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ABSTRACT In massive machine-type communications (mMTC), user-specific and non-orthogonal sig-
natures can be assigned to wireless devices for uplink grant-free access. In this paper, we analyze the
performance of signature-based grant-free random access in the presence of an adversary. To enhance the
access security, we assume that an mMTC system renews the signatures of legitimate devices at each access
secretly between the devices and a base station (BS). To gain unauthorized access to this mMTC system, we
assume that the adversary attempts to impersonate legitimate devices by sending malicious signatures to the
BS. By this impersonation attack, the adversary takes a chance to modify the data transmitted from legitimate
devices and/or inject false data to the system. Moreover, this attack may deteriorate the performance of
activity detection of legitimate devices through jamming. Under this scenario, we investigate the impacts
of this impersonation attack on the performance of signature-based grant-free access theoretically and
numerically, with respect to data modification, false authentication, and jamming.

INDEX TERMS Grant-free access, impersonation attacks, massivemachine-type communications (mMTC),
signatures.

I. INTRODUCTION
Massive machine-type communications (mMTC) aims to
connect a massive number of wireless devices with low
latency, low control overhead, and low power consumption
for delay-sensitive, energy efficient, and secure communi-
cations [1], [2]. Through massive connectivity, mMTC pro-
vides a concrete platform for the Internet of Things (IoT).
In an mMTC cell, non-orthogonal signature sequences can
be uniquely assigned to all devices for massive connectiv-
ity [3], [4]. Also, grant-free access is considered for reduc-
ing signaling overhead and achieving low latency in uplink
access. Allowingmultiple devices to share common resources
non-orthogonally with low signaling overhead, uplink grant-
free access is of paramount interest for enabling low latency
and high energy efficiency in mMTC [5].
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Unfortunately, grant-free access is inherently vulnerable
to potential attacks from an adversary, due to openness of
wireless channels and non-discriminating access of devices.
For instance, an adversary may intercept messages from
legitimate devices by eavesdropping, which breaks the data
confidentiality [6]. Also, an adversary pretends to be legit-
imate to gain unauthorized access to a system, breaking
the device integrity. Moreover, an adversary can disrupt
wireless access of legitimate devices by transmitting jam-
ming signals. Several techniques have been proposed to pre-
vent eavesdropping [7], [8], verify the legitimacy of devices
[9]–[11], and mitigate jamming attacks [12]–[14], in an
effort to enhance the security of wireless access. Readers are
referred to [15]–[17] for surveys on challenges and threats to
wireless access at physical layer.

In signature-based grant-free random access, a connection
of wireless devices can be tampered by an adversary’s attempt
to impersonate legitimate devices. In specific, an adversary
may attempt to gain unauthorized access to an mMTC system
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by sending some legitimate signatures to a base station (BS).
If it succeeds in the impersonation attack, the adversary
takes a chance to modify the data transmitted from legitimate
devices and/or inject false data to the system. Also, the adver-
sary may deteriorate the performance of activity detection of
legitimate devices by introducing jamming. To the best of our
knowledge, no studies have been reported for scrutinizing
the impacts of this impersonation attack on signature-based
grant-free access.

In [18], a conceptual code-based authentication has been
studied with a codebook and its randomly chosen subset,
where the knowledge of the subset is a secret shared by a
sender and its recipient. Inspired by this idea, we assume a
signature-based grant-free access in which unique signatures
are assigned and renewed secretly for legitimate devices.
In specific, a set of all possible signatures is defined as a
codebook, where a subset is randomly chosen at each access.
Then, the signatures of the subset are uniquely assigned to all
legitimate devices in an mMTC cell. While the codebook is
publicly known, the random choice of a subset for signature
renewal is a secret shared by a BS and legitimate devices.
At each access, a BS and all legitimate devices renew the
signatures in a coordinated manner using the secret infor-
mation, to prevent a potential impersonation attack from an
adversary.

In this access model, we assume that an adversary will
choose some signatures arbitrarily from the publicly known
codebook with no knowledge of the subset of legitimate
signatures. Then, it will transmit the malicious signatures
to a BS to impersonate legitimate devices. To analyze the
impacts of this impersonation attack, this paper first derives
an upper bound on the data modification rate, which reflects
howmanymalicious signatures successfully detected by a BS
coincide with active legitimate ones. Due to the coincidence,
the adversary takes a chance to impersonate active legitimate
devices. Thus, the analysis of data modification rate gives an
insight into the resilience of signature-based grant-free access
against the alteration of data transmitted from legitimate
devices. In addition, we develop an upper bound on the false
authentication rate, which reflects how many malicious sig-
natures detected by a BS coincidewith legitimate, but inactive
ones. This analysis shows the security against false data injec-
tion through unauthorized access of the malicious signatures.
Finally, we investigate the effect of jamming on the perfor-
mance of activity detection by evaluating the equivalent noise
power from the malicious signatures not coinciding with any
legitimate ones.

To evaluate the impacts of this impersonation attack, we
employ the Zadoff-Chu (ZC) signature sequences [19] for
signature-based grant-free random access in a single mMTC
cell. Simulation results demonstrate that if the number of
malicious signatures is not too large, the data modification
and the false authentication rates are tightly bounded by their
upper bounds, respectively. As predicted by the theoretical
results, we observe that the rates increase over the number of
malicious signatures, but they are little affected by the adver-

sary’s total power. Also, it turns out that false authentication
can be a more serious threat than data modification, against
signature-based grant-free random access.

Meanwhile, the goodputs of activity detection for legit-
imate devices show that the adverse effect of jamming
strengthens as the adversary’s total power increases, but
appears to be irrelevant to the number of malicious sig-
natures, which is also in line with our theoretical result.
Numerical results reveal that jamming introduces the addi-
tive, non-Gaussian distributed noise with the equivalent noise
power. As the adversary moves far away from the BS,
we observe that the false authentication rate drops and the
goodput of legitimate devices improves, whereas the data
modification rate is irrelevant to the adversary’s distance
from the BS.

In summary, we study the performance of signature-
based grant-free random access under impersonation attacks,
through theoretical analysis and extensive simulations.
By investigating data modification rates, false authentication
rates, and goodputs, this paper gives us an insight into the
resilience of the access scheme against the impersonation
attack, which is the main contribution.
Notations: In this paper, a matrix (or a vector) is rep-

resented by a bold-face upper (or a lower) case letter. XT

denotes the transpose of a matrix X, while X∗ is its conjugate
transpose. diag(x) denotes a diagonal matrix whose diagonal
entries are from a vector x. The inner product of vectors x
and y is denoted by 〈x, y〉. The lp-norm of x is denoted by

||x||p =
(∑N

k=1 |xk |
p
) 1
p
for 1 ≤ p <∞. The Frobenius norm

of a matrix X = [Xi,j] is denoted by ‖X‖F =
√∑

i,j

∣∣Xi,j∣∣2.
A circularly symmetric complex Gaussian random vector
with meanm and covariance6 is denoted by h ∼ CN (m,6).
Finally, B(n, p) denotes the binomial distribution of n inde-
pendent Bernoulli trials each with success probability p.

II. SYSTEM MODEL
A. UPLINK GRANT-FREE RANDOM ACCESS
In this paper, we consider a two-phase grant-free access
scheme [20], [21] for single-cell massive connectivity. In an
mMTC cell, a base station (BS) receiver equipped with J
antennas accommodates total N devices each of which trans-
mits with a single antenna. For a fully grant-free access, we
assume that devices are static in a cell and thus BS accom-
modates a fixed set of devices having their own user-specific
signatures. In the first phase, each active device transmits its
signature sequence as a dedicated pilot. Then, the BS receiver
tries to identify active devices and estimate their channel
profiles from the superimposed pilots. In the second-phase,
data can be directly transmitted from the active devices with
no grant from BS. In this two-phase scheme, we assume that
the channels and the device activity remain unchanged during
L slots for pilot and data transmissions. Figure 1 illustrates
this system model.
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FIGURE 1. Two-phase grant-free access scheme with multiple receiver
antennas.

In each access, an activity indicator vector can be defined
by α = (α1, . . . , αN )T with

αn =

{
1, if device n is active,
0, otherwise,

where S = {n | αn = 1} is a set of active devices and the
number of active devices is |S| =

∑N
n=1 αn = K � N

due to sparse activity. At each access, a device is active with
probability pd in an i.i.d. manner, i.e., Pr[αn = 1] = pd .
If device n is active, it transmits its unique signature sn =
(s1,n, . . . , sM ,n)T for grant-free random access, where M <

N . In this paper, we assume that active devices transmit their
signatures synchronously with the same transmit power ρ.
Under the flat Rayleigh fading channel, we assume that the

channel gain remains unchanged during the coherence time
interval of L slots. Let hn = (h(1)n , . . . , h

(J )
n )T , 1 ≤ n ≤ N , be

a channel vector from device n, where h(t)n is the channel gain
between device n and the BS receiver antenna t . Then, hn ∼
CN (0, βnI), where the path-loss component βn is determined
by the device location from the BS. At the BS receiver, the
received signal at antenna t is represented by

y(t) =
√
ξ

N∑
n=1

αnh(t)n sn + w(t)
=
√
ξSx(t) + w(t), (1)

where ξ = ρM and x(t) = (α1h
(t)
1 , . . . , αNh

(t)
N )T for 1 ≤ t ≤

J . In (1), S = [s1, . . . , sN ] ∈ CM×N is a matrix of signature
sequences, and w(t)

∼ CN (0, σ 2
wI) is the complex Gaussian

noise vector at antenna t .
Collecting the received signal of (1) from J antennas, we

have a multiple measurement vector (MMV) model of

Y =
√
ξSX+W, (2)

where Y =
[
y(1), . . . , y(J )

]
, X =

[
x(1), . . . , x(J )

]
, and W =[

w(1), . . . ,w(J )
]
, respectively. Due to the activity indicator

α, it is clear that X is jointly sparse with K nonzero and
N − K zero rows. To solve the MMV problem of (2), a BS
can deploy a joint sparse recovery algorithm, which allows to
detect the activity indicator α and estimate the channel vector
hn for n ∈ S. If the nonzero rows of X are estimated, the row

indices mean a detected index set of active devices, denoted
by Ŝ, while the coefficients of each nonzero row give an esti-
mated channel vector ĥn for n ∈ Ŝ. The compressed sensing
(CS) [22] based joint active user detection (AUD) and channel
estimation (CE) complete the first phase of uplink grant-free
access. In the second phase, the BS receiver detects the data
from the active devices, with the knowledge of device identity
and channel profiles obtained from the first phase [20], [21].
Remark 1: In an MMV model, the jointly K -sparse signal

X can be uniquely reconstructed from the noiseless measure-
ments Y = SX if and only if [22]

K <
spark (S)− 1+ rank (X)

2
, (3)

where spark(S) is the smallest number of columns of S that
are linearly dependent. In particular, if X is full rank or
rank(X) = K and spark(S) takes on its largest possible value
of M + 1, the condition of (3) becomes M ≥ K + 1. This
implies that the MMV problem of (2) requires the signature
length to be at leastM = K + 1 for unique reconstruction of
X in noiseless CS-based AUD and CE.

B. SIGNATURE SET STRUCTURE
To prevent adversary’s unauthorized access, we assume that
a BS and mMTC devices collaborate to renew the legitimate
signatures at each access. Let T be a set of all available
signatures, which is a publicly known codebook with |T | =
T . At each access, the signatures of a randomly chosen subset
N = {s1, . . . , sN } ⊂ T are uniquely assigned to all legiti-
mate devices in a cell, where we define the legitimate signa-
ture rate by rd = N/T . In uplink grant-free access, active
devices transmit their own signatures, which form a subset
K ⊂ N . Note that a choice ofN is a secret shared by a BS and
legitimate devices, whereasK is determined by the activity of
legitimate devices, driven by sensing or observation of events
in a cell. Finally, the BS receiver presents an estimate of K,
or K̂, through activity detection in the first-phase of access.

With the renewal of legitimate signatures, we assume that
an adversary’s strategy for impersonating legitimate devices
is to choose a set of distinct signatures arbitrarily from the
publicly known T , denoted by A ⊂ T , where |A| = na.
In an access attempt, the adversary transmits na signatures
of A by multiplexing them, where the malicious signature
rate is defined by ra = na/T . If some of the na malicious
signatures are successfully detected by a BS, the adversary
has a chance to gain access to the mMTC system in the
first-phase of access. Then in the second-phase, malicious
data transmission from the adversary can disrupt the data of
legitimate devices or inject false data to the system. If some
malicious signatures do not fall into N in the first-phase
of access, their transmission will cause jamming instead,
which deteriorates the performance of activity detection for
legitimate devices at a BS. Figure 2 illustrates the structure of
signature sequence sets for legitimate and malicious devices,
as described above.
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FIGURE 2. Set structure of signature sequences at an access time. Each
square denotes a signature sequence not assigned to any devices, while
each circle indicates a signature sequence assigned to devices in an
mMTC cell. The black-filled circles correspond to signature sequences of
active devices.

As an example of the signature set, we can employ the
Zadoff-Chu (ZC) sequences [19]. Each ZC sequence of prime
length M is given by z(u,θ ) = (z(u,θ )1 , . . . , z(u,θ )M )T , where

z(u,θ )m =
1
√
M

exp
(
−j
πu(m− 1+ θ )(m+ θ )

M

)
, (4)

for m = 1, . . . ,M . In (4), z(u,θ ) is a θ -cyclic shift of the uth-
root ZC sequence of length M , where 0 ≤ θ ≤ M − 1 and
1 ≤ u ≤ M − 1. Therefore, total T = M (M − 1) ZC
sequences are available for the signature set T from all pairs
of θ and u. For signature renewal, a legitimate device can
generate its unique ZC sequence by creating u and θ in a
pseudorandom manner. For this purpose, a pseudorandom
number generator (PRNG) [23] can be implemented for each
device to produce an integer In, 0 ≤ In ≤ T − 1, where
u = b InM c + 1 and θ ≡ In (mod M ) for n = 0, . . . ,N − 1.
Note that the PRNGs of all devices must operate secretly in
a coordinated manner, to ensure that the secrets I0, . . . , IN−1
are distinct and shared by the BS. The ZC sequences, adopted
as preambles for random access in 3GPP-LTE [24], can be
suitable for non-orthogonal signatures in uplink grant-free
access, since each one has zero autocorrelation [19] and
good power spectral characteristics [25], and each pair has
theoretically bounded low correlation [26].
Remark 2: In signature renewal, one may consider a code-

book T of randomly generated signatures, which can make
the codebook size T extremely large. For example, if the
elements of signatures are Gaussian or Bernoulli distributed,
we can create a huge number of signatures for a codebook T
by increasing the seed size of the element generator. Then,
the adversary’s strategy of choosing A arbitrarily from T
is not likely to succeed for the impersonation attack, since
the sample space for the choice is enormous. However, it is
difficult for randomly generated signatures to meet some
desired properties, e.g., low correlation, low peak power, low
implementation cost, etc., for practical applications. There-
fore, this paper assumes to use the deterministic ZC signature
sequences, which are more suitable for practical mMTC.

FIGURE 3. Signature-based uplink grant-free access model with
impersonation attacks.

Also, other deterministic signatures can be considered for our
analysis.

C. ATTACK MODEL
For an impersonation attack, we assume that an adversary
locates a single malicious mMTC device in a cell. The mali-
cious device transmits a multiplexed sequence of na distinct
signatures fromAwith the transmit power ρm at each access.
Assuming that the adversary distributes the total transmit
power ρm equally over the signatures, it is equivalent to
transmitting the na signatures individually with each transmit
power ρa =

ρm
na
. Figure 3 illustrates this attack model.

Under this attack, the MMV model of (2) is changed to

Y =
√
ξSX+

√
ξaSaXa +W (5)

where ξa = ρaM . In (5), Sa = [S,S′] ∈ CM×T contains all
signatures of a publicly known codebook T as its columns,
where S ∈ CM×N and S′ ∈ CM×(T−N ) have the signatures of
N and T \ N , respectively. Also, Xa ∈ CT×J is a jointly
sparse matrix with na nonzero rows, which correspond to
the na signatures of A. In Xa, the na nonzero elements of
each column are identical, since each one is the channel gain
between the single malicious device and a BS antenna.

From Fig. 2, we define signature subsets AM = A ∩ K,
AF = A ∩ (N \ K), and AJ = A ∩ (T \ N ), respectively.
Then, the channel gain matrix Xa can be rewritten as Xa =[
(XM + XF)

T ,XT
J
]T
, where the nonzero row elements of

XM ∈ CN×J , XF ∈ CN×J , and XJ ∈ C(T−N )×J correspond
to the channel gains for signatures in AM, AF, and AJ,
respectively. From the structure of Sa and Xa, (5) is rewritten
as

Y =
√
ξSX+

√
ξaSXM +

√
ξaSXF +

√
ξaS′XJ +W,

=
√
ξSX̃+ W̃, (6)

where X̃ = X+
√
ρa
ρ
XM+

√
ρa
ρ
XF and W̃ =

√
ξaS′XJ+W. In

W̃,WJ =
√
ξaS′XJ is the equivalent noise from the effect of

jamming. Note that the nonzero row indices ofXF are distinct
from those ofX andXM, respectively, due toK∩AF = AM∩

AF = φ.
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Under the impersonation attack, a BS receiver has to
tackle the MMV problem of (6). If a signature of AM is
detected successfully from the corresponding nonzero row
index of XM, the malicious device has a chance to modify
the data from a legitimate device of the signature in the
second-phase, causing data modification. On the other hand,
if a signature of AF is successfully detected from XF, the
malicious device can be authorized to access the mMTC
system to inject false data in the second-phase, which causes
false authentication. Finally, the signatures of AJ introduce
jamming to the system, which will contribute to increas-
ing the noise level of W̃ in detection process of legitimate
devices.

III. IMPACTS OF IMPERSONATION ATTACKS
In this section, we analyze the impacts of the impersonation
attack of Section II on the performance of signature-based
grant-free random access, with respect to data modifica-
tion, false authentication, and jamming, which is the main
contribution. In our analysis, we assume that the proba-
bility of selecting a sequence from T remains constant
at each selection of na malicious signatures, due to suffi-
ciently large T . This assumption allows to use the bino-
mial distribution [27], which facilitates our performance
analysis.

A. DATA MODIFICATION
If some signatures transmitted by the malicious device fall
into K, their identities override those of legitimate devices
in activity detection of the first-phase of access. Then in
the second-phase, the data transmitted from the legitimate
devices can be modified by the false data from the malicious
one, which destroys the data integrity.
Theorem 1: LetAM = A∩K be a set of signatures falling

intoK out of na ones chosen from T by the malicious device.
The data modification rate λm is defined by the average rate
of successfully detected signatures of AM out of all detected
ones in the first-phase of access. Then,

λm = E

[
|AM ∩ K̂|
|K̂|

]
≤ ra =

na
T
. (7)

Proof: See Appendix A. �
In Theorem 1, we assumed that if a legitimate device has

the signature of AM, its data would be modified certainly by
the adversary in the second-phase of access. However, the
adversary has no idea of which signatures of A have been
detected successfully by a BS, and thus may have to continue
to distribute its total power equally over all signatures of A
in the second-phase. Then, if na is very large, the data from a
legitimate device of the signature inAM will be less likely to
be modified in the second-phase by the malicious signature
with less power ρa =

ρm
na
, which makes the actual λm much

lower than the upper bound. In this paper, we assume that na
is small or moderately large to maintain the assumption of
Theorem 1.

B. FALSE AUTHENTICATION
In the first-phase of access, if the malicious signatures falling
intoN \K are successfully detected, the adversary is able to
deceive the BS by disguising them as legitimate ones, which
results in false authentication, destroying the device integrity.
Theorem 2: Let λf be the false authentication rate,

defined by the average rate of successfully detected signa-
tures of AF = A ∩ (N \ K) out of all detected ones in the
first-phase of access. Then,

λf = E

[
|AF ∩ K̂|
|K̂|

]
≤

ra(1− pd )
pd + ra(1− pd )

, (8)

where ra =
na
T is the malicious signature rate and pd is the

activity rate of a legitimate device.
Proof: See Appendix B. �

Remark 3: The proof of Theorem 2 shows that the upper
bound of (8) is obtained by (18) from α = psm/psg = 1,
where psg and psm are the probabilities that the signatures
of AM and AF are successfully detected, respectively, in the
first-phase of access. However, if na increases, a malicious
signature of AF will be less likely to be detected by a BS,
due to its reduced transmit power ρa =

ρm
na
. On the other

hand, the signatures of AM can still be detected by the aid
of signatures of K with sufficient power, regardless of na.
In other words, if na increases, the power difference of the
signatures in AF and AM may lead to psm < psg, which
reduces α. Consequently, the actual λf may not increase over
na indefinitely, due to the reduced α, which will be confirmed
by the numerical results of Section IV.

In Theorems 1 and 2, it is noteworthy that the upper bounds
are independent of a specific detection scheme at a BS. Also,
it is readily checked that for given na, the upper bounds
decrease monotonically as the codebook size T increases.
Therefore, it is essential to construct the codebook T such
that it has as many signatures as possible, to reduce the
data modification and the false authentication rates from the
impersonation attack.

In (6), the nonzero row indices of X and XF correspond to
the active legitimate signatures of K and the malicious ones
of AF, respectively. As the indices do not coincide with each
other due to K ∩ AF = φ, the malicious signatures of AF
increase the number of nonzero rows of X̃, which can degrade
the performance of CS-based activity detection of legitimate
devices at a BS. In what follows, Theorem 3 analyzes the
maximum number ofmalicious signatures ofAF that increase
the number of nonzero row indices of X̃.
Theorem 3: Let q = rd (1 − pd ), where rd = N/T , and

pd is the activity rate of a legitimate device. For given na, the
number of malicious signatures at AF is at most

KF,max =

⌊
log ε − na log e(1− q)
log q− log(1− q)

⌋
. (9)

with probability exceeding 1− ε for small ε > 0.
Proof: See Appendix C. �

As the malicious signatures of AF increase the number
of nonzero row indices of X̃, we also have to increase the
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signature length M so that a BS receiver can identify the
increased indices of X̃ successfully by CS-based detection.
For instance, if the elements of signatures are Gaussian dis-
tributed and the number of BS antennas is sufficiently large,
Remark 1 suggests that the signature length M should be
increased by KF,max even with no noise or jamming, for
reliable activity detection of legitimate devices under this
impersonation attack.

C. JAMMING
If some malicious signatures fall into AJ = A ∩ (T \ N ),
they correspond to the nonzero row indices of XJ. While
the signatures are irrelevant to those of legitimate devices,
their presence introduces jamming in (6), which degrades
the performance of activity detection for legitimate devices.
In what follows, we analyze the effect of jamming.
Theorem 4: In the MMV model of (6), assume that each

signature is the Zadoff-Chu (ZC) sequence. Then, each col-
umn of WJ =

√
ξaS′XJ can be approximated by a noise

vector of mean 0 and covariance KJ = σ
2
J I with

σ 2
J = ρmβm(1− rd ), (10)

where ρm is the adversary’s total transmit power and βm is the
path-loss component determined by the adversary’s distance
from a BS.

Proof: See Appendix D. �
While the proof of Theorem 4 assumed a sufficiently

large na, the numerical results of Section IV demonstrate that
the approximation is valid even for a small na. Theorem 4
suggests that jamming causes the noise-like interference to
signature-based grant-free access, where the equivalent noise
power is σ 2

J . As a result, jamming degrades the performance
of activity detection at a BS by adding the extra noise of power
σ 2

J equivalently in the first-phase of access. It is noteworthy
that the equivalent additive noise introduced by jamming is
not truly Gaussian distributed, which will be observed by
the numerical results of Section IV. Theorem 4 also shows
that if rd is sufficiently low, the adversary’s power mostly
contributes to the noise level increase through jamming,
which means that jamming is a major source for perfor-
mance degradation of signature-based grant-free access by
this impersonation attack. A variety of jamming mitigation
techniques [12]–[14], exploiting learning, precoding, optimal
filters, etc., can be employed for improving the detection
performance of legitimate devices.

IV. SIMULATION RESULTS
In simulations, total N = 500 legitimate devices are assumed
to be randomly located over the range of [0.05km, 0.5km]
in an mMTC cell, where each one is active independently
with probability pd = 0.05. For signature-based grant-free
random access, we assume that each signature is the Zadoff-
Chu (ZC) sequence of lengthM = 139 in Section II.B, which
forms a codebook T of T = M (M − 1) = 19182 signatures.
At each access, a signature setN of N signatures is randomly
taken from the codebook T , where each device is assigned

FIGURE 4. Data modification and false authentication rates over the
number of malicious signatures na, where the malicious device is closest
to the BS, located at R1 = 0.05 km from it.

its unique signature from N . The path loss of the wireless
channel is modeled by βn = −128.1 − 36.7 log10 dn in dB,
where dn is the distance in km from device n to a BS. The
transmit power of each active device is ρ = 23 dBm and
the power spectral density of AWGN at the BS receiver is
−169 dBm/Hz over 1 MHz.
In this mMTC cell, we first assume that an adversary is

closest to the BS, locating the malicious device at the inner
cell boundary of R1 = 0.05 km. The performance analysis
under this assumption can give us an insight into the impacts
of attack in the worst-case scenario. Later, we investigate the
impacts depending on the distance from the BS by moving
the position of the malicious device inside the cell.

In the presence of legitimate and malicious devices, a BS
receiver with J = 64 antennas tries to identify active ones
by solving the MMV problem of (6) through the simulta-
neous orthogonal matching pursuit (SOMP) [28], where we
assume that the number of active legitimate devices is known
a priori at each access. Although the sparsity-aware SOMP
with the prior knowledge cannot be realistic in practice, it
gives the best achievable performance of activity detection for
legitimate devices by this algorithm under the impersonation
attack. In simulations, we evaluate a variety of performance
measures through 50000 access trials.

Fig. 4 sketches data modification and false authentication
rates over the number of malicious signatures na, along with
their upper bounds of Theorems 1 and 2, respectively. In the
figure, we assume that the malicious device located at R1 =
0.05 km transmits the signatures with total power ρm =
20, 23, and 26 dBm, respectively. The figure shows that if na
is small, the rates are tightly bounded by the upper bounds,
respectively, but deviate from the bounds as na increases.
It is because less power ρa =

ρm
na

will be assigned to
each malicious signature of AM and AF, respectively, as na
increases. Thus, if na is large, the activity of the malicious
signature is not likely to be detected by a BS as successfully
as expected. In particular, the deviation is outstanding for the
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FIGURE 5. Data modification and false authentication rates over the
adversary’s total transmit power ρm, where the malicious device is
closest to the BS, located at R1 = 0.05 km from it.

false authentication rate, flattening it as na increases, which
conforms to the discussion in Remark 3. Comparing the rates,
we observe that false authentication can be a more serious
threat to an mMTC system than data modification.

Fig. 5 displays data modification and false authentication
rates over the adversary’s total transmit power ρm, along
with their upper bounds of Theorems 1 and 2, respectively.
In the figure, we assume that the malicious device located at
R1 = 0.05 km transmits na = 20 and 50 signatures, respec-
tively. In the figure, the upper bounds remain unchanged
over the transmit power, since the proofs of Theorems 1
and 2 are based on the worst-case scenarios to maximize the
upper bounds, respectively, regardless of the transmit power.
Interestingly, the figure shows that the irrelevance to ρm can
also be seen from the actual rates. It is because jamming
strengthens as the transmit power ρm increases, as shown
by Theorem 4, which degrades the performance of activity
detection for both legitimate and malicious signatures. Thus,
the poor detection performance for high ρm will not increase
the data modification or the false authentication rates even
with large na.
To investigate the statistical properties of jamming, Fig. 6

sketches the magnitudes of covariance matrix elements of a
column of WJ in (6), which have been normalized by σ 2

J of
(10) and averaged over total access trials. In this experiment,
the malicious device located at R1 = 0.05 km from BS
transmits na = 5 and 50 signatures with total power ρm =
23 dBm, respectively. As shown in Fig. 6, the covariance
matrix can be approximated by the identity matrix, which
gives a numerical evidence that each jamming sample has
the variance σ 2

J and a distinct pair of jamming samples are
uncorrelated. Thus, Fig. 6 confirms the result of Theorem 4
numerically for small and moderately large na.
Fig. 7 depicts the probability density functions (pdf) and

the complementary cumulative distribution functions (ccdf)
of real and imaginary jamming samples of WJ, obtained
from total access trials for na = 5, respectively, where

FIGURE 6. Empirical covariance matrices of the jamming samples of WJ
for na = 5 and 50 at ρm = 23 dBm, where the malicious device is closest
to the BS, located at R1 = 0.05 km from it.

FIGURE 7. Empirical pdfs and ccdfs of the jamming samples of WJ for
na = 5 and ρm = 23 dBm, where the malicious device is closest to the BS,
located at R1 = 0.05 km from it. Blue lines denote the standard normal
distribution with mean 0 and variance 1, while red lines indicate the
empirical pdfs and ccdfs of normalized jamming samples.

each sample has been normalized by
σ 2J
2 . Note that we also

observed similar shapes for the functions when na = 50. For
comparison, Fig. 7 sketches the pdfs and ccdfs of the standard
normal distribution with mean 0 and variance 1. It appears
that the numerical pdfs of jamming samples are similar to the
true normal pdfs even for small na, but the ccdfs show a clear
distinction between them. The ccdfs reveal that the jamming
samples tend to take larger magnitudes than the standard
normal ones, which implies that jamming may degrade the
detection performance of BS more severely than the additive
Gaussian noise with zero mean and variance σ 2

J . To sum up,
Figs. 6 and 7 suggest that jamming from the impersonation
attack introduces the additive noise with power σ 2

J , whichwill
degrade the detection performance more severely than adding
the Gaussian noise with the same power.

Fig. 8 depicts the goodputs of activity detection for legit-

imate devices, defined by the average of

∣∣∣K∩K̂∣∣∣∣∣∣K̂∣∣∣ over total

access trials, where K and K̂ are true and estimated sets
of active legitimate signatures, respectively. Fig. 8(a) shows
that while the BS receiver can detect all active legitimate
devices successfully with no malicious signature (na = 0),
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FIGURE 8. Goodputs of activity detection for legitimate devices over the
number of malicious signatures na and the total transmit power ρm,
where the malicious device is closest to the BS, located at R1 = 0.05 km
from it.

the detection performance drops drastically if the malicious
device at R1 = 0.05 km transmits the signatures (na >

0). In Fig. 8(a), the goodputs are rarely affected by vari-
ous na > 0, since the the jamming power σ 2

J does not
depend on na from (10). Meanwhile, Fig. 8(b) shows that
the goodputs are reduced as the transmit power ρm of the
malicious device increases, which is because the jamming
power increases as ρm. Fig. 8 also sketches the goodputs for
a noise equivalent model that has the received signal of (2) at
BS, where the power of AWGN is increased by σ 2

J with no
impersonation attack. As shown in Fig. 8, higher goodputs are
achieved in the noise equivalent model than in the true model
of impersonation attack, which demonstrates that jamming
causes more severe degradation for detection performance
than simple addition of the Gaussian noise with the same
power.

Up to now, we examined the impacts of impersonation
attack in the worst-case scenario that the adversary is closest
to BS. In Figs. 9 and 10, we now investigate the impacts
by changing the distance of the adversary from BS. Fig. 9
shows that the upper bounds on data modification and false
authentication rates remain unchanged over the adversary’s
distance, since they are derived in the worst-case scenario
not considering the received power of signatures determined
by the path loss. Fig. 9(a) shows that the data modification
rates, tightly bounded by the upper bound of Theorem 1, are
little influenced by the adversary’s distance. It is because the
malicious signatures of AM causing data modification can
be detected successfully, regardless of the received power,
since they are overlapped with legitimate ones of which
the received power may be sufficiently high. Meanwhile,
Fig. 9(b) indicates that the false authentication rates drop
dramatically as the adversary moves far away from the BS,
deviating from the upper bound of Theorem 2. It is because
the malicious signatures of AF causing false authentication
are less likely to be detected successfully at BS due to the
path loss, if the adversary’s distance from BS increases. But

FIGURE 9. Data modification and false authentication rates over the
adversary’s distance from BS.

FIGURE 10. Goodputs of activity detection for legitimate devices over the
adversary’s distance from BS.

if na is small, e.g., na = 5, the false authentication rate
drops slowly over the distance, since eachmalicious signature
is transmitted with high power ρa =

ρm
na
. Therefore, the

adversary has to choose the number of malicious signatures
carefully, depending on its distance from BS, to maximize the
false authentication rate.

Fig. 10 demonstrates that the goodputs of activity detection
for legitimate devices improve as the adversary moves far
away from the BS. The improvement is obvious because
jamming from the malicious signatures is reduced consid-
erably due to the path loss, if the adversary’s distance from
BS increases. In Fig. 10, we also observe that the goodputs
are more deteriorated as the malicious signatures strengthen
jamming with high transmit power ρm. By contrast, they are
little influenced by the number of malicious signatures na,
since the jamming power is not determined by na.

V. CONCLUSION
In this paper, we have studied the performance of signature-
based grant-free random access when an adversary attempts
to impersonate legitimate devices to gain illegal access to an
mMTC system. Renewing a legitimate signature set at each
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access, we have analyzed the impacts of impersonation attack
on the access scheme, with respect to data modification, false
authentication, and jamming. The main contributions of this
paper are summarized as follows.

− We gained an insight into the resilience of signature-
based grant-free random access against the imperson-
ation attack by deriving the upper bounds on data
modification and false authentication rates, respectively.
The theoretical and numerical results showed that false
authentication can be a more serious threat to the access
scheme than data modification. We found that both
rates are rarely affected by the adversary’s total transmit
power. To enhance the access security, the codebook
should have as many signatures as possible.

− We investigated the effect of jamming on the per-
formance of activity detection for legitimate devices.
We found that jamming from this attack can be treated
as the additive non-Gaussian noise, where the equiva-
lent noise power is determined by the adversary’s total
transmit power and the path loss. With a large codebook
size, jamming can be a major source of performance
degradation of signature-based grant-free access by this
attack.

− As the adversary moves far away from the BS, we found
that the false authentication rate drops and the goodput
of legitimate devices improves, which conforms to our
intuition. In contrast, the data modification rate remains
unchanged by the adversary’s distance from the BS.
Thus, signature-based grant-free random access will be
vulnerable to data modification by this attack, regardless
of the adversary’s position in a cell.

In performance evaluation, this paper did not consider any
prevention schemes of physical layer security (PLS) to defeat
the impersonation attack. The reason is that we have placed
the focus of this work on analyzing the impacts of imper-
sonation attack on signature-based grant-free random access
with a renewal of signatures, not proposing a new prevention
scheme to enhance the access security. A further research
considering PLS schemes may be fruitful for improving the
resilience of this access scheme against the impersonation
attack.

APPENDIX A PROOF OF THEOREM 1
By definition, the data modification rate is approximated by

λm ≈
E
[
|AM ∩ K̂|

]
E
[
|K̂|
] . (11)

Let pm(k) be the probability that k signatures of A fall into
K, i.e., pm(k) = Pr [|AM| = k]. A choice of signatures
for this event is characterized by the binomial distribution
B(na, rdpd ), where rdpd is the average probability that a
signature of K is chosen from the sample space T by the
malicious device. Let psg be the probability that the activity
of a signature in AM is detected successfully by a BS in
the first-phase of access. Then, the average number of active

legitimate devices that are successfully detected in the first-
phase, but will suffer from data modification in the second-
phase is

E
[
|AM ∩ K̂|

]
=

na∑
k=0

pm(k) · E
[
|AM ∩ K̂|

∣∣∣∣ |AM| = k
]

=

na∑
k=0

pm(k)

(
k∑
v=0

v
(
k
v

)
· pvsg(1− psg)k−v

)

=

na∑
k=0

pm(k) · kpsg = nardpd · psg. (12)

Meanwhile, the average number of devices detected by a
BS satisfies

E
[
|K̂|
]
≥ E

[
|K ∩ K̂|

]
+ E

[
|A ∩ (K̂ \K)|

]
, (13)

where

E
[
|K ∩ K̂|

]
≈ E [|K \A|] · psg + E [|A ∩K|] · psg

= E [|K|] · psg = Npdpsg. (14)

In (14), we assumed that the activity of a legitimate signature
inK, whether it falls intoK\A orA∩K, can be detected with
the same probability psg. Let pf (k) be the probability that k
signatures of A fall into N \ K, i.e., pf (k) = Pr [|AF| = k],
where AF = A ∩ (N \ K). A choice of signatures for this
event is characterized by B(na, rd (1 − pd )). Let psm be the
probability that the activity of a malicious signature of AF is
detected successfully in the first-phase of access. Then,

E
[
|A ∩ (K̂ \K)|

]
=

na∑
k=0

pf (k) · E
[
|A ∩ (K̂ \K)|

∣∣∣∣ |AF| = k
]

=

na∑
k=0

pf (k)

(
k∑
v=0

v
(
k
v

)
· pvsm(1− psm)k−v

)

=

na∑
k=0

pf (k) · kpsm = nard (1− pd ) · psm. (15)

From (12)–(15), we have

E
[
|AM ∩ K̂|

]/
E
[
|K̂|
]
≤

rapd
pd + α · ra(1− pd )

, (16)

where α = psm/psg ≥ 0. For given ra and pd , the upper
bound of (16) decreases over α. Finally, (7) is immediate from
(11) and (16) with α = 0.

APPENDIX B PROOF OF THEOREM 2
By definition, the false authentication rate is approximated by

λf ≈
E
[
|AF ∩ K̂|

]
E
[
|K̂|
] =

E
[
|A ∩ (K̂ \K)|

]
E
[
|K̂|
] . (17)

From (14) and (15), we have

E
[
|A ∩ (K̂ \K)|

]/
E
[
|K̂|
]
≤

α · ra(1− pd )
pd + α · ra(1− pd )

, (18)
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where α = psm/psg from the definitions of psm and psg in the
proof of Theorem 1. For given ra and pd , it is readily checked
that the bound of (18) monotonically increases as α. At a BS,
the received power of a signature in AM will be higher than
that of a signature in AF, since the former is the addition
of powers of legitimate and malicious signatures. Thus, it is
reasonable to assume that psm ≤ psg, or α ≤ 1, which yields
the upper bound of (8) from (18) at α = 1.

APPENDIX C PROOF OF THEOREM 3
The event that the malicious signatures fall into AF is char-
acterized by B(na, rd (1− pd )). Then, the probability that the
number of malicious signatures in AF is at most KF is

Pr [|AF| ≤ KF] = 1−
na∑

k=KF+1

(
na
k

)
qk (1− q)na−k

≈ 1−
(

na
KF + 1

)
qKF+1(1− q)na−KF−1

, py, (19)

where we used the approximation from q = rd (1− pd )� 1,
assuming rd � 1 from N � T . For py > 1 − ε, we obtain
from (19) (

ena
KF+1

)KF+1
qKF+1(1− q)na−KF−1 < ε, (20)

where we used
(n
k

)
≤
( en
k

)k . Applying the logarithm to (20),
we have

(KF + 1)
(
1+ log

na
KF + 1

+ log
q

1− q

)
≤ na + (KF + 1) log

q
1− q

< log ε − na log(1− q), (21)

where we used log x ≤ x−1 for x = na
KF+1

≥ 1. As log q
1−q <

0 due to q� 1, (21) becomes

KF >
log ε − na log e(1− q)
log q− log(1− q)

− 1, (22)

which yields (9).

APPENDIX D PROOF OF THEOREM 4
The event of choosing the malicious signatures from T \
N is characterized by B(na, 1 − rd ). From (6), recall that
S′ = [s′1, . . . , s

′
Nc ] contains all the signatures of T \ N

as its columns, where Nc = T − N . Define an indicator
vector α′ = (α′1, . . . , , α

′
Nc ), where α

′
n = 1 if s′n ∈ AJ, and

0 otherwise. Then, the tth column of WJ is

w(t)
J =

√
ξaS′x

(t)
J =

√
ξa

Nc∑
n=1

s′nα
′
nx

(t)
J,n, (23)

where x(t)J,n = x(t)J for all n with α′n = 1, since it is the channel
gain between the malicious device and the BS receiver’s
antenna t . By the definition of α′n, the average number of
nonzero terms in the sum of (23) is na(1 − rd ). From (4),

each element of the ZC sequence s′n can be modeled by
1
√
M
exp( j2πφM ), where φ can be assumed as a random phase if

the adversary selects the signatures randomly. As (23) shows
thatw(t)

J is the sum of na(1−rd ) exponential terms of random
phases on average, we have E[w(t)

J ] ≈ 0 for sufficiently large
na. Similarly, E

[
s′n(s
′
l)
∗
]
≈

1
M I if n = l, and 0 otherwise, for

sufficiently large na.
Given α′ and x(t)J , the covariance of w(t)

J is

K(t)

J | α′,x(t)J
= E

[
w(t)

J · (w
(t)
J )∗

∣∣∣∣ α′, x(t)J

]
= ξa

Nc∑
n,l=1

α′nα
′
lE
[
s′n(s
′
l)
∗
]
·

∣∣∣x(t)J

∣∣∣2
≈ ρa

∣∣∣x(t)J

∣∣∣2 ( Nc∑
n=1

α′n

)
I, (24)

where the approximation is made for sufficiently large na. If
K(t)

J | α′,x(t)J
is averaged over α′ and x(t)J , we have

KJ ≈ ρaE
[∣∣∣x(t)J

∣∣∣2] · E[ Nc∑
n=1

α′n

]
I

= ρaβmna(1− rd )I, (25)

where βm = E
[∣∣∣x(t)J

∣∣∣2] is the path-loss component deter-

mined by the distance of the malicious device from a BS, and
E
[∑Nc

n=1 α
′
n

]
= na(1 − rd ) indicates the average number of

malicious signatures inAJ. Finally, (10) is obtained from (25)
with ρm = ρana.
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