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ABSTRACT Aimed at solving the problems of frequent handover and large overheads for positioning in 6G,
this paper proposes a reinforcement learning (RL)-based visible light positioning (VLP) handover scheme
by means of a stereo camera system in which a lower handover rate and higher positioning accuracy were
achieved simultaneously. Because of the randomness of the distribution location of indoor light sources and
obstacles, even if the parameters of light sources and receivers are consistent, users cannot rely on unitary
and invariable parameters to determine whether to change the access point (AP) in the process of moving,
especially in some special locations. The proposed scheme, which decomposed the user’s moving track at
different speeds in a VLP system to optimize selecting the AP by using RL at each step, was exhibited and
tested. Experimental results show that the proposed scheme achieved millimeter-level positioning accuracy,
improved the normalized reward by over 40% and reduced the handover rate by 87% and 78% compared to
the immediate handover (IHO) and dwell handover (DHO) methods concurrently.

INDEX TERMS 6G, location-based services, visible light positioning, reinforcement learning, handover.

I. INTRODUCTION
Avisible light communication (VLC) base station is deployed
in the indoor base station of a 6G network [1], [2], provid-
ing users with an extremely high rate of data transmission
and high-accuracy positioning conditions for indoor loca-
tion services. Nevertheless, ultra-dense deployment of access
points (APs) is required to achieve effective visible light
coverage in large indoor spaces.

Indoor positioning technology based on VLC (also known
as visible light positioning, VLP) employs LED lamps to
transmit ID information, and the positioning terminal per-
forms indoor positioning through a photodetector (PD) or
camera. Owing to its advantages of high positioning accu-
racy and low cost, this technique has been widely studied
[3]. However, most VLP systems require at least three VLP
LED lamps for accurate position calculation. Therefore, this
limitation may restrict the application of VLPs in practical
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scenarios. Zhang et al. [4] proposed a single-LED-based VLP
system based on circular projection, with a redmarker provid-
ing additional information regarding direction. Nevertheless,
the computational cost of circular projection was high for a
positioning accuracy of only 17.52 cm. Hao et al. [5] pro-
posed using the calibrated inertial sensor of smartphones to
help single-LED position calculations with projective geom-
etry. Their system achieved a positioning accuracy of 16 cm.
Han et al. [6] proposed a plane intersection-line scheme
based on the geometric features of LED projection to improve
positioning accuracy regardless of whether the receiver was
horizontal or tilted. This approach achieved 3D average posi-
tioning errors of 5.58 cm.

In contrast, machine learning methods can be introduced
into VLP to improve positioning performance. These meth-
ods may significantly improve the performance. In recent
years, academia and industry have considered machine learn-
ing as an indispensable auxiliary tool for VLP systems [7],
[8]. Lin et al. [9] proposed a VLP system to estimate the
receiver’s position approximately based on decoded block
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coordinates and then obtain the position precisely by using a
typical backpropagation ANN. The experiments showed that
the proposed scheme provided a mean positioning error of
1.49 cm in 2D. Wu et al. [10] proposed a received-signal-
strength (RSS) based VLP system using sigmoid function
data preprocessing (SFDP) method, and apply it to kernel
ridge regression machine learning (KRRML) algorithm. The
experimental average positioning error of about 2 cm in both
horizontal and vertical directions. Du et al. [11] proposed a
3D indoor VLP system assisted by deep learning techniques
to learn from a series of samples labeled with their 3D loca-
tions to estimate a new sample. Furthermore, a new method
for relying on offline preparationwas adopted tominimize the
workload of VLP system deployment. However, these studies
have high computational complexity and long positioning
time. They are only suitable for offline processing and need
the support of high-performance computing devices.

In addition to accuracy and robustness, the real-time
performance of VLP is a major concern for its appli-
cation. Li et al. [12] proposed an unbalanced single-LED
VLP algorithm to increase the positioning accuracy and
reduce the computational complexity. Simultaneously, a fast
beacon searching algorithm was proposed to reduce the pro-
cessing time for each captured image. Consequently, the
average positioning time was reduced to 60 ms on a low-
end embedded platform. In [13], Guan et al. proposed a
triple-light positioning algorithm that requires solving binary
linear equations. In particular, the LED-ID detection and
recognition problems were processed by a machine learn-
ing algorithm, with a computational time of 65.50 ms.
On this basis, in [14], an extended Kalman filter (EKF)
was implemented for real-time 3D pose estimation (position
and orientation) by fusing the relative pose measurements
from the IMU with the absolute pose from the VLP mea-
surement. Consequently, the average calculation time was
approximately 33 ms on a low-cost embedded platform.
Furthermore, the optical flow method used in [15] to track
the LED substantially increased the computational cost and
running time of the VLP system. Xie et al. [16] proposed an
algorithm using the mean shift algorithm to track and locate
LEDs in the image sequence and an unscented Kalman filter
algorithm to predict the possible position of the LED in the
next frame. As a result, the computational cost of running the
complete algorithm was reduced, and the average processing
time was 24.93 ms. The above study suggests that real-time
performance can only be guaranteed when users access the
same AP for continuous positioning. However, when users
enter overlapping areas covered by different APs and need to
hand over, the user devices demand extra computational oper-
ations because of re-decoding and identifying the target AP.
Commercial cameras generally have a frame rate of 30 Hz,
which leaves only 30 ms to process each frame of the image.
The performance of image processing equipment at mobile
receivers is limited, so the real-time detection, decoding and
position estimation of target APs cannot be guaranteed due
to the pressure of computing time. This attribute increases

the delay, decreases positioning accuracy, and causes other
problems, reducing the quality of the user experience.

To avoid frequent handovers in an ultra-dense network, the
concept of handover skipping was introduced. The existing
research mainly focused on handover mechanisms based on
optimizing the QoS in the field of optical wireless commu-
nication. Wu et al. [17] proposed an RSRP-based handover
skipping method that uses a weighted average of the value
of RSRP and its rate of change. The authors determined
whether to skip a certain AP. As the rate of change in the
RSRP is related to the user velocity, this novel method is
sensitive to velocity. Moreover, AI methods have been con-
sidered an important part of 6G networking [18] and have
attracted considerable attention in optical wireless commu-
nication handover mechanisms. In particular, reinforcement
learning (RL) algorithms have been applied in AP selection
and handover mechanisms. Wang et al. proposed an adap-
tive optical wireless communication handover mechanism
for 6G networks with hybrid architectures by employing RL
to optimize the waiting time before the handover process
and reduce the interruption time incurred by the handovers
[19]. Seyed et al. [20] employed multiple millimeter-wave
radio frequency (RF) transmitters as complementary APs
for an optical wireless communication system in the case
of blockage. The study proposes a convolutional neural
network (CNN)-based algorithm consisting of offline and
online modes to dynamically tune the waiting time (WT)
and handover margin (HOM) based on alternating the SNR
values related to the serving of cooperating VLC transmitters
in consecutive time slots. These studies mainly focus on
enhancing the quality of communication service when users
are moving by optimizing the WT and HOM. Nevertheless,
in visible light indoor positioning, the influence of changing
AP on positioning accuracy when users move across regions
remains to be studied.

In addition to the handover problem of the VLC+RF
hybrid technology in a heterogeneous networking environ-
ment, the positioning handover problem based on VLC
should also be considered. Nevertheless, the above studies
focused on the boundaries where switching occurred and
optimizing HOM and WT, neglecting the balance between
positioning accuracy and handover rate under specific user
trajectories.

Because the single LED group plays the role of a AP in
a VLP with relatively limited coverage, an intensive deploy-
ment of APs is required in a 6G network [21], as shown in
Fig. 1. Due to the randomness of the distribution location
of indoor light sources and obstacles, as users move, the
target APs are frequently handover to maintain connectiv-
ity, which leads to more operations on target identification
and ID decoding. The higher the handover frequency is,
the higher the system overhead, and the poorer the service
quality. However, the ping-pong effect cannot be avoided by
the immediate handover scheme, and the special path cannot
be optimized by the dwell handover scheme. Therefore, this
scenario requires an AP adaptive handover mechanism to
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FIGURE 1. Indoor VLP scene with a random deployment of light sources
and obstacles.

balance handover efficiency and positioning accuracy and
reduce the impact of the AP handover on location services.
In this study, we propose an RL-based VLP handover scheme
with a stereo camera. Regarding the positioning mode, due to
the sensitivity of the PD to the beam direction, the mobility
of the positioning terminal is severely limited; therefore,
a positioningmode based on a stereo camera is adopted in this
study. Regarding the positioning handover strategy, a multi-
target cross-region positioning handover scheme based on a
stereo camera is proposed to balance the positioning accu-
racy and handover rate. Based on a previous study [22], the
positioning accuracy of users in the overlapping regions of
adjacent APs is evaluated, and the AP selection problem
is solved using the RL algorithm. The performance of the
proposed method is analyzed for the handover rate and posi-
tioning errors based on developed mathematical expressions.
Compared to optimization with the traditional case, the sim-
ulation results show that optimization with machine learning
is advantageous in terms of the handover rate and normalized
reward of positioning accuracy.

The remainder of this paper is organized as follows.
Section II describes the indoor VLP network system. Sub-
sequently, the handover scheme is described in Section III.
Then, a theoretical analysis using mathematical expressions
is presented in Section IV. The simulation results are pre-
sented in Section V. Finally, Section VI summarizes the
study.

II. VLP SYSTEM MODEL CONSIDERING HANDOVER
In a previous work [22], we introduced a positioning scheme
based on a stereo camera. An LED group comprising at
least three LEDs transmits their 3D coordinate information,
encoded by flicker mitigation, dimming, and expansion code.
As the LEDs are grouped, we assume that each LED is
placed at one of the three vertices of an equilateral right
triangle, lying in the same plane (i.e., all have the same
z-coordinate value). At the receiver, a stereo camera with a
given field of view 8 was used to receive the light signals
from the three LEDs spatially separated using two separate
lenses and capture the finger images based on the rolling-
shutter effect (RSE). Subsequently, the LED IDs, which were

coded by Flicker-Free coding with extending support [22],
were extracted quickly and effectively by image thresholding
segmentation processing techniques [23]. Note that the image
sensors are installed in the same plane at a known lateral
distance B, with their major axes coinciding. After camera
calibration, the lenses could have identical properties and
focal length f . The axis of each lens, normal to the image
sensor plane, intersects the center of the corresponding image
sensor. Hence, the coordinates can be calculated from geo-
metric relationships and optimized from the bilinear interpo-
lation function. In this study, we mainly focus on the impact
of AP handover on the quality of location service. Therefore,
for the convenience of the study, the positioning accuracy is
converted to the distance between the user and the center of
the area covered by the AP, without considering the specific
positioning accuracy value of the positioning scheme. Note
that stereo cameras have obvious advantages for distance
detection.

We present the VLP scheme for connecting stereo cameras
to multiple LED groups (APs) as follows. The geometric rela-
tionship of the proposed system model is detailed in Fig. 2.
consider an indoor positioning scenario comprising several
LED groups. Each group has identical physical character-
istics but different coordinate information. Generally, the
camera sensor is rectangular, while the stereo camera adopted
at the receiver captures visible LED groups simultaneously
through two lenses. Hence, the moving range of the receiver
is an inscribed square of the coverage range of the LEDgroup,
as shown in Figure 2 (a). The overlap region between
the LED groups is si,j = R (L − R) − (L−R)2

2 , where i and
j denote the adjacent groups, whose corresponding distance
is denoted by R, and L is the edge length of the effective
coverage region of the camera under the single LED group.

The user moves around the room according to the random
waypoint (RWP) model. The handover process is initiated in
the overlapping regions si,j. Moreover, no limitation is placed
on either the direction or movement of the user, as shown
in Fig. 2(b). Let P1, P2 and P3 denote the centers of the
three reference LEDs equipped in Group B (GB). Point O
represents the midpoint of the straight line joining the centers
of the two lenses. Moreover, the centroids of the projection
area for GA and GB are denoted as PA and PB, respectively.
Fig. 2(c) and Fig. 2(d) show the procedure for determining
the horizontal distance between point O and the LED group.
If the distances between the center of the image and that

of the image sensors are i1 and i2 and their projections on the
major axis of the image sensors are x1 and x2, then k1, k2, and
k3, the horizontal distances of point O from the three LEDs,
can be calculated from the geometric relationship between the
distance and the position difference of the LED images on the
two image sensors as follows:

h =
f × B
|x1 − x2|

, (1)

m =
i1 × h
f

, n =
i2 × h
f

, (2)
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FIGURE 2. Diagram of the proposed system model: (a) and (b) camera detection range and overlapping region, (c) and (d) geometry diagram
of the procedure for determining the distance di.

k1 =

√
2
2

√
m2 −

1
2
B2 + n2 (3)

where h is the height of the LED groups from the ground, f
and B are known, and k2 and k3 can be obtained similarly.
Here, 1P1P2P3 is an isosceles right triangle; hence, the
horizontal distance between O and PB can be represented by
dB and calculated as follows:

cos θ =
k21 + 2l2 − k23

2
√
2 lk1

, (4)

k4 =

√
k21 +

1
2
l2 −
√
2 lk1 cos θ, (5)

cosψ =
k22 +

1
2 l

2
− k24

√
2lk2

, (6)

dB =

√
k22 +

2
9
l2 −

√
2
3
lk2 cosψ. (7)

Similarly, the horizontal distance di between O and the
centroid of the projection area can be obtained for the other
LED groups.

III. MULTI-TARGET CROSS-REGION POSITIONING
HANDOVER SCHEME
In indoor multi-LED group coverage positioning systems, the
signal coverage range of a single LED group is limited; there-
fore, multi-user positioning switching between adjacent LED
groups is a necessary component to maintain connectivity
and positioning accuracy in a complex signal environment.
In this section, two problems should be solved to select the
best LED group and ensure QoS. The first problem is select-
ing the appropriate decision conditions providing the desired
handover. In this regard, we propose a positioning accuracy
(PA)-based handover scheme using the rate of change in the
PA to indicate whether a user travels toward the central area
of the LED group. The second problem is to establish a
path for LED group selection to obtain the maximum PA.
Thus, a heuristic RL-based optimization selection algorithm

is designed to optimize the path of the LED group selection.
In the previous section, the distance from the LED group
was known, and the users’ movement direction could be
easily obtained by calculating the included angle between the
position of the target AP imaging in the sensor plane and the
center axis of the sensor. Fig. 3 illustrates the movement path
of a user covered by several cells. Here, we considered three
movement scenarios to evaluate the proposed algorithm.

Path 1: The user is directly transferred from LED Group J
to LED Group I (GJ →GI) by crossing a single overlapping
area (OA). The PA of the target LED group continues to
increase until it is higher than the threshold, initiating han-
dover. The immediate handover (IHO) method, which always
chooses the group providing the highest PA, is applied to this
simple straight-path scenario.

Path 2: The user moves from GV to GS via GU, thus
crossing the two OAs. The IHO hands over the user from
GV to GU and then from GU to GS, even though the GU user
crosses rapidly. To suppress frequent handovers, the standard
handover scheme in long-term evolution (LTE) [24] considers
the idea of hysteresis, which delays the handover decision
for a certain amount of time, as shown in Fig. 3. We set the
dwell time tdw to ensure continuity in tracking the reference
LEDgroup andmaintain the original link asmuch as possible.
Based on the dwell handover (DHO) scheme, two options are
available for selecting the best LED group. In option I, GU is
selected, and the path from GV to GS is GV →GU →GS.
We found that the user is still in the GU area when tdw
expires and switches to PAmax. In contrast, option II skips
the GU to suppress frequent switching. The path from GV
to GS is GV →GS. However, when the user crosses the
border between GV and GU, GU offers a higher PA than GS.
However, it offers a residence time of less than tdw; this option
lowers the handover cost. Note that for the two options, the
PA from the source to the destination is monitored. A higher
positioning accuracy or a lower HO rate is obtained by setting
the value of tdw. Nevertheless, the DHO scheme cannot skip

VOLUME 10, 2022 76515



B. Zhang et al.: RL-Based VLP and Handover Scheme With Stereo-Camera

FIGURE 3. Schematic diagram of the visible light positioning handover scheme.

LED groups where the user stays longer, even slightly longer
than tdw.
Path 3: The user performs the reciprocating motion by con-

stantly changing the direction from GA to GL, crossing many
OAs and resulting in a ping-pong effect. The DHO scheme
can guarantee a minimum connection time, typically limited
to hundreds of milliseconds. As shown in Fig. 2, obstacles
block the user, and the path does not arrive at the center of
the GC and GE. However, this handover scheme cannot skip
the LED groups because the stay duration of the user is much
longer than tT . Therefore, we propose a policy for selecting
optimal LED groups based on an RL algorithm considering
handover rates and PA. In this regard, policy evaluation com-
putes the state- and action-value functions for a policy. Thus,
the control problem involves determining the optimal policy.
Moreover, planning constructs a value function or policy by
using a particular model. As shown in Fig. 3, the coverage
area of the camera under a single LED group is divided by
a grid whose size represents the user’s moving speed (the
larger the grid is, the higher the speed). In each cell, the user
is located in (ct ), and the group is accessed at that moment
(Gt ), constituting a state space S. Then, the user switches
to an adjacent group or maintains the original, forming an
action space A. At each time step t , the user receives the
state st (ct ,Gt) in S and selects an action fromA, following a

policyπ (at | st), selecting the LED groups. Subsequently, the
scalar reward rt , which transfers to the next state st+1, can be
obtained according to the distribution of PA in the coverage
area and handover delay for the reward function R (s, a) and
state transition probability P (st+1 | st , at), respectively. This
process continues until the user reaches the terminal state and
then restarts. The purpose is to find a policy that achieves
the largest reward. Evidently, the reward is determined by the
current state and subsequent states; thus, the proposed scheme
can suppress the ping-pong effect.

IV. THEORETICAL PERFORMANCE ANALYSIS BY
INTRODUCING THE RL ALGORITHM
In this section, the theoretical performance of the proposed
handover scheme is analyzed for an arbitrary line trajectory.
We assume that LED groups are evenly distributed on the
ceiling, and several users are wandering on various routes.
The positions of the users can be detected separately based
on the spatial reusability of the image sensors, and the inter-
ference of different users can be ignored. As shown in Fig. 4,
we employed the normalized PA to represent the distance
from the user to the LED groups. A higher PA implies that
the corresponding LED group is closer to the user. The posi-
tioning accuracy follows the cumulative distribution func-
tion (CDF) of the Poisson distribution and decreases with
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FIGURE 4. (a) Positioning error distribution under single LED group obtained through experiments. (b) Illustration of LED
group selection based on PA.

increasing distance from the center of the LED coverage area.
The PA of the user under LED Group i can be expressed as
follows:

PA (di) =
∫ di

0

λK(x)

K (x)!
e−λdx, (8)

K (di) =
k (L/2− di)

L/2
, (9)

where di represents the horizontal distance between the user
and the centroid of one LED group, and λ and k are Pois-
son distribution parameters. Based on the experimental data,
as shown in Fig. 4(a), the curve of positioning error variation
was fitted. The vertical height was selected as 3m in subse-
quent simulation, λ and K were set as 10 and 20 respectively.
Note that the length of the effective coverage region of the
camera under the single LEDGroup L depends on the vertical
height of the camera from the ceiling and the camera’s field-
of-view angle, given as L = h ∗ tanϕ.

In particular, the positioning accuracy decreases when the
distance di increases. Therefore, this study only focuses on
the horizontal distance di between the user and LED groups;
the difference in positioning accuracy caused by different
positioning schemes is not discussed here.

The ping-pong effect is avoided by introducing the fol-
lowing two parameters into the handover scheme: handover
delay (HD) and time to dwell (tdw), as in LTE [24]. As shown
in Fig. 4(b), the PAs of the source and target LED groups are
denoted as PA (dS) and PA (dT ), respectively. Let δHD denote
the HD value. For comparison, all the handover schemes
employ the same δHD and start the process when the following
condition is satisfied:

PA (dT ) > PA (dS)+ δHD. (10)

A. HANDOVER RATE
Introducing the handover scheme inevitably leads to the
receiver reidentifying and locating the new access LED group
under the coverage of multiple LED groups. Frequent han-
dovers may increase the computational load of the system
and the communication delay of users in the VLP system,

decreasing positioning accuracy, delayed updating of posi-
tioning information, and even interruption. Therefore, the
handover rate, which directly reflects the handover frequency
of users during the movement process, is a crucial indicator
of the performance of the VLP system.

Let ξ denote the overall set of overlapping area boundaries
of two adjacent LED groups, whose distances to the two
LED groups are the same. This distance is less than or equal
to the distances to all the other LED groups. Whenever an
active user cross ξ , the reference LED group changes; thus,
a handover occurs. Let L denote the trajectory of the user,
which is finite in length. Handovers occur at the intersections
between L and ξ , and the number of handovers experienced
by the user equals the number of intersections between L

and ξ , denoted by N (L, ξ). To track this number, we should
first study the length intensity of ξ , denoted by µ (ξ). As the
developed system is single-tier [25], we have

µ (ξ) = 2
√
ρ = 2

√∫ R/2

0
x
∑

di≤x
PA (di)dx (11)

where ρ represents the expected intensity of PA in a sin-
gle coverage area, R is the distance between adjacent LED
groups, andPA (di) is given by (8). Note that a higher intensity
of ξ increases the boundary-crossing opportunities and thus
increases the HO rate.

According to [26], the expected number of intersections
between an arbitrary curve and a stationary boundary is π /2
multiplied by the length of the curve and the length intensity
of the boundary. Therefore, the expected number of intersec-
tions between L and ξ is as follows:

E (N (L, ξ)) =
2
π
µ (ξ) |L| (12)

where |L| denotes the length of L.
Finally, let Rho denote the handover rate; then, we derive

the handoff rates from (11)– (12):

Rho =
4v
π

√∫ R/2

0
x
∑

di≤x
PA (di)dx |L| , (13)

where v denotes the velocity of an active user.
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Algorithm 1 RL Algorithm
Input: The position of each LED group, user’s path, user’s speed,
and iteration number M .
Output: Q action-value function (from which a policy and select
actions are obtained), the max reward of the policy, and the handover
rate of the policy.
1: Initialize the simulation scenario env
2: Initialize the PA of each LED group at different positions as
reward rt
3: Initialize the length of the sampled path T
4: // Sample the user’s path based on the user’s speed
5: for episode = 1 to M do
6: Reset the simulation scenario env
7: sum reward⇐0
8: Initialize sequence s1 (c1,G1) and selected LED group sequence
φ1 = { }
9: for t = 1 to T do
10: following the ε-greedy policy, select

11: at =

{
a random action with probability ε
argmax Q (st , at ) otherwise

12: observe reward rt and next state st+1
13: sum reward⇐ sum reward +rt
14: φt+1 ⇐ st+1

(
,Gt+1

)
15: following γ , update Table Q
16: Qt (st , at ) ⇐ Qt (st , at ) + α[rt + γQt+1

(
st+1, at+1

)
−

Qt (st , at )]
17: end
18: if sum reward > max reward do
19: max reward⇐ sum reward
20: end
21: end

B. REWARD FUNCTION
The reward function is defined as the sum of the PAs obtained
by the user moving each step under the LED groups until
the terminal state is reached. Moreover, the impact of the
handover delay should be considered. The reward rt at each
step can be expressed as follows:

rt =

{
PA (di)× (1t − tHD) Switch LED group
PA (di)×1t else,

(14)

where 1t represents the dwell time for each step, which
depends on the velocity of the active user v, and tHD is the
handover delay time. Note that when tHD is greater than 1t ,
the reward for the next step is negatively affected. In an
episodic problem, rewards are accumulated until the user
reaches the terminal state and then restarts. If any LED group
is found at each1t , the connection is successfully established
from the source to the destination. Otherwise, the location
service is blocked. The action value is given as follows:

Q (s, a) = E[Rt |St = s, at = a], (15)

where Rt =
∑
∞

k=0 γ
krt+k is the expected return for selecting

action a in the state. The return is the discounted accumulated
reward with a discount factor γ ∈ (0, 1].

The aim is to find a policy maximizing the expected future
reward. An optimal policy is to select the best time to switch
to the nearby LED group for each state. In addition, the
optimal reward value is the maximum positioning accuracy

TABLE 1. Parameter configuration.

FIGURE 5. Simulation environment map and user-movement path
diagram.

from the source to the destination. The problemwas set up in a
discrete state and action space. RL can operate in amodel-free
approach by wandering in the graph according to some policy
without global information.

Furthermore, Q-learning is a temporal difference (TD)
control method that is central to RL. Q-learning learns the
action-value function Q (s, a) direct experience with TD
error, with bootstrapping, in a model-free, online, and fully
incremental manner. The update rule is as follows:

Qt (st , at)

⇐ Qt (st , at)+ α [rt + γQt+1 (st+1, at+1)− Qt (st , at)] ,

(16)

where α is the learning rate and rt + γQt+1 (st+1, at+1) −
Qt (st , at) is the TD error. Algorithm 1 presents the pseu-
docode of the Q-learning algorithm. Specifically, it is Q (0)
learning, where ‘‘0’’ indicates that it is based on one-step
returns.
The user’s movement track was recorded by a stereo-

camera at a fixed frame rate FPS, and the theoretical
maximum value of PA at each step was 1. Therefore, the
theoretical maximum value of the maximum reward of
positioning accuracy is |L| /v × FPS. To facilitate compar-
ison, normalized data processing was adopted to compare
the effects of the proposed handover scheme on positioning
accuracy, denoted as the normalized reward of PA.

V. SIMULATION AND ANALYSIS OF RESULTS
An experimental system was established using experimental
VLP data and typical parameters reported for commercially
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available devices. The systemwas used to simulate the indica-
tors of the proposed AP selection algorithm and evaluate the
normalization positioning accuracy and handover rate of the
proposed algorithm. The simulation environment compris-
ing 24 Aps on the ceiling, as shown in Fig. 5, was developed
in Python. The separation between the two nearest Aps was
fixed at 3 m, and the coverage area of each AP was set to
4 m according to the camera’s field of view angle and the
distance from the roof to the camera (set as 3 m). The size of
our map model was 15 × 21 m, divided into grids according
to the movement speed of the user device. We set up two
movement paths: a complex path S1(4,13) – T1(19,4) and a
simple path S2(16.13) – T2(15,3), represented in blue and red,
respectively. The user devices move from the starting position
to the target position at different speeds along these paths. The
user is assumed to have the same communication conditions
within the coverage area of each AP. The parameter con-
figurations are listed in Table 1. Moreover, the results were
compared with those of the IHO and DHO algorithms. In the
simulations, we used the handover rate and the normalized
reward of positioning accuracy to measure the performance
of the proposed algorithm.

As mentioned in the previous section, the handover rate
could not be reduced due to the randomness of user move-
ment in the coverage overlap area of different Aps (up to
four Aps), and more importantly, the system performance
in judging whether to switch target Aps based only on real-
time positioning accuracy could not be improved. Therefore,
a lower handover rate improves network performance when
the normalized reward of PA of the user after completing the
mobile process is sufficient.

A. THE IMPACT OF THE WEIGHT COEFFICIENT
First, we studied the effect of the RL parameters on the per-
formance of the proposedmethod. The following factors were
studied: ε-greedy, discount factors, γ , and the learning rate,
α. The reward function was used as a standard to determine
the parameter values.
α guides adjusting the gradient of the loss function. If α

is substantially large, the gradient descent can overshoot the
minimum value. However, it may fail to converge or diverge.
The lower the learning rate is, the slower the loss function
variation. Although using a low learning rate ensures that
no local minima are missed, this attribute also implies that
the convergence process is more time-consuming. As shown
in Fig. 6, when the training episode is higher than 8000,
the normalized reward of PA with either of three α values
show an obvious convergence trend and the same limit value.
Moreover, the fastest convergence rate is obtained when α
is 0.3.

For the trade-off between exploring uncertain policies and
exploiting the current best policy, we introduce a simple
approach, that is, ε-greedy, where ε ∈ (0,1). In ε-greedy,
the user selects a greedy action at for the current state st ,
with probability 1 - ε. Then, the user selects a random action
with probability ε. That is, the user exploits the current value

FIGURE 6. Convergence performance comparison for different values
of α.

FIGURE 7. Normalization reward versus ε.

function maxQ (st , at) estimation with probability 1 - ε and
explores with probability ε. As shown in Fig. 7, a very
small ε causes the algorithm to fall into a local minimum.
Thus, obtaining the optimal solution is challenging. However,
an excessively large ε causes unnecessary handover skipping.

As illustrated in Fig. 8, we selected three exploration rates
ε (ε = 0.08, 0.2, and 0.3) to obtain their reward of PA.
Evidently, the maximum reward of PA can be obtained when
ε = 0.08. Furthermore, with increasing ε, the convergence
performance and the optimal value decreases. The reason is
that although an increase in ε might bring more exploration
opportunities to avoid converging to a poor local optimal
value, it negatively affects the existing positive learning expe-
rience. This result is consistent with the conclusions pre-
sented in Fig. 7. In addition, we compare four discount factors
γ regarding the reward of PA convergence with different
exploration rates ε. Compared to the other three subgraphs,
the convergence speed of the average return value is the
fastest when γ = 0.7, and the normalized reward of PA
shows an evident divergence trend with increasing γ . Note
that the discount factor γ should be between zero and one,
as stated in (15). If γ is 0, only the current reward is con-
sidered, implying that a shortsighted strategy is adopted. The
larger the value of γ is, the greater the impact of future
benefits on the value of the current action. However, a large
value of γ implies that the future benefits considered by the
algorithm are far beyond the scope of the current behavior,
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FIGURE 8. Convergence performance comparison for different values of γ and ε.

which is obviously unreasonable. Therefore, in subsequent
experiments, the value of γ is set to 0.7.

B. HANDOVER RATE AND NORMALIZED REWARD OF PA
Second, considering the handover rate and normalized reward
of PA, the positioning service quality of the proposed
scheme was evaluated and compared with the IHO and DHO
schemes. Fig. 9 and Fig. 10 show the quality of positioning
service as users move at different speeds over simple and
complex paths, respectively. Obviously, when the path is
simple and has fewer obstacles, the gap between the proposed
scheme and the other two schemes is small. The proposed
scheme and DHO scheme can skip unnecessary handover,
so the handover rate is better than IHO, as shown in Fig. 9(a).
However, from the perspective of the normalized reward of
the PA value, the overall positioning accuracy is not signif-
icantly improved, especially when the user moves slowly,
as shown in Fig. 9(b). Nevertheless, for complex paths, the
optimization effect of the proposed scheme is impressive.
Fig. 10(a) shows a decrease in the handover rate when the
proposed approach is comparedwith the IHO andDHOmeth-
ods. Three outcomes are observed: i) compared with the base-
line methods, the proposed scheme can effectively decrease
the handover rate for different user speeds; ii) the IHOmethod
shows the same performance as the DHO method for the
handover rate when the UD movement speed is 1 m/s, which
may be very slow for the dwell time tdw in DHO; and iii) as the
user’s speed increases, the gap in the handover rate between

different schemes increases. At v = 1 m/s, the proposed
method achieves a handover rate that is 75% smaller than
that of the DHO. When v is increased to 3 m/s, the gap
decreases to 58%. For v = 5 m/s, the proposed approach
reduces the handover rate by 78% and 87% compared with
the DHO and IHO methods, respectively. However, a simple
comparison of the handover rates does not completely reflect
the advantages and disadvantages of the schemes; therefore,
we also compared the normalized reward values of PA.

The results of the normalized reward of PA are shown in
Fig. 10(b). Note that as the user speed increases, the nor-
malized reward of PA decreases for all three schemes. This
result is due to the higher handover rate of a shorter duration
under a single AP coverage area with increasing user speed.
The proposed scheme has the highest reward of PA and the
lowest handover rate when the speed is fixed. The figure also
shows that the IHO scheme outperforms the DHO scheme on
the reward of PA at speeds lower than 2 m/s. However, the
DHO scheme has a higher handover rate. The reason is that
the dwell time makes the DHO scheme miss opportunities for
a more accurate position. At speeds greater than 2 m/s, the
dwell time can help the DHO scheme achieve a better reward
of PA values. Fig. 10(b) shows that the proposed scheme
outperforms the IHO and DHO schemes by 11% and 22%,
respectively, in terms of the normalized reward of PA when
the user movement speed is 1 m/s. Moreover, for v = 5 m/s,
the proposed approach increases the normalized reward of PA
by over 40% compared with the DHO and IHO methods.
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FIGURE 9. Simple path: (a) Handover rate versus the user speed. (b) Normalized reward of PA versus the user speed.

FIGURE 10. Complex path: (a) Handover rate versus the user speed. (b) Normalized reward of PA versus the user speed.

VI. CONCLUSION
Due to the intensive deployment of APs on 6G networks,
to avoid frequent switching, this paper proposes an RL-based
VLP handover scheme using a stereo camera. Since the
accuracy of the positioning algorithm based on a camera
sensor is related to the distance between the receiver and
the target AP, a fast PA evaluation method was proposed
based on the convenience of distance estimation by a stereo
camera. Moreover, due to the randomness of indoor light
sources and obstacle distribution locations, an AP adaptive
handover mechanism based on the RL algorithm was pro-
posed to balance the handover rate and positioning accuracy
to reduce the impact of AP handover on location services. The
simulation results showed that when the user moved rapidly,
the proposed approach reduced the handover rate by 78%
and 87% compared with the DHO and IHO methods, respec-
tively. Finally, the proposed scheme improved the normalized
reward of PA by over 40% compared to DHO and IHO.
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