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ABSTRACT The framework of decomposition-based multi-objective evolutionary algorithms(MOEA/D)
has evolved for more than ten years, and it has become irreplaceable tool for solving multi-objective
optimization problems. In recent years, many scholars have investigated improved strategies from different
directions. This paper gives a systematic comparison of six different components for decomposition-based
algorithms, including framework analysis, weight vector generation scheme, aggregation evaluation function
construction, reproduction operator, individual selection and update strategy, and the characteristics and
application scope of various algorithms are also analyzed in detail in the survey. Different from previous
survey on decomposition-based multi-objective evolutionary algorithms, a more detailed classification and
experimental comparison are elaborated in the proposed paper.

INDEX TERMS Many-objective, decomposition, evolutionary algorithm.

I. INTRODUCTION
Without the loss of generality, multi-objective optimization
problems (MOPs) commonly used in practical engineering
are defined as formula (1), where x is decision variable vector,
and � and F are search space and objective space consisting
of m objective functions. Simultaneously, when the size of
objectives is more than three, they are considered as many-
objective problems (MaOPs).

minF(x) = (f1(x), · · · fm(x))T

s.t.x ∈ � (1)

Due to the conflicting characteristics of objective
functions in MOPs and MaOPs, there is no unique optimal
solution. Instead, a number of compromise individuals
that non-dominant with each other are obtained as the
best solutions, which are called Pareto optimal solutions.
So far, evolutionary algorithms (EAs) have become the main-
stream algorithm [1], [2] for MOPs and MaOPs because
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of population based characteristics, and have formed an
independent algorithm branch, named multi-objective evo-
lutionary algorithm (MOEA).

AlthoughMOEA can successfully obtain satisfactory opti-
mal solution set for problems with only 2 or 3 objectives,
its performance will be greatly degraded for problems with
irregular Pareto front (PF) shapes [3] or problems with many
objectives. The reasons are mainly reflected in two aspects.
Firstly, when the number of objectives increases, the tradi-
tional individual comparison methods based on dominance
relationship cannot quantitatively distinguish individuals in
the population, so that the selection pressure of individuals
will be eliminated, and search ability will be declined [4].
Secondly, the number of individuals covering the complete
PF will increase dramatically as the number of objectives
increase [5], so it is not easy to acquire Pareto optimal solu-
tion set performing well in both convergence and diversity at
limited computing resources.

With the increasing complexity of engineering optimiza-
tion problems, the research results of multi-objective evolu-
tionary algorithm have been widely used in various fields,
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including ship type parameter optimization in ship design,
filter optimization design, power system operation schedul-
ing optimization, and logistics distribution center location
problem. These complex optimization problems often contain
a large number of optimization objectives, and it is difficult
to obtain a set of satisfactory solutions.

In recent years, scholars have carried out a lot of research
to enhance the performance of the obtained solution set
for MaOPs, and the main research work can be classified
into the four types, including modifying dominance rela-
tion to improve selective pressure of solutions [6]–[11],
optimizing performance indicator [12]–[14] as objective,
objective reduction strategy [15]–[22] and decomposition
based algorithms. This paper will focus on the last cate-
gory. The decomposition based algorithm divides the original
MaOPs into a number of sub-problems via a set of weight
vectors, and utilizes a population-based method to solve
sub-problems collaboratively. Due to its effectiveness and
simplicity, decomposition based algorithms have become a
promising mechanism for handing MaOPs. Now decompo-
sition based MOEAs, particularly after MOEA/D presented
by Zhang and Li [23], have been demonstrated promising
performance for dealing with MaOPs. Nevertheless, conver-
gence or diversity will deteriorate for problems with compli-
cated shape of Pareto front. The improved studies have been
conducted on the following aspects including weight vec-
tor design, individual fitness evaluation mechanism, mating
selection and environmental selection strategy.

Recently, there are several review literatures about
decomposition-based MOEAs, e.g. Ma et al. [24] system-
atically compares the basic principles and experimental
performance of several typical algorithms based on decompo-
sition, including MSOPS, MOEA/D, NSGAIII, MOEA/DD,
DBEA MOEA/D-DU and EFR-RR. Trivedi and Srinivasan
[25] and Xu et al. [26] summarize the improvement strategies
in different directions, such as the variant of novel aggrega-
tion functions, weight vector generation approaches, mating
and environmental selection strategy, etal. In addition, there
are also some reviews that summarize and compare the strate-
gies in single direction for decomposition based algorithm.
For instance, in literature [27], a detailed survey of refer-
ence vector adjustment approaches is presented. The authors
focus on the adjustment strategy of weight vector on simplex,
and analyze the adaptation strategy, adjustment frequency.
Also, the advantages and disadvantages of each weight vec-
tor adjustment method are presented in detail. A survey of
various types of decomposition-based aggregation functions
[28] for MOEA/D is discussed, and the influence of vari-
ous aggregation functions on convergence and diversity is
concluded.

However, there is little literature to analyze the appli-
cability of different strategies by comparing experiments.
The motivation of the proposed paper can be described as
follows. Starting from comparing the framework of different
decomposition algorithm, the author summarizes the char-
acteristics of several types of algorithm framework based

on decomposition, containing individual evaluation meth-
ods, diversity maintenance and selection strategies, and also
compares their performance through algorithm simulation.
Next, this paper will investigate a comprehensive survey on
decomposition based MOEAs in different strategies, includ-
ing weight vector generation scheme, aggregation evalua-
tion function construction, reproduction operator, individual
selection and update strategy. Notably, the effect of experi-
mental performance comparison with different strategies has
also been conducted in the paper. To compare the perfor-
mance of the algorithms, four type test cases for MaOPs,
DTLZ, WFG, MOP and UF are chosen in the experiments.

The remainder of the paper is organized as follows.
The framework of MOEA/D proposed by Zhang is pre-
sented in Section II, Section III generalizes the framework
of decomposition based MaEAs, and five different directions
are described respectively in Section IV to VIII. Finally,
Section IX concludes the paper.

II. RELATED WORK
A. THE FRAMEWORK OF MOEA/D
Original decomposition based multi-objective evolutionary
algorithm (MOEA/D) is proposed by Qingfu Zhang, and
decomposition and collaboration are two important elements.
It employs a number of reference vectors ω1, ω2, · · · , ωN

to decompose the original problem into a set of single-
objective sub-problems. In each sub-problem, MOEA/D
adopts evolutionary algorithm to find unique optimal solu-
tion, which corresponds to one non-dominated solution of the
MOPs. Globally, the diversity of the non-dominated solution
set largely depends on the setting of the reference vec-
tors. Meanwhile, the assessment of individuals is completely
relied on the scalarization function, which will play a vital
role in the update of the individuals.

Besides, the evolution of individuals is not only restricted
in its subpopulation, but also involves the neighborhood of
the sub-problem. T closet neighbors based on the Euclidean
distances are exploited to solve the corresponding SOP in
a collaborative way, and each sub-problem primarily uses
the information from its neighboring sub-problems to exe-
cute evolution and update. In a sense, two solutions have a
probability to executemating selection and replacement when
they are for two neighboring sub-problems. The framework of
MOEA/D is shown in Figure 1.

Although MOEA/D is potential when dealing with MOPs
with regular PF, the performance will deteriorate with
the increase of problem complexity. In fact, the original
MOEA/D itself has some limitations: 1) simplex-lattice
approach is used to generate reference vectors in MOEA/D,
which is only suitable for MOPs with regular shape of Pareto
front. If the shape of the true PF is irregular, for example,
discontinued, degenerated, incomplete, the adopted weight
vectors generation method can’t guarantee the diversity of
solutions. 2) The choice of aggregation function does not
take into account the need for different problems with dif-
ferent Pareto front. e.g. WS method performs well in convex
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FIGURE 1. Framework of MOEA/D.

problems while TCH approach is better suitable for non-
convex problems. 3) Individuals involved in mating selection
in original MOEA/D have been always selected within the
neighboring sub-problems without considering the popula-
tion distribution of the individual’s region. Here, the neigh-
borhood and its size as two vital parameters determine the
individuals participating the mating and entering in the next
generation. However, the above parameters are fixed in the
whole evolution, which will imbalance the convergence and
diversity. Also, it may generate similar offspring thus result-
ing to the loss of diversity.

In order to retain the MOEA/D framework while improv-
ing the quality of obtained solutions, several variants have
been proposed.

B. DIFFERENT IMPROVEMENT DIRECTIONS OF
DECOMPOSITION BASED MOEA
After analyzing the limitation of MOEA/D, this section gives
a framework of the variants in six aspects, which is illustrated
in Figure 2. Next, we will investigate the different strategies
in every direction in detail, and give a comprehensive analysis
on experimental results of compared algorithms.

III. STUDIES ON THE FRAMEWORK OF DECOMPOSITION
A. THE ROUGH DESCRIPTION OF RELATED ALGORITHMS
USING THE IDEA OF DCOMPOSITION
Before the MOEA/D proposed by Zhang, the idea of decom-
position based approach for solving MOPs has emerged.

FIGURE 2. Overview the different directions for MOEA/D.

In fact, the origin of MOEA/D comes from cellular based
multi-objective genetic algorithm (C-MOGA [29]), and the
similarity is that both borrow the idea of reference vectors
to transform the MOP into a set of SOPs. However, com-
pared with MOEA/D, C-MOGA employs cellular structure
to assign weight vectors. Besides, the replacement strategy
in MOEA/D is different from C-MOGA, since local replace-
ment adopted in MOEA/D is executed within its neighbors,
while C-MOGA only with the current solution of the
cell.

Multiple Single Objective Pareto Sampling (MSOPS [30])
and its variants (MSOPSII [31]) are another decomposition
based method using predefined weight vectors to implement
multiple single objective optimization in parallel. They use
the score matrix to evaluate the ranking value of all individu-
als in the population for each weight vector. The size of rows
and columns represents the number of population and weight
vectors, respectively. In the process of ranking individuals
in population, the elements of the score matrix are sorted
by column and row, and finally the best individual for every
reference vector is chosen as the output.

Instead of using reference vectors to preserve the diver-
sity, NSGAIII [32] implicitly borrows the idea of decom-
position with combination of NSGAII and MOEA/D, and a
number of uniformly scattered reference points is employed
to maintain the diversity of population. In NSGAIII, fast
non-domination ranking is employed to partition the pop-
ulation into different fronts, with higher fronts indicating
better convergence of individuals. The diversity of individuals
is measured by the perpendicular distance of the reference
points to which it is associated, using the principle of niche
preservation.

Notably, Li et al. [33] combines the idea of decomposition
with dominance relation and proposes a unified framework,
named MOEA/DD. Starting with employing a set of weight
vectors by two-layer generation approach to guide selection
procedure, the evolution of population is executed in the
whole population but not in sub-problems. In MOEA/DD,
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TABLE 1. Summary of main characteristics for five decomposition based
algorithms.

the non-dominated solutions with lower scalarization fitness
values in the sub-region are preferentially selected. To main-
tain the balance of diversity and convergence, hierarchical
manner is utilized for environmental selection considering
Pareto dominance, scalarization fitness values and local den-
sity estimation respectively.

To alleviate the computational complexity, a scalarization-
based dominance evolutionary algorithm (SDEA [34]), which
combines the reference point method with the scalarization
method, is proposed to develop a individual ranking strategy.
Table 1 lists the characteristics of five decomposition based
algorithms.

B. EXPERIMENTAL RESULTS OF RELATED ALGORITHMS
USING THE FRAMEWORK OF DECOMPOSITION
In this part, four representative algorithms are adopted,
including MOEA/D, MSOPSII, NSGAIII and MOEA/DD.
Two types of test cases, MOPs with regular shape of PF,
such as DTLZ1, DTLZ3, and MOPs with irregular shape of
PF, such as DTLZ7 and WFG1, are adopted. In simulation,
the number of objectives (m) is set to 5. For the sake of
fairness, we use aMATLABPlatform for EvolutionaryMulti-
Objective Optimization (PlatEMO) [35] to complete the exe-
cution of all compared algorithms, and the setting of relevant
parameters refers to literature [32].

Line graphs are used to show the average value of the IGD
over 20 runs for the four compared algorithms under different
generation in each test problem in Figure 3. In Figure 3(1),
the Pareto front of DTLZ1 is linear triangular hyper-plane

with
m∑
i=1

fi = 0.5, and the purpose of choosing this test

case is to verify the ability of the algorithm to search for
global optimality in problems with multiple local optimum.

It is observed that the quality of the solutions obtained by
MSOPSII is inferior to other three algorithms under different
generations. Specifically, MOEA/DD obtains the best results
at the early stage of evolution, while with the increase of
generation, the difference between the MOEA/D, NSGAIII
and MOEA/DD become less apparent.

Figure 3(2) shows the comparison results of the average
IGD values on test case DTLZ3, and the Pareto front of

DTLZ3 is a sphere hyper-plane with
m∑
i=1

f 2i = 1, which

used to testify whether the comparison algorithm will fall
into a local optimum before reaching the global optimum.
At the early stage of evolution, MSOPSII outperforms than
other three algorithms, however, its performance varies subtle
in the whole evolution. In particular, The performance of
the other three types of algorithms is significantly improved
after 400 generations, and MOEA/DD shows better results
in generation 400, 600 and 800, while NSGAIII obtains best
IGD values in generation 1000 and 1500.

The comparison of IGD results of DTLZ7(5) in different
algorithms is shown in Figure 3(3). Due to the disconnected
PF of DTLZ7(5), this test case is employed to evaluate
whether the compared algorithms are capable of dealing
with disconnected segments. As shown in figure 3(3), the
difference between four algorithms is apparent. NSGAIII
obtains the best results in every stage of evolution, and the
performance of MOEA/DD is worst.

Figure 3(4) displays the comparison of the average IGD
values on WFG1, which is used to assess the ability of
compared algorithms in MOPs of complicated mixed geome-
tries. In general, NSGAIII and MSOPSII outperform than the
other two algorithms in the whole stage of evolution. As for
NSGAIII and MSOPSII, MSOPSII shows better results than
NSGAIII in generation 200, 400 and 600, while NSGAIII
obtains the best IGD values in generation 800, 1000 and 1500.

C. SUMMARY
In general, two types of test cases are adopted here to compare
the performance of four representative decomposition based
algorithms. It can be shown that the hybrid algorithm combin-
ing the dominance relation and decomposition can achieve
better performance than the original MOEA/D in many-
objective optimization problems. Besides, none algorithm
will have obvious advantages over all the different problems.
For DTLZ1 andDTLZ3with regular shape of PF,MOEA/DD
obtains the best results, while for test cases with irregular
shape of PF, DTLZ7 and WFG1, NSGAIII outperform than
other compared algorithms.

IV. THE STUDY OF GENERATION STRATEGY
OF WEIGHT VECTOR
The diversity of weight vectors largely determines the quality
of obtained solutions, thus, the study of weight vector or
reference vector generation strategy is a crucial problem for
decomposition based algorithms [36]. In practice, the actual
shape of Pareto front is rather complex, and the uniformity
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FIGURE 3. Average IGD of compared algorithms on some types of
problems.

of weight vector distribution cannot guarantee the quality of
obtained solutions. In summary, the generation approach of
weight vector can be categorized into four types, the first
type is aim to generate evenly distributed weight vector by
using experimental design method for MaOPs with regular
shape of Pareto front. The second type is an adaptive ref-
erence vector generation approach which updates the refer-
ence vectors periodically based on the information of current

TABLE 2. Classification of weight vector generation strategy.

solutions. The second type adopts heuristic information and
fitting-based generation method to obtain the most appro-
priate estimated PF shape. The last type employs machine
learning technique to generate dynamically weight vector
with the change of population. The classification and the
corresponding algorithms are listed in Table 2.

A. WEIGHT VECTOR GENERATION BY SYSTEMATIC
DESIGN APPROACH
1) THE IDEA OF WEIGHT VECTOR GENERATION BY
SYSTEMATIC DESIGN
In MaOPs with regular shape of Pareto front, e.g., a sphere
or a triangle plane, several systematic weight vectors are
proposed. Initially, the original MOEA/D employs simplex-
lattice design approach to create evenly distributed reference
vectors. The size of objectives m and the obtained weight
vectors N satisfies the relation N = Cm−1

H+m−1. However, the
setting of N is not arbitrary, and it will restrict its use in
MaOPs with more than five objectives.

In order to overcome the inability of arbitrarily set of
weight vectors, Tan et al. [37] employed uniform design for
experiments with mixtures (UDEM) to construct reference
vectors. L2-discrepancy is adopted to measure the uniformity
of reference vector set, and good lattice point approach and
transformation method with smallest discrepancy are taken
to generate reference vectors. Also, UDEM is combined with
MOEA/D as evolutionary framework, which is represented
by UMOEA/D.

Since the weight vectors resulting from the above two
methods lie on the boundary or inside the simplex, Ma et al.
[38] proposed an improved MOEA/D with uniform decom-
position measurement (MOEA/D-UMD) to make a com-
plementary between the above methods. Initially, uniform
design measurement with transformation method is adopted
to choose reference vectors with smallest discrepancy to
ensure uniformity. Then, the reference vectors in the bound-
ary are selected by uniform design and simplex lattice method
repeatedly.

Meanwhile, Li et al. developed a two layer reference
vector generation approach [33] to ensure the diversity with-
out increasing computational cost. Firstly, weight vector

VOLUME 10, 2022 72829



X. Guo: Survey of Decomposition Based Evolutionary Algorithms for Many-Objective Optimization Problems

generation method proposed by Das and Dennis is employed
to construct two different sets of weight vectors with dif-
ferent parameters setting in the interior and boundary layers
of the simplex, respectively. Next, co-ordinate transforma-
tion is used to shrink the weight vectors of the inside
layer.

2) SIMULATION SUMMARY OF COMPARED ALGORITHMS
In literature [38], the performance of three systematic uni-
formly designed weight vector methods, namely MOEA/D,
UMOEA/D and MOEA/D-UMD respectively, is compared
on two types of test cases with regular shape of Pareto
front. DTLZ1 with a hyper-plane and DTLZ2-DTLZ4 with
unit spheres are adopted as test problems, and the inverted
generation distance (IGD [39]) and hyper-volume (HV [40])
are employed to evaluate the quality of the obtained solu-
tions. In simulation, MOEA/D-UDM and UMOEA/D sig-
nificantly outperform MOEA/D on DTLZ1–DTLZ4 with
3-6 objectives. This result can be further verified in the
graphical representation of Pareto optimal set. MOEA/
D-UDM obtains the best uniformly distributed solutions
including the both boundary and the interior area of Pareto
front, while UMOEA/D achieves good diversity but poor
uniformity.

B. ADAPTIVE WEIGHT VECTOR GENERATION METHOD
1) THE IDEA OF ALGORITHMS BASED ON ADAPTIVE
WEIGHT VECTOR GENERATION APPROACH
When facing with the problems with irregular PF, e.g.
disconnected, degenerated, inverted simplex-like, weight
generators struggle to adjust search directions dynamically
to adapt the shape of the PF, and accordingly some adaptive
weight vector generation methods have been developed. The
adaptive weight vector design method is to estimate the shape
of target Pareto front according to the current population,
and then adjust the weight vector dynamically, so that the
weight vector can change dynamically with different stages
of evolution.

One trend of adaption is to analyze the relative relationship
between candidate solutions and current predefined weight
vectors, and adjust weight vectors according to the shape
of PF. Generalized decomposition [41] (gD) is presented to
generate an adaptive optimal weight vector on the assumption
that the optimal set of reference vector can be obtained when
a reference PF exists. The authors adopt Tchebycheff aggre-
gation function to derive an optimal reference vector corre-
sponding to one Pareto optimal solution of each sub-problem.
It means that gD method needs some prior knowledge of the
shape of the target PF, however, it seems unavailable to obtain
in advance [42].

Wang et al. introduced a novel preference inspired
co-evolutionary algorithm( PICEA-w) [43] to dynamically
change the reference vectors with the co-evolution of candi-
date solutions, and only weight vectors that contribute to the
candidate solutions are eligible to be reserved.

Cai et al. proposed two kinds of adjustments for the direc-
tion vectors [44] (MaOEA/D-2ADV), and the weight vector
set can be categorized into effective weight vectors and inef-
fective ones via Pareto dominance mechanism. In execution,
ineffective weight vectors are constantly repositioned and
adjusted to cope with MOPs with irregular PF.

Asafuddoula et al. [45] developed a periodical adaptation
approach for dynamically adjusting the reference vectors
(g-DBEA). In their work, a number of uniformly distributed
reference vectors are initially predefined as active reference
vectors, and the insert or the deletion of the weight vectors
is determined by the comprehensive information of solutions
associated with these weight vectors over a period of learn-
ing time, including their feasibility, the non-dominance and
presence. Different from other strategies to delete the useless
reference vectors directly, the g-DBEA moves them to the
inactive reference vector set.

The other trend of adaption is to employ an external
population or archive to periodically adjust weight vectors
and maintain consistency with the distribution of reference
vectors and the shape of PF. Qi et al. developed a new adaptive
adjustment strategy, named MOEA/D-AWA [46]. In order to
obtain better uniformity in problems with complex Pareto
front (discontinuous or PF with irregular shape), a external
population is borrowed to evaluate the density of individuals,
and the weight vectors are dynamically deleted and added by
estimating the density information of population.

Li et al. presented another adaptive method(AdaW [47])
to update weight vectors periodically based on information
of archive, which is used to locate potential undeveloped and
crowded region by comparing evolving population with cur-
rent weight vectors. In AdaW, five components of adaption,
including weight vector generation, deleting, adding, archive
maintenance and the update frequency of weight vectors,
are elaborated in detail. Nevertheless, repeated addition and
deletion of weight vectors will result in the increase of com-
putation cost, and also deteriorate the uniformity of Pareto
optimal set.

2) THE PERFORMANCE COMPARISON
In literature [44], two adaptive reference vectors adjustments
algorithms, MaOEA/D-2ADV and MOEA/D-AWA respec-
tively, are compared for MaOPs of DTLZ test case. The
experimental results show that MaOEA/D-2ADV outperform
MOEA/D-AWA in term of IGD in DTLZ1-4 with regular
shape of Pareto front, however, for degenerate shape of
Pareto front problems, DTLZ5, DTLZ6 and disconnected
problemDTLZ7,MaOEA/D-2ADV is not obviously superior
to MOEA/D-AWA. Also, in literature [47], two state-of-art
weight adaptation method, AdaW and MOEA/D-AWA are
considered as peer algorithm testing on MOPs with various
Pareto fronts for 2-, 3- objectives. The simulation results
demonstrate that MOEA/D-AWA is better than AdaW on
problems with Simplex-like Pareto Fronts. In contrast, AdaW
is superior to MOEA/D-AWA on problems with inverted
simplex-like, highly nonlinear, disconnect and degenerated
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shape of PF. Besides, in literature [45], g-DBEA is compared
with RVEA,θ − DEA, NSGAIII, MOEA/DD and MOEA/
D-PBI. For IDTLZ1 and IDTLZ2 with inverted fronts, both
of NSGAIII and g-DBEA perform reasonably well, and
g-DBEA obtains the best average HV value in DTLZ7 with
irregular and disconnected shape of PF. For DTLZ 5 with
degenerate POF, MOEA/D-PBI wins.

C. FITTING BASED GENERATION METHOD

To suit MOPs with the shape of PF approach
m∑
i=1

fi(x)p =1,

fitting based weight vector generation methods are proposed
to approximate the PF shape by the fitting or interpolation
of the individuals in population, and uniformly distributed
reference weight vectors or reference points are re-positioned
on the estimated PF.

In bi-objective MOPs, literature [48], [49] borrow a piece-
wise interpolation by linear function or cubic spline function
respectively to approximate the shape of PF. Subsequently,
a number of reference vectors are sampled on the estimated
PF. For MOPs with more objectives, parameter p is estimated

to fit the PF shape close to
m∑
i=1

fi(x)p =1 [50], and even sam-

ples are generated to replace the original weight vectors. Such
methods may lead to over-fitting because of the occurrence
of outliers, so they are only suitable for problems with 2 or
3 objectives.

D. MACHINE LEARNING BASED WEIGHT VECTOR
GENERATION METHOD
Recently, some scholars adopt machine learning technique
to generate adaptive weight vector, e.g. Hongwei et al. [51]
presented MOEA using cascade clustering and reference
point incremental learning (CLIA). Firstly, cascade clustering
based selection is employed to cluster and sort solutions,
and an incremental learning based reference vector adap-
tation process repositions the weight vectors to adjust the
effective areas of PF. In the dynamic adjustment process of
the weight vector, the algorithm trains a class of sample
classifiers to estimate the optimal timing for weight vector
adjustment. Numerical studies on CEC2018 test suites show
that CLIA outperform the other reference vector adaptation
based MOEAs, e.g. A-NSGAIII, RVEA∗, AR-MOEA.
Gu and Cheung employed the self-organizing mapping

[52] (SOM) to find the topological structure of the pop-
ulation and update the reference vectors dynamically by
training SOM network. In a sense, the above adaptation
methods globally adjust the searching direction according to
the distribution of individuals, which will ensure the satis-
factory versatility. In the framework of evolutionary process,
SOM is equipped with MOEA/D or M2M, respectively. The
experimental results demonstrate the superiority of MOEA/
D-SOM on both redundancy and non-redundancy problem
with incomplete PF.

E. SUMMARY
Adaptive weight vector adjustment methods delete or
increase the weight vector according to the current popu-
lation distribution information, and machine learning based
methods adjust weight vectors based on empirical or learning
knowledge. These methods only improve the quality of solu-
tions for limited kinds of irregular problem. However, their
performance will be degraded for problems with regular PF.
How to configure the adaptive frequency is a key factor to
improve the quality of weight vector.

V. STUDY OF SCALARIZATION FUNCTIONS
The scalarization functions play a vital role in decomposition
basedMaOPs, which determine the selection of solutions and
thereby affect the quality of the resulting solutions. The orig-
inal MOEA/D employs different scalarization functions, e.g.
weighted sum(WS), Tchebychedff method (TCH) or penalty
boundary intersection (PBI) approach, to evaluate the fitness
of individuals, and the above three functions are described
briefly as follows.

Mingws(x|λi) =
m∑
j=1

λ
j
ifj(x) (2)

Mingtch(x|λi, z∗) = max{λji|fj(x)− z
∗
j |} (3)

Mingpbi(x|λi, z∗) = d1 + θd2 (4)

d1 =

∥∥(F(x)− z∗)Tλi∥∥
‖λi‖

d2 =

∥∥∥∥F(x)− (z∗ − d1 λi

‖λi‖

)∥∥∥∥
where z∗andλi are the ideal reference point and the weight
vector, and θ is the penalty factor.

The simulation results indicate that different scalarization
functions varies distinctive with different problems with dif-
ferent characteristics of PF. e.g. WS method performs well
in convex problems while TCH approach is better suitable
for non-convex problems. However, the shape of Pareto front
is unknown beforehand, the selection of the proper aggrega-
tion function is a rather difficult problem. Several variants
have been investigated for enhancing both convergence and
diversity, and they can be grouped into the following three
categories. Table 3 summarizes the variants.

A. THE COMBINATION OF WS AND TCH
One idea is to combine the two above aggregation func-
tion together to demonstrate their own characteristics.
Ishibuchi et al. [53] developed an adaptive scalarization func-
tion (MOEA/D-AS) via automatically switching function
from WS to TCH, once the optimal solution correspond-
ing to WS function with different weight vectors is the
same solution in non-convex region. Meanwhile, the same
author also simultaneously used two types of scalarization
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TABLE 3. Three variants of scalarization functions.

functions(MOEA/D-SS) [54], WS and TCH, to evaluate the
fitness of individuals in one generation. Two implementation
methods are adopted. One is multiple grids of weight vectors
equipped with one scalarization function in one grid, and
the other is one single grid with two kinds of scalarization
functions. The experimental study shows that simultaneous
using both WS and the TCH functions works better than
using either WS or TCH function alone on multi-objective
0/1 knapsack problems with two-, four-, and six-objective.
Zheng et al. [55] combined the features of TCH and NBI, and
developed a NBI-style Tchebycheff. Ma et al. [56] presented
a generalized objective function in subproblem, which com-
bined Tchebycheff decomposition and Lp norm constraint to
adjust the significance of the subproblem in competition by
altering the p value.

Wang et al. [57] generalized the above WS and TCH
approaches into Lp scalaring functions by letting p=1 or
p = ∞ respectively, and proposed a generalized Pareto
adaptive scalarizing approach(MOEA/D-PaS). In theory,
a weighted Lp scalaring function can be formulated as (5).

Mingwd (x|w, p) = (
m∑
i=1

(
1
wi

)
p
(fi(x)− z∗i )

p)
1
p (5)

The properties and their search abilities of Lp scalaring
functions with different p value are analyzed, and it can
be concluded that search ability of Lp scalaring functions
decreases with the increase of value p. Besides, the author
compares the robustness of the scalarizing function, and finds
that as p increases, the robustness of the scalarizing function
to problems with different PF shapes gradually increases.
Meanwhile, the paper also discusses how to set the optimal
value of p. InMOEA/D-PaS, in order to approximately obtain
the best p value for each subproblem, the author usually
borrows a series of reference curves to approximate the
shape of PF, but the optimal solution corresponding to the
optimal p-value of the scalarizing function is bound to be
closer to the search direction than that obtained by other
p-value functions. In the experiment, the four algorithms
equipped with different scalarizing functions are compared
in pairs, namely MOEA/D-SS with MOEA/D, and MOEA/
D-PaSwithMOEA/D-AS, and experimental results show that
none of them can completely converge to the true PF, while
PaS achieves the best convergence.

Jiang and Yang [58] presented two new scalarization func-
tions (SF), multiplicative SF and penalty SF to control the

contour lines to maintain the balance of convergence and
diversity.

B. THE VARIANTS OF PBI
Compared with WS and TCH method, the PBI approach,
which employs a simple penalty factor θ to coordinate the
relationship between convergence and diversity, is aim to
force the solutions to converge on the PF along the search
direction and obtain a good distribution of solutions both
in convex and concave problems. The performance of the
algorithm will largely rely on the quality of the parame-
ter θ settings. Mohammadi [59] launched a comprehensive
analysis on the sensitivity of θ , including the effect of θ on
convergence and diversity. The experimental results demon-
strate that larger θ generally improves uniformity on the one
hand but adversely affects convergence. Thus, small θ values
are recommended in multi-modal problems while larger θ
values in uni-modal problems. Also, the relationship between
θ and the number of objectives is investigated and there is no
evidence that the setting of θ will affect the performance of
problems with different objectives number.

Two types of new penalty schemes (PS) for PBI scalarizing
function were investigated by Yang et al. [60], named adap-
tive PS and sub-problem-based PS respectively. APS dynam-
ically adjusts the value of θ at different stage of evolution,
whereas SPS assigns independent penalty value θ to each sub-
problem by distinguishing the regions of the objective space
where the weight vectors are located, such as the boundary
and interior regions. Experimental studies verify that both
APS and SPS schemes can effectively alleviate the loss of
boundary individual reduction while improve the diversity.
Ming et al. [61] proposed a configuration of an adaptively
penalty value method by PBI method counters and approxi-
mated PF shape.

Motivated by PBI scalarizing function balancing both con-
vergence and diversity, a hybrid version, θ dominance-based
evolutionary algorithm (θ -DEA [62]) is proposed. Followed
by allocating combined population into many clusters based
on the distance from the nearest reference point, a new θ

dominance relation, which borrows PBI scalarizing func-
tion within the same cluster, is employed to partition the
combined population into many θ -nondomination levels.
In θ dominance relation, there is no competitive relation-
ship between solutions in different clusters, which ensures
that the diversity of selected solutions between different
clusters.

Here, MOEA/D-PBI and θ -DEA, both taking PBI scalar-
ization function as tool of fitness evaluation, are compared
with each other. Table 4 summarizes the significance test by
HV metric on DTLZ and WFG with 80 test cases. Here, B,
W and E represent the number of cases where θ -DEA is
better than, worse than and equal to MOEA/D-PBI. It can
be concluded that θ -DEA is significantly superior to MOEA/
D-PBI, which indicates that PBI scalarizing function within
the non-dominated cluster can effectively balance conver-
gence and distribution.
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TABLE 4. Significance test between θ-DEA and MOEA/D-PBI.

C. OTHER SCALARIZATION FUNCTIONS
Some researchers develop a kind of parameter-free aggregate
function methods in sub-problem to improve the quality of
generated solutions.

Cheng et al. [63] proposed a reference vector guided EA
(RVEA), which developed an angle penalized distance (APD)
to maintain the convergence and diversity in different stage
of evolution process via penalty function. Specifically,

the APD is defined as follows. In expression (6),
∥∥∥f ′t,i∥∥∥ repre-

sents the convergence measurement which is expressed as the
distance from a translated objective vectorf ′t,ito the ideal point
in subpopulation j, and θt,i,j represents the angle betweenf ′t,i
and reference vector vt,j for evaluating diversity. The penalty
function (7) is precisely designed to apply a changing pres-
sure on convergence and diversity at the different phase of
search process. Another advantage of APD is that the nor-
malized part θt,i,j

γvt,j
in penalty function offers a stable balancing

between diversity and convergence without considering the
distribution density of the reference vectors.

dt,i,j = (1+ P(θt,i,j)) ·
∥∥f ′t,i∥∥ (6)

P(θt,i,j) = M · (
t

t max
)α ·

θt,i,j

γvt,j
γvt,j = min < vt,i, vt,j >

i∈{1,2,··· ,N },i 6=j
(7)

We compare the quality of the solutions generated by
the decomposition algorithms in pairs, θ -DEA, RVEA and
MOEA/D-PBI. The results are demonstrated in Table 5 and
Table 6. In the following table, B, W and E represent the
number of cases where the algorithm listed on the left side is
superior to, worse than and equal to its counterparts. It can
be concluded that θ -DEA wins, and RVEA is the second,
followed by MOEA/D-PBI.

Jiang and Yang [64] and Junhua and Yuping [65] inves-
tigated a novel combined fitness assignment mechanism in
the decomposed objective space, and proposed SPEA/R and
ISPEA/R. For convergence measurement, local strength and
global strength are employed to assign fitness values by
calculating the number of solution which are dominated or
dominated. The diversity is determined by the acute angle
information and the nearest neighbor density estimation.

D. SUMMARY
Since different scalarization functions vary distinctive with
different problems with different characteristics of PF, it is
feasible to adopt multiple scalarization functions at the same

TABLE 5. Significant test between θ-DEA and RVEA.

TABLE 6. Significant test between RVEA and MOEA/D-PBI.

time or composite individual evaluation method, instead of
using one scalarization function.

VI. THE STUDY OF MATING SELECTION AND
REPLACEMENT STRATEGY
In the original MOEA/D, individuals involved in mating and
replacement have been always selected within the neighbor-
ing sub-problems without considering the population distri-
bution of the individual’s region. Here, the neighborhood and
its size as two vital parameters determine the individuals
mating and entering in the next generation. However, the
above parameters are fixed in the whole evolution, which
will imbalance the convergence and diversity [66], [67].
The configuration of neighborhoods in mating selection and
replacement strategy will be discussed.

Jiang and Yang [68] developed a niche scheme to avoid
duplicate individuals in his MOEA/D-TPN. In order to better
maintain the diversity of population distribution, the mating
selection area is set up by calculating the number of niches in
each individual’s neighborhood. Once the number of niches
exceeds threshold, individuals from outside the neighborhood
are selected as mating parents. Niche guided strategies can
show better performance in maintaining population diversity
when dealing with complex problems.

To equip an appropriate neighborhood size (NS) for vari-
ous types ofMaOPs, Zhao proposed an ensemble NS strategy,
briefly named ENS-MOEA/D [69], to determine the optimal
NS for each sub-problem. By calculating the historical per-
formances of generating promising solutions, an ensemble of
different NSs and their selection probability are dynamically
adjusted during different stage of evolution.

Wang and Zhang [70] investigated the effect of the size of
neighborhood in mating and replacement on the quality of the
obtained solutions inMOEA/D, and concluded that the newly
generated individual in the sub-problemmay be inappropriate
for replacing within its neighboring sub-problems. In his
study, he proposes global replacement scheme, designated
as MOEA/D-GR, to guarantee that each solution should be
assigned to a suitable sub-problem within the scope of all
sub-problems instead of neighboring of B(i). The advantage
of global replacement lies in achieving the optimal match
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TABLE 7. Classification of environmental selection.

between subproblem and solution. Notably, the effect of the
size of replacement neighborhood Tr on the convergence and
diversity is investigated, and a dynamic adjustment (AGR) of
Tr is adopted to set small Tr at the early period of evolution
and large value at the late period of evolution.

VII. THE STUDY OF ENVIRONMENT SELECTION
Environment selection selects the best individuals in the pop-
ulation to enter the next generation by using some evaluation
strategies. In the decomposition based algorithm, researchers
usually use the scalarizing function as the criteria for select-
ing individuals. To effectively balance the conflict between
convergence and diversity, the variant algorithms also adopt
the strategies of distancemeasurement andmatching relation-
ship for the assessment of individuals. Table 7 lists the two
classifications of environmental selection and representative
algorithms.

A. SEPARATE DISTANCE MEASUREMENTS TO EXECUTE
ENVIRONMENTAL SELECTION
Replacing by aggregation function to perform environmental
selection, many literatures adopt separate distance measure-
ments to balance the convergence and diversity respectively.
Asafuddoula proposed DBEA-Eps [71] and I-DBEA [72] via
an adaptive epsilon level comparison to maintain the balance.
Initially, each solution is associated with two distances. One
is the distance along a reference direction d1, and the other is
the distance perpendicular to the reference direction d2. Next,
adaptive epsilon prioritized distance comparison is proposed,
which advocates d2 precedence over d1.

Liu et al. designed a adaptive two stage sorting scheme
(ASEA [73]) to use the reference direction more efficiently.
The scheme follows the principle of convergence-then-
diversity: solutions are firstly ranked by convergence, and
only solutionswhose convergencemeets certain requirements
are eligible for diversity sorting. Meanwhile, the number of
individuals participating in diversity ordering is dynamically
adjusted in different stages of evolution.

In order to investigate the effects of the two types of
individual evaluation methods, adaptive two stage sorting
scheme ASEA with three MaEAs equipped with differ-
ent scalarization functions, named RVEA, MOEA/DD and
θ -DEA are compared [73]. ASEA wins on DTLZ1, DTLZ3,
WFG1 and WFG3. For DTLZ2, θ -DEA wins the leading
position. For DTLZ5 and DTLZ6 with degenerate PFs and

WFG2 with disconnected PF, the above algorithms fail to
obtain a satisfactory IGD value.

B. ESTABLISHING A CORRESPONDING RELATIONSHIP
BETWEEN SOLUTION AND SUBPROBLEM
Li et al. advocated a stable matching model (STM [74]) to
select one single individual for each sub-problem in selection
operator. For each sub-problem in MOEA/D-STM, scalar-
ization function value is adopted to rank the individuals,
while the solution with higher scalarization value is preferred
to encourage convergence. While for each individual, the
distance from individuals to each weight vector from all
sub-problems is ranked to choose the optimal sub-problem
with shortest distance for diversity. In MOEA/D-STM, the
selection operator can be treated as one-to-one matching
procedure between solutions and sub-problems. Although the
STM model produces each individual for each sub-problem
to make up the deficiencies of poor diversity in MOEA/D,
it inevitably suffers from a situation where a solution will
match an unfavorable sub-problem. The reason is that indi-
viduals with better scalarization function values are always
at the top of the preference list and have a high probability of
being selected, while those individuals close to the reference
direction but far from PF are unlikely to be selected and
matched in STM model, which will obviously deteriorate the
diversity of population.

To alleviate the side effect of MOEA/D-STM, Wu et al.
[75] imposed a restriction on the size of the subproblems
associated with a solution, and two types of novel STM
strategies by using incomplete preference lists are developed.
The first approach is two level one-to-one matching which
uses two stages to accomplish stable matching. In the first
level, only the top ranked partial sub-problems are kept in the
preference list of each solution. At this moment, to ensure
diversity, each individual can only be matched with its adja-
cent preferred subproblems. Not all subproblems are assigned
a stable solution after the first level of matching, and the
remaining unmatched subproblems are continued to look
for a stable solution by updated complete preference lists
in the second level. The other approach is many-one stable
matching (MOSTM) which means one sub-problem can be
allowed to match with more than one solution. In the main
loop of MOSTM, an unmatched solution initially matches
with current preferred subproblem based on its preference
list. Then, the matching pairs with the largest number of
matching solutions and the worst rank of matching solutions
in the subproblem preference list are adjusted by releasing
matching relations to balance the selection. The restriction of
the preference list length will cause the solution only to be
matched with its favorite subproblems, which will repair the
loss of diversity.

Meanwhile, each subproblem is associated with only one
solution in STM based approach, which is not suitable for
complex problems when the shape of Pareto front is irreg-
ular. Under this situation, a more elaborate environmen-
tal selection strategy is needed. Cai et al. [76] proposed
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one sorting before selecting approach MOEA/D-SAS, which
employed two distinct components, decomposition-based
sorting (DBS) and angle-based-selection (ABS) to evaluate
the individuals. The proposedMOEA/D-SAS initially sorts L
closest solutions to the weight vector in each subproblem and
rank them based on its corresponding aggregation function
respectively to accomplish decomposition based sorting. That
is, if one individual with the k-th best aggregation value (k=
1,2,. . .L) is chosen in each subproblem, the chosen solutions
in each time can be sorted into L layers, namelyQ1,Q2,. . .QL .
Subsequently, the individuals in each front are selected to
next generation until the number no more than the number of
subproblems. Otherwise, angle-based-selection ensures indi-
viduals with the largest angle difference of the individuals in
the selected fronts for more fine-grained diversity.

Wang et al. analyzed the relationship between solution
and its neighborhood subproblems, and proposed an adap-
tive region adjustment strategy (ARA [77]) in MOEA/D.
To enhance the balance of convergence and diversity, a new
concept, contour point, is defined to divide the whole objec-
tive space into many sub-problems dynamically, and the
selection of solutions only occurs in the most suitable sub-
problem according to the relation between the solution and
the sub-problem. In addition, Yu et al. [78] proposed the
concept of loss of individual diversity to population diversity,
and designed an onlinemeasure of diversity namedmaximum
related diversity loss.

C. SUMMARY
In order to select good individuals into the next genera-
tion, more elaborate environmental selection strategies are
needed for different shapes of PF. Selecting individuals by
establishing the matching relation between individuals and
corresponding sub-problems is more beneficial to improving
the quality of population than aggregation function evaluation
method alone.

VIII. REPRODUCTION OPERATOR
The offspring reproduction operator is another crucial
factor, and classical operators, such as simulated binary
crossover (SBX) operator and polynomial mutation opera-
tor, are used as genetic tools to generate offspring, whose
advantage is strong at local search ability. However, single
operator does not perform well in different problems with
different Pareto shapes. Meanwhile, other evolution strate-
gies are employed to replace SBX as reproduction opera-
tor. For example, differential evolution (DE) is embedded
for handling complicated shape of Pareto set, which has
superior global search ability. The simulation results reveal
that the parameter setting has great influence on the per-
formance, such as scaling factor. Afterwards, some studies
have been investigated to discuss the effect of different
DE variant settings in MOEA/D [79]–[82], such as DE/
RAND/1, DE/RAND/2, DE/BEST/1, DE/BEST/2, and
DE/RAND-BEST/1. Test cases F1-F9 with complicated
Pareto sets, it can be concluded that DE/BEST/1 and

DE/BEST/2 surpass the other DE settings, although none of
DE settings can achieve the best performance in all test prob-
lems. Besides, some combination versions, such as MOEA/D
with ant colony optimization [83] (ACO), MOEA/D with
PSO, have been also used to generate new offspring.

The second direction is using probabilistic based estima-
tion of distribution algorithms (EDA) to extract the infor-
mation of population distribution and sample new solutions.
Zhou et al. [84] proposed two new reproduction operators
by employing multivariate Gaussian distribution model to
balance subproblem exploitation and neighborhood explo-
ration. The information of both neighborhood and history
individuals is recorded. Specifically, the offspring generated
by the information of neighborhood may be more likely
to extend along the PS for exploration, while the offspring
generated by historical individuals may push the offspring
to optimal solutions with the subproblem. Venske et al. [85]
combined probability matching (PM) with adaptive pursuit
(AP) to execute adaptive strategy selection. It uses empirical
quality estimation based on credit assignment to perform the
selection of DE strategy based on the probability that relying
on previous experience of relative fitness improvements in
producing promising solutions.

Laumanns and Ocenasek [86] made use of the relationship
of decision variables and developed a binary decision tree
based Bayesian model. Karshenas et al. [87] established a
joint probabilistic model of Bayesian network employing the
information of objectives and variables. IM-MOEA [88] uti-
lized the statistical information of population and established
Gaussian process-based inverse models to generate offspring.
In the procedure of reproduction, once the new test points in
objective function space are given as input, the established
Gaussian regression model will generate new points in deci-
sion space as output.

The third is adopting adaptive operator selection (AOS)
method. Lin et al. [89] developed an adaptive composite
operator selection strategy (MOEA/D-ACOS) to improve the
robustness and effectiveness. As the performance of different
DE mutation methods varies dramatically in different types
of problems, multiple composite DE strategies are employed
in MOEA/D-ACOS to improve exploratory capabilities for
variety type of MOPs. For finding a preferred operator
pool to generate new solutions, a operator pools selection
approach based on bandit is proposed, which dynamically
select the preferred operator pool by the fitness improvement
rates (FIR) of historical search experience.

IX. CONCLUSION
We have conducted a research on decomposition based evo-
lutionary algorithms, and six different directions have been
summarized to improve the performance of obtained Pareto
optimal solution set or extend the decomposition based
algorithms to scalable complicated type of MaOPs. Differ-
ent from current literatures, a more detailed classification
under each direction is elaborated briefly, and pairwise com-
parison demonstrates the characteristics of the algorithms
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investigated. A list of conclusions can be conducted from the
work, and it can be concluded as follows.

(1) With respect to different framework of decomposition
based algorithms, different types have their own advantages,
and none of the any type has an obvious superiority over
others.

(2) According to the characteristics of population distri-
bution, adaptive weight vector adjustment is an effective
weight vector design method for MaOPs with complex or
irregular Pareto front. However, how to configure the adaptive
frequency is a key factor to improve the quality of weight
vector.

(3) As for scalarization function, one of the current trends
is integrating convergence and diversity effectively in decom-
posed objective space, which is verified to be able to balance
convergence and diversity.

In the future, we will focus on more hybrid strate-
gies, such as combining multiple genetic operators, adding
machine learning algorithms into weight vector design
methods, and adopting multiple mechanisms for evaluating
individuals. At the same time, we will also study the design
of many-objective evolutionary algorithm in more applica-
tion problems, such as machine learning classification and
resource scheduling problem.
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