses parameterized seman-
tic features to facilitate the registration task and employs
a dynamic and static object classifier; and CAE-LO [55],
that, like previous methods, uses unsupervised Deep Learn-
ing and utilizes compact 2D spherical ring projections.
DMLO [56] is also an interesting work, making feature
matching applicable to LiDAR odometry by decompos-
ing the pose estimation in two parts: a matching network
that makes correspondences between two scans and a rigid
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FIGURE 7. Process illustration of each data fusion technique: early, late and intermediate.

transformation estimation operation. SuMa++ [57] expands
the previous work by Behley et al. [58] and has a different
approach towards the self localization problem. The robot
position is estimated by analyzing changes in a semantic
surfel-based map, to also detect and remove dynamic objects,
and improve the pose estimation. Each scanned LiDAR frame
is converted into a 2D projection. Then, each frame is seg-
mented by RangeNet++ [59], a point cloud segmentation
network, as each point is attributed a semantic label. After
this step, the image is converted back into a 3D projection
which updates the world map.

This section provided an overview of the general concepts
of point cloud-based odometry. It also analyses several works
in this area, along with their unique characteristics, rang-
ing from knowledge to learning-based approaches that are
becoming more popular, just like in visual odometry. Table 1
summarizes all the referred works, while the analysis of point
cloud odometry is extended in sections V and VI.

IV. MULTI-MODAL ODOMETRY
Road environments in which autonomous cars operate
are highly complex. Autonomous agents can benefit from
multi-modal perception by combining different sensors, such
as cameras, LiDARs and IMUs, approximating the human
perception capabilities. This approach is becoming increas-
ingly relevant as these sensors start to be widely adopted by
car manufacturers.

A. DATA FUSION STRATEGIES
Data fusion relies on the basis that collecting data from dis-
tinct sensors will allow capturing richer and redundant infor-
mation from surroundings, which will, in turn, enable lower
uncertainty in state estimation. This approach also contributes
to the system’s robustness by reducing the failure cost of
individual sensing modalities. For example, visual odometry
may suffer from hard illumination variations, poor lighting
conditions, and texture-less environments; LiDAR struggles
with wide-open spaces, such as motorways or long tunnels,
and adverse weather conditions; and IMU’s trajectory esti-
mates tend to drift very quickly if not adjusted periodically.
Thus, having more than one modality should compensate for
eventual short or long-term failures.

In multi-modal approaches, data fusion can be classified
based on the instant the merge takes place within the context
of the system framework (Figure 7). In early fusion, data is
merged in the raw stage, before any pre-processing, usually
through projections of one or more sensors to the input space
of another. Typically this approach is associated with low
computational costs but is highly dependent on inter-sensor
spatial and temporal calibration [60]. Late fusion implies
an after-processing merge of data. It is the most common
strategy since it entails lower complexity and increased mod-
ularity. However, it incurs higher computational expenses
and blocks the use of potentially valuable intermediate fea-
tures of each data type [60]. One of the most significant
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limitations in late fusion is relying only upon pose estimates,
which confers on the fusion layer an abstraction level that
can be limiting in certain situations. Finally, intermediate
fusion is the more comprehensive technique, as it can be
deployed in many possible ways, depending on the system’s
architecture, especially if DL-based. As data is fused after
some processing, it is also known as feature-level fusion.
In the context of odometry, one can classify how data is
used to produce the system’s output. For example, LiDAR
measurements can complement the imagery, while estimating
ego-motion with visual odometry or vice versa; or the two
types of odometry can operate separately and fuse at a higher
abstraction level of the system’s framework [61]. The systems
that follow the first approach are usually denoted as tightly-
coupled, whereas the others are called loosely-coupled [62].
In these circumstances, images and point clouds are usually
the primary sources of odometry estimates, whereas IMUs
and GPS systems provide expedient priors and/or trajectory
drift corrections.

The current technology of digital cameras allows them to
have a very competitive price and reduced size and weight
compared to other sensors. Cameras record high resolution
images of the surrounding scenes, by extracting color and
texture information, which are especially effective for detect-
ing contours and objects, and, in the case of VO, to identify
points of interest that can be easily tracked in sequential
frames. However, cameras are extremely dependent on envi-
ronment conditions and illumination, facing some issues in
scale recovering too. In turn, LiDAR sensors can retrieve
native depth information and typically offer a wider spa-
tial coverage. The number of channels commonly ranges
from 16 to 128, and refresh rates may vary in a range
from 5 to 20Hz. Yet, rain, fog and snow can negatively impact
LiDARs performance by up to 25% [63], so it is of great
importance to take these phenomena into account. Some stud-
ies, as in [60], [64], demonstrated laser beams’ wavelength to
impact the adverse effects of weather conditions.

Calibration is also a critical aspect whenmerging data from
distinct sensors, specially in tightly-coupled systems. Each
sensor has intrinsic and extrinsinc calibration parameters that
capture the internal geometrical properties of the sensors and
relate the world frame with the frame of the device. Besides
that, sensors must be jointly calibrated, so that multiple detec-
tions of the exact same feature, detected by different sensors,
are transposed to the the exact same position in the sys-
tem’s common frame (ideally). Themost common techniques
employ physical targets with well-known dimensions. These
structures must have characteristics that are easy to detect and
segment by each sensor modality. The features segmented by
each sensor compose a set of physical constraints that allow
estimating the rotation and translation between them through
parameter optimization. In [65], for instance, the authors
use only a simple arbitrary flat polygon for camera-LiDAR
calibration, while in [66], the authors propose a rectangular
block with four tapered holes and a metallic reflector to allow
the extrinsic calibration of camera, LiDAR and RADAR. In

FIGURE 8. Visualization of depth enhanced images as in DV-LOAM’s
front-end odometry module. This Figure illustrates the point cloud
projection into the respective camera frame. Different colors represent
different levels of depth.

[67], the authors compile a set of openly available toolkits
for sensor extrinsic calibration, while also presenting some
practical considerations to have when calibrating the sen-
sors. Some additional techniques can be found in [68]–[71],
mainly for camera-LiDAR fusion, and in the kalibr toolkit
for multi-camera and camera-IMU fusion, which employs the
techniques from [72]–[76].

B. STATE-OF-THE-ART TECHNIQUES
The work presented byW.Wang et al. [61], DV-LOAM, is an
example of how to combine LiDAR and camera data at vari-
ous levels for improved ego-motion detection. DV-LOAM is
composed of a front-end and a back-end part. The front-end
module is divided into a VO block and a LiDAR map-
ping module. The first receives sequential images enhanced
with sparse depth measures from the LiDAR (Figure 8),
in which the first motion estimates are produced by a direct
patch-based method inspired on DSO [24]. The estimates are
further refined by applying a sliding window optimization
technique, ensuring local consistency and real-time perfor-
mance. In case the latest frame is a keyframe candidate,
features are extracted from the corresponding LiDAR scan
and joined to a global map, which then allows for one more
refinement step in a scan-to-map process. This step allows the
use of the whole LiDAR coverage angle and not only the por-
tion corresponding to the camera perspective. The back-end
module is responsible for map maintenance, including loop
closure and a pose-graph optimizer, to reduce accumulated
drift over long traversals. In addition, DV-LOAM presents
an insightful ablation study. Conclusions suggest that the
visual-LiDAR odometry method applied by this work (direct
and patch-based) achieves better precision than LiDAR-only
odometry as it relies on images to detect edges that are not
so distinguishable in point clouds. Also, it benefits from
enhancing the images with direct depth measurements, which
allow the method to work even when the images are blurred.

From the same authors of LOAM, V-LOAM [77] is
intended tomitigate LOAM’s reliance on smoothmotion. The
integration of the camera into V-LOAM allows visual odom-
etry to serve as a prior to LiDAR odometry estimates and
to handle rapid motion. Analogous to LOAM’s architecture,
V-LOAM also operates with a dual-frequency model. The
visual block computes pose transforms at a higher pace, using
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a feature matching method, which relies on image points
whose depths are either measured directly by LiDAR or
obtained by triangulation. Concomitantly, when each LiDAR
sweep is complete, the new point cloud is undistorted, assum-
ing constant linear motion. The points are registered in a
local map maintained by the laser odometry block, as in
LOAM. The registration allows for generating an ego-motion
estimation that corrects the drift affecting visual estimates.
In addition, the LiDAR-camera combination supports opera-
tion over short periods of light outbreak.

UnlikeV-LOAM,LIMO, proposed by J. Graeter et al. [78],
uses LiDARmeasurements to supplement the camera images
with depth information in a tightly-coupled manner. Promi-
nent points are selected from image frames, discarding points
lying on cars and pedestrians, for example, to avoid the effect
of dynamic objects. This is performed throughDeep Learning
semantic segmentation. The LiDAR point cloud is projected
onto the image, and the depth of each feature is computed
through plane fitting interpolation in its neighborhood. The
fusion stage also includes foreground and ground segmen-
tation. By matching features, a pose transform estimate is
generated and adjusted by a refined back-end block that
applies Bundle Adjustment. In this block, particular emphasis
is placed on the careful selection of keyframes and landmarks,
as well as a robustification module to mitigate the presence
of outliers using trimmed-least-squares.

One further approach is Tightly-Coupled Visual-Lidar
SLAM (TVL-SLAM), from C. Chou et al. [79], in which the
visual and LiDAR modules run independently until a certain
point in the pipeline when the data from both is merged,
thus constituting an intermediate fusion case. Regarding the
odometry domain, the visual front-end generates a prelimi-
nary pose estimate alongside the visual residuals. This esti-
mate contributes to the calculation of the laser front-end
residuals. The fusion occurs in a large-scale optimization
problem whose inputs are the residuals of both modules. The
inter and intra-consistency between the modules is ensured
in this last step by a set of constraints that include visual
landmark reprojection errors, scan-to-map-registration, and
cross-constraints, as both front-ends represent the same envi-
ronment. In addition, this algorithm also features a technique
for extrinsic calibration between sensors and a multi-step
technique for rejecting moving objects. Tests on KAIST
dataset [80], which is composed of challenging scenarios
in crowded road environments, demonstrated the superior
performance of TVL-SLAM due to its multi-modal char-
acteristics (88% and 78% improvements in accuracy from
TVL-SLAM LiDAR only and ORB-SLAM2 respectively).

Wisth et al. [62] recently proposed a tightly-coupled archi-
tecture for LiDAR-visual-IMU odometry. The state estima-
tion is formulated as a large-scale pose-graph optimization
problem with multi-sensor factors. The depth of visual land-
marks is calculated through the projection of LiDAR points
as in [78], or via stereo matching; point clouds are undistorted
to the closest image timestamp to ensure temporal synchro-
nization, using the IMU’s motion priors; plane/line features

are extracted similarly to [44], which reduces the number of
points in 90% for efficiency purposes. Experiments showed
considerable robustness against wide spaces, dark tunnels,
dense foliage, and abrupt motion. Moreover, the pose-graph
formulation allows the different modalities to impact the
system independently, emphasizing performance consistency
in case of failure of one of the sensors.

The work of Ramezani et al. [81] composes a different
class of methods whose primary focus is the estimation of
agent odometry via an Inertial Navigation System (INS). The
state of the agent’s motion is propagated through the use of
a multi-state constraint Kalman filter. At the same time, the
integration of a stereo rig in the setup allows adding extra con-
straints to the vehicle motion by 2D and 3D feature matching
methods, limiting the drift of the IMU estimates. This sensor
is an asset in scenarios where matching successive images or
point clouds is more challenging, as well as for reducing the
impact of dynamic objects, as demonstrated in Section VI.

This section presented several examples of how data from
different sensors can be combined to achieve more accu-
rate results and a more robust architecture. Through direct
comparisons with single-modality methods, many of the
mentioned techniques showed the importance of aggregating
different modalities and working with data redundancy. The
analysis of multi-modal methodologies is extended in sec-
tions V and VI. Table 1 aggregates all the referred odometry
techniques alongside the respective categorization, type and
relevant key points.

V. ODOMETRY BENCHMARK ANALYSIS
So far, some of the most relevant and innovative works in the
field of odometry have been briefly described and reviewed,
including visual, point cloud-based, and multi-modal meth-
ods. Hence, this section will contain a critical analysis over
some of the exposed techniques, supported by the results
obtained by the authors in the KITTI odometry dataset.

KITTI dataset [22] comprises a total of twenty-two
sequences of visual, LiDAR , and GPS/IMU data recorded
on board of a vehicle that transits in common road traffic
environments, eleven of which include the respective ground
truths. Furthermore, KITTI provides an evaluation tool that
compares multiple algorithms and ranks them on a score-
board. The outcomes are evaluated in terms of three metrics:
i) trel , the average relative translation error over sequence
lengths of 100 m to 800 m, in percentage; ii) rrel , the rota-
tion error in deg/100 m over the trajectory; iii) run-time
in milliseconds. Data in Tables 2 and 3 was retrieved from
the author’s publications, and correspond to the evaluation
of the best-performing techniques in training and evaluating
sequences of the KITTI odometry benchmark.

By analyzing Tables 2 and 3, it is noticeable that very
little separates the top places, regardless of their modalities
or technicalities. In fact, the first three positions in Table 2
obtained a trel below 0.5%, and each method corresponds
to a different sensing modality, i.e. multi-sensor, visual and
LiDAR-only. The remaining places are all roughly comprised
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TABLE 1. Overview of the presented odometry methods: categorization and relevant key-points.
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TABLE 1. (Continued.) Overview of the presented odometry methods: categorization and relevant key-points.
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TABLE 2. Results in KITTI training sequences (00-10).

in a range from 0.70% to 0.90%, except the last two, which are
DL end-to-end architectures. Analogously in Table 3, the first
five positions make up a very small translation error range,
in the order of 0.06%, also with representatives from each
modality.

It may also be observed that conventional techniques pre-
dominate when compared to learning-based ones. In fact,
during the last years, only small improvements occurred in
terms of trajectory accuracy. Eventually, the focus will have
change to further robustify the odometry systems, and make
them more computationally efficient. Unlike the run-time or
the data allocated by an algorithm, quantifying and measur-
ing robustness is not a trivial task. The most common way
to put the techniques to the test is by evaluating them in
datasets containing challenging scenarios. Although KITTI
is vastly used, and therefore suitable for comparisons, some
other datasets such as KAIST [80] include more challenging
sequences. In this regard, multi-modal systems achieve better
results, as shown by the experiments of C. Chou et al. [79]
(TVL-SLAM) in KAIST, and D. Wisth et al. [62], which
evaluated their respective works against unfavorable condi-
tions targeted at specific sensor modalities, such as the ones
discussed in section VII, both standing up to the tests and
showing no signs of overall degeneration, unlike visual or
LiDAR-only methods. In terms of efficiency, ELO stands
out unrivaled while also performing very competitively in
terms of accuracy. On the other hand, complex methods like
TVL-SLAM have an increased computational load, since
they rely on multiple modules running in parallel to achieve
such precision and robustness, some of which can be demand-
ing, such as optimization andmappingmodules. One possible
solution for this type of architecture would be to enhance
individual function blocks, e.g. integrate ELO or a similar
approach into the laser odometry front-end.

VI. BENCHMARK OF OPEN-SOURCE METHODS
In order to expand on previous approaches [82], to per-
form a well-structured and unbiased evaluation of odometry

TABLE 3. Results in KITTI testing sequences (11-21).

estimation, some open-source methods were selected. These
techniques were tested against a set of challenging sequences
extracted from the KITTI-360 dataset [3], which vary from a
regular drive on quiet residential streets to busy motorways.
The obtained results, as well as the respective analysis are
presented throughout this section.

KITTI-360 is the successor to the well-known KITTI [22]
autonomous driving dataset. It improves on its previous iter-
ation by adding sensors like a pair of fisheye cameras and an
additional laser scanner along with longer and more complex
drives. In this way, eleven sequences were extracted and
briefly described in Table 4. The first two digits of each
sequence ID correspond to the drive in the KITTI-360 dataset.
These sequences compose a variety of environments espe-
cially selected to challenge odometry algorithms and assess
the corresponding limitations. Some challenges include high
brightness variations, the presence of many dynamic objects,
sensor blockage, and wide-open spaces, among others.

The selected evaluation scenes were used to test a few
visual odometry methods in different scenarios to assimilate
the state-of-the-art performance in different conditions, while
discussing the limitations of each modality. Some of the most
popular and best-performing algorithms were chosen:
• Visual odometry: ORB-SLAM2 [12], LIBVISO2 [14]
and open source implementations of SOFT1 [16]
and SOFT-SLAM2 [17]. The deep-learning approaches
SC-SfMLearner [83] and the work of Zhao et al. [35]
were also tested.

• Point cloud-based odometry: MULLS [43],
CT-ICP [42], F-LOAM [47], and ISC-LOAM [48].

• Multi-model odometry: thework of Ramezani et al. [81]
that fuses a stereo rig with an IMU.

These methods were selected since they are open source
and well-documented, allowing anybody to implement them.
Some, like ORB-SLAM2, are considered to be landmarks in
the area of VO, and others like CT-ICP are top performers

1https://github.com/Mayankm96/Stereo-Odometry-SOFT, 28th of march
2022.

2https://github.com/ZhenghaoFei/visual_odom, 28th of march 2022.
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FIGURE 9. Trajectories of evaluated odometry techniques in the selected sequences of KITTI-360 dataset. Axis units in meters.
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FIGURE 9. (Continued.) Trajectories of evaluated odometry techniques in the selected sequences of KITTI-360 dataset. Axis units in meters.

on the KITTI odometry benchmark. This set gives a good
understanding and representativeness of all visual odometry
categories including knowledge and learning-based works.

A. ANALYSIS ON CHALLENGING SEQUENCES
Two evaluation metrics were used to test the performance of
each method. Considering that the predicted trajectory and
ground truth consist of a set of points, the first evaluation
metric is calculated by averaging the absolute translation
error between the predicted pose and the ground truth for each
set (te). The second metric, tseq, consists of dividing each test
sequence into sub-sequences of 100 m, 200 m, 300 m, and
so forth up to 800 m and calculating the average translation
error for each stretch, later condensed into a global average
for all sub-sequences. The gathered results can be consulted
in Table 5, where the best results are underlined, as well as
in Figure 9, which comprises the trajectories described by
each method in each sequence. The performance of the eval-
uated methods will be discussed in the following paragraphs,
specifically concerning some particular challenges.

1) VEGETATION AND WIDE OPEN ROADS
In sequence 03_02, the vehicle drives through a short straight
roadwith dense vegetation surrounding the totality of the road
margins, in all its extent, as shown in Figure 10a. Vegetation
is a particular challenge for camera and LiDAR techniques

FIGURE 10. A few challenging scenes from sequences 03_02 and 07_01.
Dense vegetation and open spaces can degrade the accuracy of pose
estimates [3].

since the repetitive and noisy patterns make feature match-
ing/tracking difficult for visual methods. The dense foliage
promotes defective reflection of laser beams due to the irreg-
ularity of the surfaces and multiple small occlusions, which
hinders the precise alignment of point clouds. Despite gener-
ally better results, LiDAR-based methods are outperformed
by purely visual ones, with a 55% lower average error. The
reason is that, possibly, visual techniques rely on visual cues
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TABLE 4. Description of evaluated sequences from KITTI-360 dataset.

TABLE 5. Translational error (meters) of evaluated odometry techniques in KITTI-360 selected sequences.

on the road that LiDARs do not detect. Besides that, the
cameras’ vertical field of view is slightly wider than the
LiDAR’s, benefiting from more distinct features since the
vegetation is not as dense on top.

Sequence 07_01 contains relatively wide open roads (Fig-
ure 10b), which constitute challenging cases for LiDAR
techniques since the open spaces make the alignment of
point clouds difficult due to the scarcity of features. In this
sequence, the best-performing visual method (ORB-SLAM2)
achieves a 20.3% lower translation error than CT-ICP, which

is the best-performing LiDAR-based technique. It is also
worth noting the immunity of the IMU, as it is a propriocep-
tive sensor, to external factors in the scene, as Ramezani et al.
(with IMU) is second-best in 03_02 and best in 07_01 by a
large margin.

2) TURNAROUND MANEUVER AND TUNNEL PASSAGE
As depicted in the trajectory plot of Figure 9h, sequence
06_01 has a turnaround maneuver in which the 360-degrees
spatial coverage of point cloud-based approaches helps for
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FIGURE 11. Tunnel passages in sequences 10_01 and 10_02 [3]. The
absence of light inhibits the extraction of good visual features to track,
resulting in an altered ego-motion perception.

a more precise rotation estimation. In the Figure, it is pos-
sible to witness the most pronounced deviations occur for
visual methods. Sequence 10_02 features a dark tunnel pas-
sage where visual methods rely solely on faraway features
extracted from a reduced size window, as seen in Figures 11a
and 11b. This passage affects camera-based odometry tech-
niques, which can be observed in Figure 9c, as all visualmeth-
ods start drifting in the final left turn because of the erroneous
forward self-motion perception during the tunnel traversal
that occurs moments before the curve. Consequently, visual
techniques obtained a translation error almost six times larger
than the point cloud-based alternatives evaluated in sequence
10_02.

3) DYNAMIC OBJECTS
Sequence 05_01 has a few large-scale visual occlusion
moments (Figure 12). This type of scenario is especially
challenging for purely visual techniques since the areas of
the field of view occupied by these objects are considerably
large, making it difficult to extract quality features and even
hindering the detection of moving objects due to the aper-
ture problem. Figure 13 demonstrates the deviation effect on
visual methods when a large truck crosses in front of the agent
while it is stationary. Similarly, the final section of the graph
in Figure 9g demonstrates the drift that has been accumulated
due to visual occlusions. From Table 5 it can be seen that
LiDAR-based methods perform more accurately in 05_01,
with a ten times smaller translational error, either because of
the 360◦ coverage of the scene or due to specific dynamic
object rejection methods included in the algorithms.

Sequence 07_02 contains several start-and-stop moments
with the presence of multiple vehicles with similar velocities
to the agent, Figure 14. Analogously to sequence 05_01, mul-
tiple dynamic objects disturb the visual algorithms, as numer-
ous cars start moving while the agent remains stationary,
causing a false sensation of self-motion. ORB-SLAM2 (Fig-
ure 15) composes an evident example of this effect as the
translation errors te and tseq are respectively 8.7 and 7.0 times

FIGURE 12. Visual occlusions caused by two large trucks in sequence
05_01. These scenarios cause severe limitations, especially on visual
techniques, which cause deviations in the odometry estimation [3].

FIGURE 13. Pseudo-motion effect of moving objects on visual methods in
sequence 05_01. The trajectories present a significant discontinuity
caused by a large-scale occlusion of a moving truck. Axis units in meters.

FIGURE 14. Start and stop moment with multiple moving vehicles in the
surrounding area. As the other vehicles move, while the sensing vehicle is
stationary, they cause a false sensation of motion [3].

higher than the average for this technique. In addition, almost
all other visual methods achieved a below-average perfor-
mance too. LiDAR methods show increased robustness to
these occurrences, as shown in the results from Table 5.
Once more, concerning moving objects in the scene, the
integration of the IMU can add a confidence measure to pose
estimates, as in these cases, therewould be diverging informa-
tion coming from both sensors. Looking at both versions of
Ramezani et al. (with and without IMU) in sequence 07_02,
one canwitness the referred impact of the IMU, as the average
translation drift drops from 6.58 meters to 1.61 meters.

B. GENERAL PERFORMANCE COMPARISON
The results from the benchmarking reinforce the preva-
lence of LiDAR-based methods in a generalized perspective.
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FIGURE 15. Drift effect on ORB-SLAM2 trajectory caused by tracking
features belonging to a moving truck in sequence 07_02. Axis units in
meters.

As can be seen from Table 5, the trajectory errors of LiDAR
techniques are consistently lower than the remainingmethods
when there are no apparent signs of degeneration, as in 07_01
and 07_02. This indicates that the estimates are not only
accurate but also precise. Note that the evaluated error is cal-
culated over the integrated trajectory; thus, a small number of
estimates with significant deviations or multiple with minor
deviations, would cause the trajectory error to propagate
through the entire sequence, gradually or not. In fact, it is
noticeable that CT-ICP and F-LOAM/ISC-LOAM dominate
in most of the sequences, the last two being close versions
of the same method. While purely visual techniques, exclud-
ing learning-based, hold an average of 9.5 meters in aver-
age translation error, point cloud-based techniques present
a lower drift of 5.4 meters. In point cloud odometry, the
surrounding 3D structures are rendered directly, as opposed to
VO, in which the input is a 2D projection of the scene, subject
to pixel discretization and consequently loss of precision.
Moreover, while visual techniques’ perception is limited to
a small fraction of the involving space, common LiDARs
have a 360◦ horizontal coverage. This serves the purposes
of LiDAR-based techniques since motion estimation benefits
from dispersed points in space while being more resilient to
outliers. These direct comparisons help explain why point
cloud methods are usually more precise and robust. More-
over, unlike the original KITTI dataset, the point clouds are
not undistorted, so algorithms like MULLS, for instance,
deliver poorer performances than usual.

Concerning long sequences, such as 00_01 and 07_01
(Figures 9b and 9i), and regardless of the sensing modality
of the method, the accumulation of drift along the trajectory
will typically occur, as odometry is an integrative process.
For this reason, it is always worth relying on techniques that
correct the trajectory sporadically, such as mapping and loop
closure, as in SLAM algorithms, or the integration of precise
GPS measurements. Alternatively, combining multiple sen-
sors, as in Ramezani et al. [81], provides redundancy in self-
localization, which can avoid the drift tendency compared
to when there is only a single sensing reference. The com-
bination of exteroceptive (camera, LiDAR, RADAR, etc.)
and proprioceptive sensors (IMU), as in the last example,
is especially useful in terms of robustness. This is because the

nature of errors that affect these sensors is very distinct, and
they will not very likely be affected by the same conditions
of the environment.

Moreover, although the work of Ramezani et al. [81] out-
performs the remaining algorithms in only two sequences,
it comes out on top regarding the mean error across all
sequences, surpassing the top-performer CT-ICP by roughly
6% in terms of an average translation error. This result indi-
cates that the inclusion of a second data modality (inertial)
allows for a more stable performance, which despite being
outperformed in some cases, still performs consistently in all
tests, proving its ability to stay on track even in the face of the
described challenges

Just like the results shown on the original KITTI dataset,
the results presented by the learning-based methods still fall
far short of traditional methods. Although the tests performed
on the KITTI-360 do not have a significant representation at
the level of DLmethods, the magnitude of the errors obtained
and respective trajectories show that their performance is not
yet comparable to the visual methods of classical topology,
even when compared to baseline models. From raw data to
pose estimations, the visual odometry pipeline reflects a com-
plex problem which Deep Learning end-to-end approaches
cannot yet reproduce competitive results.

VII. CURRENT CHALLENGES AND LIMITATIONS OF
EGO-MOTION ESTIMATION
This section wraps up all the conclusions arising from the pre-
vious ones to characterize the current panorama of research
in odometry techniques for autonomous driving. The main
limiting factors of visual odometry are also identified, along
with some possibilities that may potentiate more accentuated
advances in this area.

The analysis conducted in Section V shows that the lat-
est improvements in terms of deviation from the trajectory
have been residual, regardless of the type of approach taken.
In fact, LOAM [44] for example, is eight years old and still
performs comparably to its most recent alternatives. It is also
noticeable that the increasing complexity in recent works is
not being followed by performance at the same rate. This phe-
nomenon may point out that conventional knowledge-based
approaches start showing signs of maturity and may be con-
verging to a development plateau. The two main barriers to
the evolution of these techniques are closely related to the
high complexity and unpredictability of real environments.
On the one hand, odometry systems need to be as robust as
possible to all kinds of adverse conditions, such as lighting
and weather, which are directly associated with the physical
sensing of the surroundings. On the other, the algorithms
should have the maximum abstraction possible so that per-
ception, at the software level, can withstand every kind of
scenario it may encounter, whether wide open or crowded
areas, with many dynamic objects or vegetation, for exam-
ple. Therefore, this is a joint generalization problem in the
physical and software domains.
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From a more specific point of view, the most relevant
hurdles related to visual and point cloud-based odometry can
fit into three categories: scene conditions, computational cost,
and dynamic objects.

A. SCENE CONDITIONS
Vision-based systems are highly susceptible to the environ-
ment’s visual appearance. Visual odometry, more specifically
feature-based VO, tends to underperform when the surround-
ing environment lacks a relevant number of high-quality
features that can be tracked in subsequent frames. This can
happen during a diverse set of scene conditions, in the night-
time when environment visibility is very low, or in adverse
conditions such as heavy rain or fog. Scenarios like a desert or
open field surrounded roads also tend to impact these meth-
ods because of the featureless nature of such environments.
Lighting variations can also impose additional difficulties,
especially in the case of direct visual odometry, as high
brightness variations, like the entrance of a dark tunnel, might
have a significant impact. This happens because the photo-
consistency assumption, which assumes a constant bright-
ness across sequential frames used in this type of approach,
does not work under these conditions. LiDAR-based tech-
niques, in turn, are not affected by lighting conditions. On the
other hand, LiDAR scans are highly affected by weather
and atmospheric conditions. Carballo et al. [84] tested twelve
different LiDAR models in adverse weather conditions like
heavy fog and rain, proving several limitations. For example,
in heavy rain, the laser beams reflected on raindrops create
‘‘rain pillars’’ in the scans that constitute a high noise level
in the point clouds, as shown in Figure 16. As mentioned
before, the laser beams’ wavelength can impact the sensor’s
performance in adverse conditions [64]. Laser-based sensors
are also heavily affected by reflectivity, failing to detect
objects with low reflective properties, such as glass. Like
VO, these methods also tend to fail in environments with
no apparent salient cues, such as country roads surrounded
by broad open fields. These limitations are corroborated by
the evaluation in the KITTI-360 dataset, where LiDAR-based
methods showed signs of degradation in performance. On the
other hand, as expected, these techniques did not report any
performance issues when faced with illumination variations.
The same cannot be said for visual odometry techniques.

B. COMPUTATIONAL COST
Limitations in terms of computing power and time should also
be addressed. This is especially important in the context of
autonomous driving, where the estimates should be provided
at a high enough rate to meet the demanding time constraints
associated with autonomous vehicles. Many authors use
high-performance hardware to develop their works, present-
ing a problem because mobile robots are normally equipped
with lower-grade hardware. This equipment might be unable
to run the algorithms at the required frequency for real-
time operation. In VO, computing times are essential if the
autonomous vehicle has several cameras, especially if the

FIGURE 16. LiDAR scan (top view) taken under heavy rain. The lasers
reflect on rain drops creating ‘‘rain pillars’’ [84].

captured images are high resolution, which can make the
amount of data to process unmanageable. One way to reduce
the computational burden involves carefully selecting fea-
tures instead of working with the entire raw images. Nonethe-
less, feature extraction/matching and outlier rejection tasks
may also consume a considerable amount of time. In point
cloud-based techniques, the same problems persist, with the
added cost related to the unordered nature of point clouds,
whose pre-processing operations can be time costly. One way
to order and store point clouds efficiently is by using octrees
or K-D trees, which allow fast multidimensional searches.

C. DYNAMIC OBJECTS
Dynamic object detection is of great interest while discussing
visual and laser odometry, especially in autonomous driv-
ing, as this type of object is widespread, i.e., other mov-
ing cars, pedestrians, and cyclists. While some authors take
dynamic objects into account, most do not. This means that
it is assumed that the world is static, which has significant
implications when estimating the ego-motion of a vehicle.
Dynamic objects, when not accounted for, introduce errors
in trajectory estimation. If moving objects are considered
static, the odometry computation will be based on wrong
assumptions, and the pose estimation will not be accurate.
It is also important to note that detecting dynamic objects can
be especially complicated in the area of autonomous driving,
as the sensor is mounted on a moving vehicle. Therefore the
detected motion has two components: the ego-motion (move-
ment of the sensor) and the object’s own motion, both related
to the same fixed frame. One way to distinguish these types
of motion is to complement odometry algorithms with addi-
tional sensors such as IMUs or GPS, to infer the ego-motion
and then extrapolate the detected object’s movement by sub-
traction. The evaluation done on the challenging scenarios
shows a significant decrease in accuracy when VO methods
are faced with highly dynamic environments, except for the
camera and IMU fusion method [81]. LiDAR-based methods
also tend to be more robust in this type of situation. This is
the case because VO algorithms tend to extract features from
moving objects (moving objects usually have salient visual
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FIGURE 17. ORB-SLAM2 extraction of features from moving vehicles. This
causes an altered ego-motion perception which leads to incorrect
odometry estimates.

features) if there are no proper masking operations, as shown
in Figure 17.

Motion analysis techniques, such as optical and scene flow,
are typical approaches to infer the dynamics of objects in the
scene [85]. It is possible to implement methods for moving
object segmentation using the flow fields inferred from opti-
cal flow algorithms. For example, in their works, Pinto et al.
[86], [87] propose various segmentation approaches to seg-
ment dynamic objects from a moving robotic platform. The
same concepts could be extended and used in autonomous
driving. Furthermore, with the recent advancements in optical
flow estimation using Deep Learning approaches such as
Flownet [88] and RAFT [89], dense flow estimation can be
calculated in an accurate and timely manner. Some of the
exposed methods in the above sections, such as ClusterVo,
SuMa++, and TVL-SLAM, already consider this problem
as they employ different techniques such as semantic seg-
mentation or reprojection strategies to filter out the unwanted
objects. While not directly related to the odometry task,
several authors propose methods for detecting and segment-
ing dynamic objects in the context of autonomous driving.
One example is the work of Chen et al. [90] that creates
residual images from the LiDAR scans and feeds them into
regular point cloud segmentation networks to identify the
moving objects. Pfreundschuh et al. [91] propose a method
to identify dynamic objects with an offline algorithm and
then use the labeled data to train a neural network capable of
detectingmoving obstacles in real-time. FuseMODNet [92] is
an example of a multi-modal approach that uses cameras and
LiDARs to detect moving obstacles in low-light scenarios.

D. RESEARCH OPPORTUNITIES
Multi-modal architectures have been demonstrated to provide
increased robustness in situations where one sensor com-
pensates for the failure of another. Nevertheless, the further
development of multi-modal approaches is still needed and
justified because there is a strong correlation between the rep-
resentation of the environment from the agent’s perspective
and the respective results, which tend to be better, the more
complete the representation is. Furthermore, a diverse and
complete set of collected data always provides better insights
and reliability. For these reasons, part of the limitations of
visual odometry algorithms, especially concerning environ-
ment sensing, can be mitigated by developing systems that
integrate multiple sensors and thus generate more accurate
and feasible estimates.

The problems of complex scenes and generalization, how-
ever, do not hold obvious solutions. In practice, and regarding
the actual sensing options available, it remains very challeng-
ing to formulate a reliable real-world model by hand, i.e. the
problem of odometry is affected by numerous factors that are
very difficult to detect and especially to generalize. Given the
wide variety of scenarios that can be encountered, from urban
landscapes with dozens of dynamic objects, to long desert
roadswith potentially very few landmarks to track, in addition
to the limitations of the sensors and associated noise. Conse-
quently, one viable option is to engineer the capacity of Deep
Learning to capture the more intricate underlying aspects in
data, that conventional methods have so far found difficult.

However, learning-based techniques still remain a long
way short of what is needed, at least for autonomous driving
scenarios. This conclusion is also supported by the results
obtained in the KITTI-360 evaluation in Section VI, although
the tests are not extensive in this domain. Also, data avail-
ability is still not large enough, and existing DL structures,
such as CNNs, which have dominated computer vision in the
last years, are ineffective in learning sequential data relations.
RNNs, in turn, are able to tackle this problem, but fall short
on capturing image features the same way CNNs are good
at. Therefore, it is frequent to find CNNs followed by RNNs,
as common solutions tend to adapt existing structures rather
than designing and tailoring them from scratch. Along this
line, as the employment of Deep Learning is highly flexible,
KeWang et al. [25] identify the need to bring new techniques
and architectures into visual/laser odometry as a future work
opportunity. Furthermore, recent works such as D3VO are
starting to approximate conventional methods, not through
end-to-end architectures, in which the learning process may
be too complex, but through learning-based sub-modules
that aim to complement the system chain, such as depth
prediction module, for instance. Another proposal that seems
unattended is the integration of deep-learning algorithms into
multi-modal architectures in an effort to leverage the afore-
mentioned advantages of both. Although new approaches are
emerging, the panorama of learning-based odometry is still in
a very premature state, and thus needs to progress to a more
advanced and suitable state for use in real-world cases, as it
is in other areas already.

VIII. CONCLUSION
This paper introduced some of the fundamental elements
of visual and point cloud-based odometry, as well as
an extensive survey of the current state-of-the-art. The
best-performing techniques were discussed in light of the
results obtained in the KITTI dataset. Furthermore, a rep-
resentative set of openly available methods, including
visual, point cloud, multi-modal and learning-based, were
evaluated in a series of challenging scenarios from the
KITTI-360 dataset. The results pointed out the predominance
of point cloud-based techniques concerning the trajectory
translational drift, presenting a 33.14% improvement over
visual methods. In particular, CT-ICP [42] achieved an error
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almost four times smaller than the rest of the assessed algo-
rithms and three times smaller than the other LiDAR-based
approaches. The benefits of multi-modal architectures were
also validated by the consistency presented in the results
obtained by a camera and IMU fusion from Ramezani et
al. [81]. The outcomes showed no signs of degeneration in
none of the evaluated scenarios as the different modalities
were able to mitigate the drawbacks of one another effi-
ciently. In fact, this algorithm exhibits greater consistency,
outperforming CT-ICP by 5.68% in the average trajectory
error across all scenarios. The reported results on the origi-
nal KITTI dataset also support these conclusions. The high
complexity and variability of the scenes, the weather, the
lighting conditions, the dynamic obstacles, and the compu-
tational costs were indexed as the most limiting factors in
the progress of odometry algorithms, as we identify a cur-
rent development plateau of traditional methods. This paper
reinforces the increased robustness of multi-modal methods
as part of the solution, and the necessity of studying and
developing better Deep Learning-based solutions to exploit
the data-driven modeling capabilities of these approaches,
as the current ones are still not competitive. Thereupon, join-
ing deep-learning algorithms and sensor fusion may also be
a promising breakthrough in research as it remains slightly
unexplored.
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